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Outline 
•  Resonances in ALICE: 

– What resonances do we study? 
– Why do we study resonances? 
– How do we study them? 
–  Important recent results 
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Resonances 
•  What particles do we study? 

– Excited hadronic states 
– Short Lifetimes (~ Lifetime of Fireball) 
– For practical reasons, we prefer resonances 

with only charged particles at the end of the 
decay chain. 
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Resonances 
•  What particles do we study? 

– Excited hadronic states 
– Short Lifetimes (~ Lifetime of Fireball) 
– For practical reasons, we prefer resonances 

with only charged particles at the end of the 
decay chain. 
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ALICE Resonance Program 5 
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Heavy-Ion Collisions 6 
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Heavy-Ion Collisions 10 
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Hadronic Phase 
•  Reconstructible resonance yields affected by hadronic processes 

after chemical freeze-out: 
–  Regeneration: pseudo-elastic scattering of decay products 

•  e.g., πK à K* à πK 
–  Re-scattering: 

•  Resonance decay products undergo elastic scattering 
•  Or pseudo-elastic scattering through a different resonance (e.g. ρ) 
•  Resonance not reconstructed through invariant mass 
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Hadronic Phase 
•  Reconstructible resonance yields affected by hadronic processes 

after chemical freeze-out: 
–  Regeneration: pseudo-elastic scattering of decay products 

•  e.g., πK à K* à πK 
–  Re-scattering: 

•  Resonance decay products undergo elastic scattering 
•  Or pseudo-elastic scattering through a different resonance (e.g. ρ) 
•  Resonance not reconstructed through invariant mass 

•  Final yields at kinetic freeze-out depend on 
–  Chemical freeze-out temperature (Tch) 
–  Time between chemical and kinetic freeze-out (Δt) 
–  Resonance lifetime 
–  Scattering cross sections 

•  Can use measured resonance yields to study these properties 
•  Re-scattering and regeneration expected to be most important for  

pT < 2 GeV/c (UrQMD) 
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Chiral Symmetry Restoration 

•  Quark condensate <0|qq|0> fills QCD vacuum 
•  Effective q masses related to value of condensate: mq* ∞ <0|qq|0> 
•  Lattice calculations indicate decrease in condensate around chiral 

phase transition temperature 
–  Tends to be near deconfinement phase transition 
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Chiral Symmetry mq ! 0 " 

M. Cheng et al., Phys. Rev. D 77 014511 (2008) 

Δs,l = normalized difference of 
light and strange quark chiral 
condensates 
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Chiral Symmetry Restoration 

•  Quark condensate <0|qq|0> fills QCD vacuum 
•  Effective q masses related to value of condensate: mq* ∞ <0|qq|0> 
•  Lattice calculations indicate decrease in condensate around chiral 

phase transition temperature 
–  Tends to be near deconfinement phase transition 

•  Particles that decay when chiral symmetry was at least partially 
restored expected to have mass shifts and/or width broadening 
–  Need particles that decay early (i.e., resonances) AND have 

decay products that pass through the hadronic phase without 
scattering 
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Particle Production 
•   φ meson has long enough lifetime that we may be able to treat it as 

a stable particle 
–  No major modifications to spectrum or yields due to re-scattering 

or regeneration 
•  Compare φ to models (VISH, HKM, Kraków, …) 

•  Strangeness content 
–  Strangeness enhancement 
–  Is φ (hidden strangeness) enhanced similarly to Ξ (S=2)? 
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Hydrodynamics: 
– Particle masses 
determine shapes 
of spectra 

Quark Recombination: 
– Number of quarks 
influences shapes of 
spectra 
– Differences between 
baryons and mesons with 
similar masses 
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Resonances in pp and p–Pb 
•  Resonances in pp: 

–  Baseline measurement to which heavy-ion measurements are 
compared: 

•  Masses and widths 
•  Yields and ratios to stable particles 
•  Nuclear Modification Factor (RAA) 
•  Comparison to peripheral Pb–Pb 
•  Multiplicity-dependent measurements 

