A Theoretical View on Dilepton Production
Transport Calculations vs. Coarse-grained Dynamics

Stephan Endres
(in collab. with M. Bleicher, H. van Hees, J. Weil)

Frankfurt Institute for Advanced Studies
ITP Uni Frankfurt

Transport Meeting WS 2013/2014
November 6th, 2013
Overview

1. Introduction

2. Transport Calculations and their Difficulties

3. Coarse Grained Transport Approach

4. First Results

5. Outlook
Why Dileptons...?

- Dileptons represent a clean and penetrating probe of hot and dense nuclear matter
- Reflect the whole dynamics of a collision
- Once produced they do not interact with the surrounding matter (no strong interactions)
- Aim of studies
 - In-medium modification of vector meson properties
 - Chiral symmetry restoration
Ultra-relativistic Quantum Molecular Dynamics

- Hadronic non-equilibrium transport approach
- Includes all baryons and mesons with masses up to 2.2 GeV
- Two processes for resonance production in UrQMD (at low energies)
 - Collisions (e.g. $\pi\pi \rightarrow \rho$)
 - Higher resonance decays (e.g. $N^* \rightarrow N + \rho$)
- Resonances either decay after a certain time or are absorbed in another collision (e.g. $\rho + N \rightarrow N_{1520}^*$)
- No explicit in-medium modifications!

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{1440}^+</td>
<td>1.440</td>
<td>350</td>
</tr>
<tr>
<td>N_{1520}^+</td>
<td>1.515</td>
<td>120</td>
</tr>
<tr>
<td>N_{1535}^+</td>
<td>1.550</td>
<td>140</td>
</tr>
<tr>
<td>N_{1650}^+</td>
<td>1.645</td>
<td>160</td>
</tr>
<tr>
<td>N_{1675}^+</td>
<td>1.675</td>
<td>140</td>
</tr>
<tr>
<td>N_{1680}^+</td>
<td>1.680</td>
<td>140</td>
</tr>
<tr>
<td>N_{1700}^+</td>
<td>1.730</td>
<td>150</td>
</tr>
<tr>
<td>N_{1710}^+</td>
<td>1.710</td>
<td>500</td>
</tr>
<tr>
<td>N_{1720}^+</td>
<td>1.720</td>
<td>550</td>
</tr>
<tr>
<td>N_{1790}^+</td>
<td>1.850</td>
<td>350</td>
</tr>
<tr>
<td>N_{1990}^+</td>
<td>1.950</td>
<td>500</td>
</tr>
<tr>
<td>N_{2080}^+</td>
<td>2.000</td>
<td>550</td>
</tr>
<tr>
<td>N_{2190}^+</td>
<td>2.150</td>
<td>470</td>
</tr>
<tr>
<td>N_{2220}^+</td>
<td>2.220</td>
<td>550</td>
</tr>
<tr>
<td>N_{2250}^+</td>
<td>2.250</td>
<td>470</td>
</tr>
<tr>
<td>Δ_{1232}^+</td>
<td>1.232</td>
<td>115</td>
</tr>
<tr>
<td>Δ_{1600}^+</td>
<td>1.700</td>
<td>350</td>
</tr>
<tr>
<td>Δ_{1620}^+</td>
<td>1.675</td>
<td>160</td>
</tr>
<tr>
<td>Δ_{1700}^+</td>
<td>1.750</td>
<td>350</td>
</tr>
<tr>
<td>Δ_{1900}^+</td>
<td>1.840</td>
<td>260</td>
</tr>
<tr>
<td>Δ_{1905}^+</td>
<td>1.880</td>
<td>350</td>
</tr>
<tr>
<td>Δ_{1910}^+</td>
<td>1.900</td>
<td>250</td>
</tr>
<tr>
<td>Δ_{1920}^+</td>
<td>1.920</td>
<td>200</td>
</tr>
<tr>
<td>Δ_{1930}^+</td>
<td>1.970</td>
<td>350</td>
</tr>
<tr>
<td>Δ_{1950}^+</td>
<td>1.990</td>
<td>350</td>
</tr>
</tbody>
</table>
Dilepton sources in UrQMD

- **Dalitz Decays**
 \[\pi^0, \eta, \eta', \omega, \Delta \]
 \[P \rightarrow \gamma + e^+ e^- \]
 \[V \rightarrow P + e^+ e^- \]

- **Direct Decays**
 \[\rho^0, \omega, \phi \]

- Dalitz decays are decomposed into the corresponding decays into a virtual photon and the subsequent decay of the photon via electromagnetic conversion.

