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Why Dileptons...?

Dileptons represent a clean and penetrating probe of hot and
dense nuclear matter
Reflect the whole dynamics of a collision → Correct
description of dynamics essential!
Aim of studies:

In-medium modification of vector meson properties
Hadronic many-body effects
Baryon vs. meson-driven modifications
Vector Meson Dominance
Chiral symmetry restoration
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Medium-modifications of hadrons - why are they
interesting?

Basic theory of strong interactions is QCD → running
coupling

Large coupling at small momenta → no description from first
principles

The relevant degrees at low energies are hadrons
Hadron in a dense and / or hot environment → More and
more fundamental degrees of freedom dominate

How are the ”two faces” of QCD connected?
Important for understanding the non-perturbative region of
QCD

Role of symmetries is important
Relevant quantity is the hadron spectral function →
coupling to current J(x) carrying the hadron’s quantum
numbers
Vacuum spectral functions can be measured
(e+e− → hadrons) ⇒ What for in-medium case?
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Vacuum vs. Medium

What is different, when comparing vacuum processes with
medium?

⇒ Vacuum: Probe can only decay, Lorentz invariance
⇒ Medium: Scattering with particles (mesons, baryons) which

constitute the medium, explicit dependence on E and ~q

Unified language: Scattering is decay into particle and hole
→ Resonance-hole excitation

Challenge is to determine the self-energy Π of a particle
undergoing all those medium effects
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Hadronic Many-Body Theory

Medium modifications of the ρ propegator

Dρ ∝
1

M2 −m2
ρ − Σρππ − ΣρM − ΣρB

include interactions with pion cloud with
hadrons (Σρππ) and direct scatterings off
mesons and baryons (ΣρM , ΣρB)
[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]
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Alternative Approach: Spectral Function from Resonance
Dominance

In-medium self energies of the ρ

Σρ = Σ0 + Σρπ + ΣρN

were calculated using empirical scattering
amplitudes from resonance dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

For ρN scattering N∗ and ∆∗ resonances
from Manley and Saleski

Additional inclusion of the ∆1232 and the
N1520 subthreshold resonances
⇒ Important, as they significantly
contribute!
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Theoretical approaches

General assumption when calculating spectral functions:
Equilibrated stage (heat bath with fixed T ,µB ,...)
→ But: Situation in heavy-ion collision will be dominated by

non-equilibrium evolution!

Phenomenological approaches are necessary to model the
heavy-ion reaction

Transport approaches → Treat the dynamics microscopically
and account for non-equilibrium, but implementation of full
medium-effects is difficult
Fireball parametrizations → Probably rather too
simplifying...
Hydrodynamics Need initial state, description of final state
interactions - applicability at low energies?
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Fireball Parametrization

Calculations with a fireball model achieved very good
agreement with dilepton data from SPS and RHIC
[H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]

The zone of hot and dense matter is described by an
isentropic expanding cylindrical volume

VFB(t) = π

(
r⊥,0 +

1

2
a⊥t

2

)2(
z0 + vz,0t +

1

2
az t

2

)

Problem: How to choose
parameters? Is it a plausible
description or a too simple
picture?

⇒ Calculations with better
constrained dynamics?
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Transport Models

Hadronic non-equilibrium approaches

Include baryons and mesons with
masses up to 2 GeV

Hadrons are propagated on classical
trajectories

Two processes for resonance
production (at low energies)

Collisions (e.g. ππ → ρ)
Higher resonance decays (e.g.
N∗ → N + ρ)

String excitation possible above
√
s ≈

3 GeV

Resonances either decay after a certain
time or are absorbed in another
collision (e.g. ρ+ N → N∗1520)
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Dilepton Sources

Coupling to photon?
Straightforward for direct decays (ρ, ω, φ)
What about the Dalitz decays? (π0, η, η′, ω)
P → γ + e+e−

V → P +e+e−

⇒ Form factors necessary!

Assumption: Vector Meson Dominance → Coupling
between hadron and (virtual) photon via vector mesons

Form factors for the Dalitz decays can be obtained from the
vector-meson dominance model
Baryon Resonances: B∗ → B + ρ→ B + e+e−, but ∆1232

traditionally treated explicitly
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Challenges

Large variety of parameters

Many cross-sections and branchings are unmeasured or
unmeasurable (especially for ρ and ∆ lack of data)

Consistency of description when going from resonances to
strings?

General difficulties of the transport approach at high density:

Off-shell effects
Multi-particle collisions

⇒ How can we avoid (some of) these problems but still
have a good description of the reaction dynamics?
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The Idea: Coarse-Graining

Combining a realistic 3+1 dimensional expansion of the
system with full in-medium spectral functions for the emission
of dileptons

Idea: Microscopic description → Average over a many
single events

Sufficiently large number of events → Distribution function
f (~x , ~p, t) takes a smooth form

f (~x , ~p, t) =

〈∑
h

δ3(~x − ~xh(t))δ3(~p − ~ph(t))

〉

UrQMD model constitutes a non-equilibrium approach → the
equilibrium quantities have to be extracted locally at each
space-time point
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Coarse Graining

Take an ensemble of UrQMD events and span a grid of small
space time cells.
For those cells we determine baryon and energy density and
use Eckart’s definition to determine the rest frame properties
→ use equation of state to calculate T and µB

Two EoS: Free hadron gas with UrQMD-like degrees of
freedom + Lattice EoS for T > 170 MeV
[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]

Extract µπ via simple Boltzmann approximation
13 / 30



The In-Medium Case Phenomenological Approaches Coarse Graining Approach Results Outlook

Anisotropy
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Anisotropy parameter x
Relaxation function r(x)

Large pressure anisotropy in the early stages of the reaction
Description developed for anisotropic hydrodynamics
[W. Florkowski and R. Ryblewski, Phys.Rev. C83 (2011)]