–  Constrain QCD-inspired models 
•  Particle spectra/ratios used to tune PYTHIA 

•  Resonances in p–Pb 
–  Baseline measurement to control for cold nuclear matter effects 
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ALICE Detector 17 

TPC: Tracking 
and PID through 
dE/dx 

VZERO (scintillators): 
multiplicity, centrality 

ITS (silicon): Tracking 
and Vertexing 

TOF: PID through 
particle velocity 
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Finding Resonances 18 

Find decay products Find π±, K±, p, p: 
 -Track cuts: 
    # TPC Clusters 
    track χ2 

   DCA to primary vertex 
   others… 
 -Particle Identification 
   TPC energy loss (nσ) 
   Time of Flight (nσ) 
Find intermediate decay 
products (e.g., Λ): 
 -Cuts on decay topology 
 -Invariant mass 
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Finding Resonances 19 

Find decay products 

Construct invariant 
mass distributions 

Compute invariant mass 
of decay-product pairs 

Example: Pb+Pb ! Xφ ! K–K+ 

M = √m1
2 + m2

2 + 2E1E2 - 2p1p2cosα	
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Finding Resonances 20 

Find decay products 

Construct invariant 
mass distributions 

Describe background 

Fit background Like-charge 
Event mixing 

Event mixing: cuts to 
ensure similar vz, 
multiplicity, event plane 
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Finding Resonances 21 

Find decay products 

Construct invariant 
mass distributions 

Describe background 

Fit background Like-charge 
Event mixing 

Describe residual 
background 
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Finding Resonances 22 

Find decay products 

Construct invariant 
mass distributions 

Describe background 

Fit background Like-charge 
Event mixing 

Describe residual 
background 

Fit peak Extract yield, 
mass, width 
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•  Resonances measured in pp (0.9, 2.76, 7 TeV) , p–Pb (5.02 TeV), 
and Pb–Pb (2.76 TeV) collisions 

Resonance Reconstruction 23 
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Mass and Width (Pb–Pb) 24 

No significant mass or width shifts observed. 
No centrality dependence of mass or width. 

Knospe 
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Ratios of Yields 
•   K*0/K 

–  In Pb–Pb: strongly suppressed in 
central collisions w.r.t. peripheral, 
pp, p–Pb, or thermal model 

–  Consistent with the hypothesis that 
re-scattering is dominant over 
regeneration 

•   φ/K 
–  No strong dependence on centrality 

or collision system 
–   φ lifetime ~10× longer than K*0,   

re-scattering effects not significant 
–  Ratio for central Pb–Pb consistent 

with thermal model 

•  Ratios in p–Pb lie along trend 
from pp to peripheral Pb–Pb 
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Ratios of Yields 
•   K*0/K 

–  Values appear to follow 
same trend for both RHIC 
and LHC 

–  Similar suppression of 
signal between pp and 
central A–A 

•   φ/K 
–  Similar shapes in RHIC   

Au–Au and LHC Pb–Pb.  
Au–Au values tend to be 
larger than Pb–Pb, but 
consistent within 
uncertainties. 

–  Ratio in d–Au fits into trend 
between pp and Au–Au    
(cf. p–Pb at LHC) 

–  No strong energy or 
collision-system 
dependence between RHIC 
and LHC 
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Non-equilibrium Model 27 

•  Chemical non-equilibrium statistical hadronization model 
–  Phys. Rev. C 88, 034907 (2013) 

•  Factors γq≠1 and γs≠1 that modify u/d and s pair yields w.r.t. 
equilibrium values 
–   γq≠1 when "source of hadrons disintegrates faster than the time 

necessary to re-equilibrate the yield of light quarks present.” 
•  Gives ~flat K*/K ratio, may be inconsistent with measured K*0/K– 

Uses preliminary 
ALICE K*0/K, φ/K 
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Properties of Hadronic Phase 
•  Simple model: 

–  Assume that any K*0 that decays before kinetic freeze-out will be lost due to re-
scattering, neglect regeneration, neglect lifetime increase due to time dilation 