- Form factors for the Dalitz decays are obtained from the **vector-meson dominance** model.

- Assumption: Resonance can continuously emit dileptons over its whole lifetime (Time Integration Method / “Shining”)

\[V \rightarrow \gamma \]
\[e^- (\mu^-) \]
The Resonance ”Mess”

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass</th>
<th>Width</th>
<th>$N\pi$</th>
<th>$N\eta$</th>
<th>$N\omega$</th>
<th>$N\rho\pi$</th>
<th>$\Delta_{1332}\pi$</th>
<th>$N^{1440}\pi$</th>
<th>ΛK</th>
<th>ΣK</th>
<th>$f_0 N$</th>
<th>$a_0 N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^{1440}</td>
<td>1.440</td>
<td>350</td>
<td>0.65</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1520}</td>
<td>1.515</td>
<td>120</td>
<td>0.60</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1535}</td>
<td>1.550</td>
<td>140</td>
<td>0.60</td>
<td>0.30</td>
<td>0.06</td>
<td>0.04</td>
<td>0.10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1650}</td>
<td>1.645</td>
<td>160</td>
<td>0.60</td>
<td>0.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1675}</td>
<td>1.675</td>
<td>140</td>
<td>0.40</td>
<td></td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1680}</td>
<td>1.680</td>
<td>140</td>
<td>0.60</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1700}</td>
<td>1.730</td>
<td>150</td>
<td>0.05</td>
<td>0.20</td>
<td>0.05</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1710}</td>
<td>1.710</td>
<td>500</td>
<td>0.16</td>
<td>0.15</td>
<td>0.05</td>
<td>0.21</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1720}</td>
<td>1.720</td>
<td>550</td>
<td>0.10</td>
<td></td>
<td>0.73</td>
<td>0.05</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1800}</td>
<td>1.850</td>
<td>350</td>
<td>0.30</td>
<td>0.14</td>
<td>0.39</td>
<td>0.15</td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{1900}</td>
<td>1.950</td>
<td>500</td>
<td>0.12</td>
<td></td>
<td>0.43</td>
<td>0.19</td>
<td>0.14</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{2000}</td>
<td>2.000</td>
<td>550</td>
<td>0.42</td>
<td>0.04</td>
<td>0.15</td>
<td>0.12</td>
<td>0.14</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{2100}</td>
<td>2.150</td>
<td>470</td>
<td>0.29</td>
<td></td>
<td>0.24</td>
<td>0.10</td>
<td>0.15</td>
<td>0.05</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{2200}</td>
<td>2.220</td>
<td>550</td>
<td>0.29</td>
<td></td>
<td>0.22</td>
<td>0.17</td>
<td>0.20</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{2250}</td>
<td>2.250</td>
<td>470</td>
<td>0.18</td>
<td></td>
<td>0.25</td>
<td>0.20</td>
<td>0.20</td>
<td>0.05</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1232}</td>
<td>1.232</td>
<td>115</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1600}</td>
<td>1.700</td>
<td>350</td>
<td>0.10</td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1620}</td>
<td>1.675</td>
<td>160</td>
<td>0.15</td>
<td></td>
<td>0.05</td>
<td>0.65</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1700}</td>
<td>1.750</td>
<td>350</td>
<td>0.20</td>
<td></td>
<td>0.25</td>
<td>0.65</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1900}</td>
<td>1.840</td>
<td>260</td>
<td>0.25</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1905}</td>
<td>1.880</td>
<td>350</td>
<td>0.18</td>
<td></td>
<td>0.80</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1910}</td>
<td>1.900</td>
<td>250</td>
<td>0.30</td>
<td></td>
<td>0.10</td>
<td>0.35</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1920}</td>
<td>1.920</td>
<td>200</td>
<td>0.27</td>
<td></td>
<td>0.40</td>
<td>0.30</td>
<td>0.28</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1950}</td>
<td>1.970</td>
<td>350</td>
<td>0.15</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
<td>0.28</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_{1950}</td>
<td>1.990</td>
<td>350</td>
<td>0.38</td>
<td>0.08</td>
<td>0.20</td>
<td>0.20</td>
<td>0.18</td>
<td>0.12</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Which **resonances** do I have to include?
- Which resonance is produced with which probability?
- What is the actual **branching ratio** (e.g. to the ρ)?
- Many parameters one can ”play” with, as they are not fixed...
N*/Δ* → Nρ Branching Ratios