Energy-momentum tensor takes the form
Tµν = (ε+ P⊥) uµuν − P⊥ g

µν − (P⊥ − P‖)v
µvν
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Dilepton Rates

Lepton pair emission is calculated for each cell of 4-dim. grid,
using thermal equilibrium rates per four-volume and
four-momentum from a bath at T and µB

The ρ dilepton emission (similar for ω, φ) of each cell is
accordingly calculated using the expression
[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

d8Nρ→ll

d4xd4q
= −

α2m4
ρ

π3g2ρ

L(M2)

M2
z2πfB(q0; T)ImDρ(M, q; T, µB)

Multi-pion lepton pair production and QGP emission are also
included in the calculations

For cells with T < 50 MeV (mainly late stage) → Directly
take the ρ contribution from transport
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UrQMD Energy and Baryon Density as Input...
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The UrQMD input we use gives a more realistic and
nuanced picture of the collision evolution than e.g. the
fireball approach

→ Energy and baryon density are by no means homogeneous in
the whole fireball!
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Temperature and Chemical Potential from Coarse Graining
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Note: Maximum values (central cell), not average → Different
T and µ obtained for each space-time cell
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NA60 Excess Invariant Mass Spectra
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In+In @ 158 AGeV

HG-EoS + Lattice EoS

 > 0 GeV
T
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In-medium ρ shows
broadening compared to
case without baryons

4π and QGP
contribution dominate
especially above 1 GeV

Significant part of the
excess at low masses also
stems from the QGP

⇒ Good overall agreement between coarse-graining result and
NA60 data

⇒ Results similar to fireball approach in spite of different
dynamics
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Intermediate Mass Region (M > 1 GeV)
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QGP and multi-pion annihilation are the relevant sources in
the intermediate mass region

For M > 1.5 Gev QGP contribution clearly dominates

Duality between hadronic and partonic emission rates?
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mt Spectra
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Spectra in pt Slices

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610

ρIn-medium 
ρNon-thermal 

QGP (Lattice)
πMulti 

Sum

In+In @ 158 AGeV
>=120η/dch<dN

 < 0.2 GeV
T

p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 0.4 GeV

T
0.2 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 0.6 GeV

T
0.4 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 0.8 GeV

T
0.6 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 1.0 GeV

T
0.8 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 1.2 GeV

T
1.0 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 1.4 GeV

T
1.2 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 1.6 GeV

T
1.4 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 1.8 GeV

T
1.6 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 2.0 GeV

T
1.8 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 2.2 GeV

T
2.0 <  p

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-1010

-910

-810

-710

-610
 < 2.4 GeV

T
2.2 <  p

Strongest broadening at low pt

Note the momentum dependence of and thermal and
non-thermal ρ contribution
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Comparison of Spectral Functions
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In-medium self energies of the ρ were calculated using
empirical scattering amplitudes from resonance dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

Not enough broadening due to low-density expansion of the
self energies → Overshoots data at peak
Note: Different quantities spectral function (µB vs. ρeff )
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Comparison to STAR results
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QGP dominates thermal emission at low and high masses
Also significant non-thermal ρ
Missing contribution from charm at higher masses
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Reaction Dynamics SIS Energies
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Huge lifetimes of the hot and dense fireball (for Au+Au more
than 20 fm/c!)
Moderate temperatures and very high baryon density
respectively baryochemical potential → Ideal situation to
study in-medium modifications
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HADES Results
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At those low collision energies a significant in-medium
broadening of the ρ spectral function appears

High baryon chemical potential → Good check for baryonic
effects in spectral functions

Note the strong broadening of the ω as well!
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Ar+KCl @ 1.76 AGeV - mt-Spectra
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Good agreement here with data up to Mee = 0.65 GeV/c2

Note: Model completely the same as for NA60 and STAR
calculations!
Coarse-graining works also for SIS 18 energies
→ Hydro or fireball descriptions probably not reasonably
applicable
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Ar+KCl @ 1.76 AGeV - mt-Spectra
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Overshoot data at low mt around the ρ pole mass for
M > 0.65 GeV/c2

Probably due to ”freeze-out” ρ from UrQMD → Known fact
that implemented cross-sections are too high at threshold
However : Coarse-graining works also for SIS 18 energies
→ Same physical description as for NA60 27 / 30
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What about the old DLS data...?
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Ca + Ca @ 1.04 AGeV

Experimental excess in mass range 0.2 to 0.6 GeV/c2

Possible reasons: Bremsstrahlung (low energy!), limits of
thermal description, quality of filter and data, . . .
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Connection to microscopic / transport description?

Production Processes from  Spectral Function
↔ Cuts (imag. parts) of Selfenergy Diagrams:




N-1

>







N-1





 N → N , 

N → → N

meson-exchange 
scattering

resonance
Dalitz decays

 → a1→ 

Bremsstrahlung 

N → NN, N






by Ralf Rapp

Spectral function includes contributions (Bremsstrahlung, ∆
Dalitz decays) that are usually explicitly treated in transport
models → To which extend comparable?
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Outlook

Explanation of dilepton measurements is still a challenge for
theory ⇒ Need for more experimental input!

High precision data necessary to constrain model calculations
which still have large uncertainties

→ Study of pion-induced reactions (at SIS / HADES) will be
essential for better determination of baryonic resonance
properties

CBM will enable to explore physics in an up-to-now
uninvestigated energy range

Very high baryonic densities → Better constraints for spectral
functions?
Not only low-mass regime but also M > 1 GeV might be worth
being intensively studied → deconfinement / phase-transition?

Improve Coarse-Graining approach → Hydro + coarse-grained
transport (for better consistency when using QGP rates)
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