–  Simple exponential decrease in yield (τ = 4.16 fm/c) : 

–  Take K*0/K in pp as initial value, central Pb–Pb as final value: lifetime of hadronic 
phase would be Δt = 2.25 ± 0.75 fm/c 

•  But since we neglect regeneration and time dilation, treat this as a lower 
limit: Δt > 1.5 fm/c 
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Properties of Hadronic Phase 29 

•  Model of Torrieri, Rafelski, et al. 
predicts particle ratios as functions 
of chemical freeze-out temperature 
and lifetime of hadronic phase 

•  Model Predictions: 

Torrieri/Rafelski [1-3] 
no re-scattering 
Tch = 156 MeV 

Prediction: 
K*0/K– = 0.35 

our assumption, based on 
thermal-model fits of ALICE data 

Temperature (MeV) 

K
*0

/K
– 

[1] J. Phys. G 28, 1911 (2002) 
[2] Phys. Rev. C 65, 069902(E) (2002) 
[3] arXiv:hep-ph/0206260v2 (2002) 



Properties of Hadronic Phase 30 

•  Model of Torrieri, Rafelski, et al. 
predicts particle ratios as functions 
of chemical freeze-out temperature 
and lifetime of hadronic phase 

•  Model Predictions: 

Torrieri/Rafelski [1-3] 
no re-scattering 
Tch = 156 MeV 

Prediction: 
K*0/K– = 0.35 

Torrieri/Rafelski [1-3] 
no re-scattering 
measured K*0/K– 

Prediction: 
Tch = 120±7 MeV 

K*0/K– = 0.20 ± 0.01 (stat.) ± 0.03 (sys.) 

Temperature (MeV) 

K
*0

/K
– 

[1] J. Phys. G 28, 1911 (2002) 
[2] Phys. Rev. C 65, 069902(E) (2002) 
[3] arXiv:hep-ph/0206260v2 (2002) 



Properties of Hadronic Phase 31 

•  Model of Torrieri, Rafelski, et al. 
predicts particle ratios as functions 
of chemical freeze-out temperature 
and lifetime of hadronic phase 

•  Model Predictions: 

Torrieri/Rafelski [1-3] 
no re-scattering 
Tch = 156 MeV 

Prediction: 
K*0/K– = 0.35 

Torrieri/Rafelski [1-3] 
no re-scattering 
measured K*0/K– 

Prediction: 
Tch = 120±7 MeV 

Torrieri/Rafelski [1-3] 
measured K*0/K– 

Tch = 156 MeV 

Prediction: 
Lifetime > 2 fm/c 

Temperature (MeV) 

K
*0

/K
– 

[1] J. Phys. G 28, 1911 (2002) 
[2] Phys. Rev. C 65, 069902(E) (2002) 
[3] arXiv:hep-ph/0206260v2 (2002) 



pT Dependence 
•  Does K*0 suppression depend on pT? UrQMD: re-scattering strongest for pT<2 GeV/c. 
•  Expected pT distribution from blast-wave model: 

–  Shape: parameters (Tkin, n, β) from combined fits of π/K/p in Pb–Pb 
–  Normalization: K yield × K*0/K ratio from thermal model (Tch=156 MeV) 

•  Central: K*0 suppressed for pT<3 GeV/c, but no strong pT dependence 
•  Peripheral: K*0 not suppressed 
•  No suppression of φ	
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Mean pT in A–A 33 Knospe 

•  <pT> appears to increase for more central Pb–Pb collisions w.r.t. 
peripheral and pp 

•  <pT> greater at LHC than RHIC 
–  For K*0: 20% larger          For φ: 30% larger 

•  ALICE π,K,p spectra: global blast-wave fit shows ~10% increase in 
radial flow w.r.t. RHIC 
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Mean pT in Pb–Pb 
•  Mass ordering of <pT> observed 
•  <pT> of K*0, p, and φ is similar for central Pb–Pb 