<table>
<thead>
<tr>
<th></th>
<th>GiBUU12</th>
<th>UrQMD09</th>
<th>KSU12</th>
<th>KSU92</th>
<th>BnGa12</th>
<th>CLAS12</th>
<th>PDG12</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1520)3/2⁻</td>
<td>21</td>
<td>15</td>
<td>20.9(7)</td>
<td>21(4)</td>
<td>10(3)</td>
<td>12.7(4.3)</td>
<td>20(5)</td>
</tr>
<tr>
<td>N(1720)3/2⁺</td>
<td>87</td>
<td>73</td>
<td>1.4(5)</td>
<td>87(5)</td>
<td>10(13)</td>
<td>47.5(21.5)</td>
<td>77.5(7.5)</td>
</tr>
<tr>
<td>Δ(1620)1/2⁻</td>
<td>29</td>
<td>5</td>
<td>26(2)</td>
<td>25(6)</td>
<td>12(9)</td>
<td>37(12)</td>
<td>16(9)</td>
</tr>
<tr>
<td>Δ(1905)5/2⁺</td>
<td>87</td>
<td>80</td>
<td><6</td>
<td>86(3)</td>
<td>42(8)</td>
<td>>60</td>
<td></td>
</tr>
</tbody>
</table>

Partial courtesy of Piotr Salabura, Sept 2013
Example: Exclusive Resonance Cross-Sections
Transport Results

- p+p Results look quite nice after adjusting resonance production and branching ratio
We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76 AGeV) not yet described by the model.
Transport Results

- At low energies around $E_{kin} = 1 \text{ GeV}$, a pure transport description becomes difficult as well.
- Processes like NN and πN bremsstrahlung become dominant, especially for $p+n$ interactions (How avoid double counting?)
- Δ form factor? Which / how to determine?

p+p @ 1.25 GeV

HADES Acceptance

$\theta_{ee} > 9^{\circ}$, $0.05 < p_e < 1.8 \text{ GeV/c}$

C+C @ 1 AGeV

HADES Acceptance

$\theta_{ee} > 9^{\circ}$, $0.0 < p_e < 2.0 \text{ GeV/c}$
The Transport Status Quo

- There has been a lot of **improvement**, especially concerning the exact comparison and adjustment of the many parameters, cross-sections, branching ratios (compare GiBUU results by Janus)
- However, this is a **hard job** and one has to be careful
- Still the models show big differences in some details
Challenges

- Cross-sections not implemented explicitly but intermediate baryonic resonances are used.
- Some cross-sections are even unmeasured or unmeasurable (especially for ρ and Δ lack of data).
- General difficulties of the transport approach at high density:
 - Off-shell effects
 - Multi-particle collisions

⇒ How can we avoid these problems?
Coarse Graining

- We take an ensemble of UrQMD events and span a grid of small space time cells.
- For those cells we determine baryon and energy density and use Eckart’s definition to determine the rest frame properties \rightarrow use EoS to calculate T and μ_B
- For the Rapp Spectral function, we also extract pion and kaon chemical potential via simple Boltzmann approximation
- At SIS, an equation of state for a free hadron gas without any phase transition is used $[D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]$
- A Chiral EoS is used for the NA60 calculation (including chiral symmetry restoration and phase transition) $[J. Steinheimer et al., J. Phys. G38 (2011)]$
Dilepton Rates

- Lepton pair emission is calculated for each cell of 4-dim. grid, using thermal equilibrium rates per four-volume and four-momentum from a bath at T and μ_B.

- The ρ dilepton emission (similar for ω, ϕ) of each cell is accordingly calculated using the expression

$$
\frac{d^8N_{\rho \rightarrow ll}}{d^4x d^4q} = -\frac{\alpha^2 m^4}{\pi^3 g_\rho^2} \frac{L(M^2)}{M^2} f_B(q_0; T) \text{Im} D_\rho(M, q; T, \mu_B)
$$

- The 4π lepton pair production can be determined from the electromagnetic spectral function extracted in e^+e^- annihilation

$$
\frac{d^8N_{4\pi \rightarrow ll}}{d^4x d^4q} = \frac{4\alpha^2}{(2\pi)^2} e^{-q_0/T} \frac{M^2}{16\pi^3 \alpha^2} \sigma(e^+e^- \rightarrow 4\pi)
$$