–  Consistent with hydrodynamics 
•  <pT> splitting between p and φ for peripheral Pb–Pb 
•  Increase in <pT> from peripheral to central: 

–  For π±, K±, K*0, and φ: ~20%         – For p: ~50% 
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Mean pT in p–Pb 
•  Approximate mass ordering in <pT> 

–  But <pT> of K*0 and φ greater than p and Λ	

–  Is there a baryon/meson difference, or do resonances not obey 

mass ordering? 
–  Same trend observed in pp 
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Mean pT in p–Pb 
•  Approximate mass ordering in <pT> 

–  But <pT> of K*0 and φ greater than p and Λ	

–  Is there a baryon/meson difference, or do resonances not obey 

mass ordering? 
–  Same trend observed in pp 
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Mean pT in p–Pb 
•  Approximate mass ordering in <pT> 

–  But <pT> of K*0 and φ greater than p and Λ	

–  Is there a baryon/meson difference, or do resonances not obey 

mass ordering? 
–  Same trend observed in pp 
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Mean pT 
•  High-multiplicity p–Pb reaches similar <pT> values as central Pb–Pb 
•  <pT> in p–Pb increases more rapidly than Pb–Pb as a function of 

multiplicity 
•  Differences in <pT> due to difference in particle production 

mechanisms?  Harder scattering in p–Pb? 
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Particle Production 
•  p/π and Λ/K0

S vs. pT from : 
•  What causes the shape of these 

ratios? 
–  Particle masses (hydro)? 
–  Quark content/baryon vs. 

meson (recombination)? 
•  To test: need a meson with a 

mass similar to the proton: 
–  Nature has given us such a 

meson: φ	
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p/φ vs. pT in Pb–Pb 40 

•  p/φ flat for central collisions for pT < 3-4 GeV/c 
–  Baryon/meson difference goes away if the two particles have the 

same mass.  Consistent with hydrodynamics 
•  Increasing slope for peripheral collisions 
•  Peripheral Pb–Pb similar to pp (7 TeV) 
•  Same trend seen in <pT> (p and φ different for peripheral Pb–Pb) 
•  Different production mechanism for p, φ in central vs. peripheral, pp? 
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p/φ vs. pT in p–Pb 
•  p/φ in low-multiplicity p–Pb similar to peripheral Pb–Pb and pp 
•  For pT > 1 GeV/c: no multiplicity dependence in p–Pb 
•  For pT < 1 GeV/c: decrease of p/φ for high-multiplicity 

–  Possible flattening of ratio: hint of onset of collective behavior in 
high-multiplicity p–Pb? 
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Nuclear Modification Factors 42 
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•  In Pb–Pb: 
–  More suppression of K*0 than of 

charged hadrons for pT<2 GeV/c 
(consistent with re-scattering) 

–  Differences between p and φ due 
to differences in reference (pp) 
spectra 

–  Strong suppression of all 
hadrons at high pT 

Yield(A–A) 

Yield(pp)×<Ncoll> 
RAA(pT) = 
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Nuclear Modification Factors 
•  In Pb–Pb: 

–  More suppression of K*0 than of 
charged hadrons for pT<2 GeV/c 
(consistent with re-scattering) 

–  Differences between p and φ due 
to differences in reference (pp) 
spectra 

–  Strong suppression of all 
hadrons at high pT 

•  In p–Pb: 
–  No suppression of φ w.r.t. pp for 

pT > 1.5 GeV/c 
–  Intermediate pT: Cronin peak for 

p, smaller peak for φ	

–  Possible mass dependence or 

baryon/meson differences in RpPb 
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φ à µ–µ+ 

44 



φ à µ–µ+ 

•  Muon pairs from φ decays reconstructed in ALICE Muon 
Spectrometer: 
–  Absorber, tracking chambers, dipole magnet at forward rapidity 

(-4<η<-2.5) 
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φ à µ–µ+ 
•  Signal extracted by fitting dimuon invariant-mass 

distribution with hadronic cocktail: 
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φ à µ–µ+ 
•  Measured in pp collisions at 2.76 TeV and 

7 TeV, Pb–Pb collisions 
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Nuclear Modification Factor 
•  RAA for µµ channel at forward rapidity seems to follow different trend 

(greater slope) than KK channel at mid-rapidity 
–  Different hydrodynamical push in the two rapidity ranges? 
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In p–Pb: Forward vs. Backward 
•  Yield in backward rapidity (Pb-going direction) greater 

than forward rapidity (p-going direction): asymmetry in 
particle production 
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In p–Pb: Forward vs. Backward 
•  Yield in backward rapidity (Pb-going direction) greater 

than forward rapidity (p-going direction): asymmetry in 
particle production 

•  Forward/Backward ratio (in common y window) 
–  Flat with pT 

–  Integrated value RFB = 0.53 ± 0.03 
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RpPb 
•  Forward (p-going): increases with pT, then saturates 

around 1 for pT>3 GeV/c 
•  Backward (Pb-going): Cronin peak (bigger than at mid-

rapidity) 
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RpPb 
•  Forward (p-going): increases with pT, then saturates 

around 1 for pT>3 GeV/c 
•  Backward (Pb-going): Cronin peak (bigger than at mid-

rapidity) 
•  Similar behavior observed in d–Au collisions (PHENIX) 
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Hadron-Resonance 
Correlations 

53 



Hadron-Resonance Correlations 54 

•  To probe QGP: compare resonances that passed 
through medium with those that did not 
–  Hadron-resonance correlations 

Resonance in near side: 
no medium interaction 

Resonance in away side: 
Low pT (below ~2 GeV/c): 
   dominated by interactions 
   in hadronic medium 
High pT: dominated by interactions 
with early hadronic or partonic 
medium 

Resonance transverse to jet: 
Thermal production in hadronic medium  

Method proposed by: 
C. Markert, R. Bellwied, I. Vitev, 
Phys. Lett. B 669 92-97 (2008) 



Angular Correlations 55 

•  Angular Correlation of trigger hadron with a φ meson 
–  pT(h)>3 GeV/c 
–  pT(φ)>1.5 GeV/c 

Pb+Pb 
p+p 

Knospe 



Mass and Width vs. Δφ 56 

mass/average value width/average value 

p+p p+p 

Pb+Pb Pb+Pb 

•   φ mass and width as a 
function of angle (Δφ) w.r.t. 
leading hadron 

•  pT(h)>3 GeV/c 
•  pT(φ)>1.5 GeV/c 
•  Measured values divided 

by average value 
•  No clear difference in 

behavior between p+p and 
Pb+Pb 

•  In Pb+Pb: no mass shift or 
width broadening observed 
in away side 

•  However: φ signal may be 
dominated by non-jet φ for 
this pT range 

Knospe 



Conclusions 
•  Central Pb–Pb: K*0 suppressed (re-scattering) φ not suppressed (longer lifetime) 
•   K*0/K and φ/K ratios in p–Pb follow trend from pp to peripheral Pb–Pb 
•  For central Pb–Pb: <pT(K*0)> ≈ <pT(p)> ≈ <pT(φ)> (consistent with hydrodynamics) 
•  Mass ordering violated for pp, p–Pb, peripheral Pb–Pb: <pT(K*0,φ)> > <pT(p,Λ)> 

–  Baryon/meson difference? 
•  p/φ ratio flat vs. pT for central Pb-Pb collisions (pT<3-4 GeV/c) 

–  consistent with hydrodynamics 
•  Hint of p/φ flattening at low pT for high-multiplicity p–Pb: possible onset of collective 

effects? 
•  Nuclear Modification Factors: 

–  High-pT suppression observed in central Pb–Pb (RAA) but not in p–Pb 
–  High-pT behavior of resonances similar to stable hadrons 
–  Moderate φ Cronin peak (between π and p) 
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Backup Material 
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Λ(1520) 59 
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•  Reconstruction in pp 2.76 TeV, pp 7 TeV, p–Pb 5.02 TeV, and Pb–Pb 2.76 TeV 
•  Decay channel: Λ(1520)àpK– 

–  Decay products identified using TPC and TOF 
•  Mass from invariant-mass fits in pp and p–Pb: good agreement with vacuum value 
•  More information can be found in poster of R. C. Baral at Quark Matter 2014:     

https://indico.cern.ch/event/219436/session/2/contribution/197/material/poster/0.pdf 



Σ0 

•  Reconstruction in pp 7 TeV 
•  Decay channel: Σ0àΛγ	


–  Photon identified through measurement of its conversion, and in PHOS 
(calorimeter) 

•  More information can be found in poster of A. Borissov at Quark Matter 2014:     
https://indico.cern.ch/event/219436/session/2/contribution/196/material/slides/0.pdf 
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Resonances in p+p Collisions 
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K*(892)0 and φ(1020) 
•  Similar to Pb+Pb analyses: 
•  p+p 900 GeV: 250 k minimum-

bias events 
•  p+p 7 TeV: 80 M (60 M) 

minimum-bias events for K*0 (φ) 
•  Use TPC for PID, plus TOF (if 

there is a signal) 

•  Mixed-event combinatorial BG 
•  Peak fits: 

–  K*0: Breit-Wigner 
–  φ: Voigtian 

•  Published 
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K*(892)0 and φ(1020) 
•  Similar to Pb+Pb analyses: 
•  p+p 900 GeV: 250 k minimum-

bias events 
•  p+p 7 TeV: 80 M (60 M) 

minimum-bias events for K*0 (φ) 
•  Use TPC for PID, plus TOF (if 

there is a signal) 

•  Mixed-event combinatorial BG 
•  Peak fits: 

–  K*0: Breit-Wigner 
–  φ: Voigtian 

•  Published 
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Σ*(1385)± and Ξ*(1530)0 

•  250 M p+p events (MB) 
•  TPC PID for Σ*± daughters 
•  Numerous topological cuts: 

–  DCA 
–  cos(pointing angle) 
–  Fiducial volume 
–  Invariant mass of Λ or Ξ– 
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Σ*(1385)± and Ξ*(1530)0 

•  250 M p+p events (MB) 
•  TPC PID for Σ*± daughters 
•  Numerous topological cuts: 

–  DCA 
–  cos(pointing angle) 
–  Fiducial volume 
–  Invariant mass of Λ or Ξ– 

•  Mixed-event combinatorial BG 
•   Σ*±: complicated res. BG 

–  Various sources of 
correlated Λπ pairs (e.g., Ξ– 
and Λ* decays) 

–  Shape of each contribution 
fit in MC, normalized using 
data 

•  For Ξ*0: polynomial res. BG 
•  Paper in preparation 
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PYTHIA Comparisons 

•  PHOJET and PYTHIA ATLAS-CSC too soft 
•  PYTHIA D6T: reasonably good description 
•  PYTHIA Perugia 0: underestimates yield, but shape well reproduced 
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PYTHIA Comparisons 

•  PYTHIA Perugia 2011: reproduces K*0 and high-pT φ well 
•  PHOJET and PYTHIA ATLAS-CSC overestimate spectra for pT<1 GeV/c, describe 

high pT well 
•  PYTHIA D6T: deviates at high pT 

•  PYTHIA Perugia 0: underestimates spectra 
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PYTHIA Comparisons 

•  PYTHIA ATLAS-CSC : good agreement for pT > 2 GeV/c (too hard?) 
•  PHOJET and PYTHIA D6T under-predict spectra 
•  PYTHIA Perugia 2011: under-predicts yields, describes shapes 
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Pentaquarks 
•   Φ(1860)– – (ddssu) and Φ(1860)0 (udssd) would have   
Ξ–π± decay channels, similar to Ξ*0 

•  Observed by NA49 
•  ALICE sees no significant signal 
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Pentaquarks 
•   Φ(1860)– – (ddssu) and Φ(1860)0 (udssd) would have   
Ξ–π± decay channels, similar to Ξ*0 

•  Observed by NA49 
•  ALICE sees no significant signal 
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