- QGP contribution is evaluated according to Cleymans et al.

$$
$$

$$

$$
Eletsky Spectral Function

- In-medium self energies of the ρ

\[\Sigma_\rho = \Sigma^0 + \Sigma^{\rho\pi} + \Sigma^{\rho N} \]

were calculated using empirical scattering amplitudes from resonance dominance

[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

- For ρN scattering N^* and Δ^* resonances from Manley and Saleski

- Additional inclusion of the Δ_{1232} and the N_{1520} subthreshold resonances

\Rightarrow Important, as they significantly contribute!
Rapp Spectral Function

- Includes finite temperature propagators of ω, ρ and ϕ meson

- Medium modifications of the ρ propagator

 $$D_\rho \propto \frac{1}{M^2 - m_\rho^2 - \Sigma^{\rho\pi\pi} - \Sigma^{\rho M} - \Sigma^{\rho B}}$$

 include interactions with pion cloud with hadrons ($\Sigma^{\rho\pi\pi}$) and direct scatterings off mesons and baryons ($\Sigma^{\rho M}$, $\Sigma^{\rho B}$)

- Pion cloud modification approximated by using effective nucleon density

 $$\rho_{\text{eff}} = \rho_N + \rho_{\bar{N}} + 0.5(\rho_{B^*} + \bar{B}^*)$$
Previous calculations were done with a fireball model

The zone of hot and dense matter is described by an isentropic expanding cylindrical volume

\[V_{FB}(t) = \pi \left(r_{\perp,0} + \frac{1}{2} a_{\perp} t^2 \right)^2 \left(z_0 + v_{z,0} t + \frac{1}{2} a_z t^2 \right) \]

Problem: How to choose parameters? Is it a plausible description or a too simple picture?

⇒ Make calculations with better constrained input...
The UrQMD input we use gives a more and realistic and nuanced picture of the collision evolution.

Energy and baryon density are by no means homogeneous in the whole fireball ⇒ Different expansion dynamics might lead to significantly differing dilepton spectra.
Temperature and Chemical Potential from Coarse Graining

- For a central cell in an Au+Au collision @ 1.25 AGeV we get very high μ_B up to 1000 MeV and a maximum temperature of ≈ 100 MeV
- For In+In at NA60 energy, the baryon density decreases very fast after the start of the collision, the temperature reaches a maximum of 230 MeV
The UrQMD ρ contribution as well as the coarse-graining results for the vacuum and in-medium spectral functions are shown.

In-medium ρ “melts” away at the pole mass while it becomes dominant at lower masses.
Comparison of Eletsky spectral function to existing HADES data shows that the in-medium ρ is dominated by the Δ_{1232} contribution.

Still below the data for intermediate mass region.
Au + Au @ 1.25 AGeV

- Eletsky and Rapp spectral function agree quite well here
- The Dalitz-ω from the Rapp spectral function lies on the UrQMD result, while we don’t see a significant (direct-)ω peak in the coarse-grained result
Looking at NA60 - Eletsky Spectral Function

- In-medium ρ contribution \textit{(blue)} to dimuon excess was calculated with the Eletsky spectral function for a \textbf{chiral EoS}
- 4π \textit{(orange)} and QGP \textit{(green)} contribution are included as well, they are negligible mostly at low masses, but dominate above 1 GeV

\Rightarrow Eletsky spectral function gives a good overall agreement, but can not describe the low-mass tail of the excess dimuons completely
Rapp Spectral Function for NA60

- Calculation for Rapp spectral function (with ρ, ω and ϕ included) and additional QGP and 4π contribution
- Fits the data quite well at the ρ pole mass, but is too low in the low mass tail
Comparison of EoS

- With the **Hadron Gas EoS** we get a better agreement at low masses
- The lack of QGP lowers the result at high masses
An increase in baryon density (take $\rho_{\text{eff}} = \rho_B + \rho_{\bar{B}}$) leads to a better description.

→ Baryons crucial for description of low mass tail.
The broadening is large at the beginning of the evolution, no peak at the ρ pole mass
- Same order of magnitude for QGP and in-medium ρ
Later the ρ dominates, shape of the spectrum is flatter, peak at pole mass evolves.
Dileptons at RHIC

- Comparison between pure transport and transport + in-medium ρ from coarse-graining
Coarse-graining to be done at other energies and compared to further NA60, CERES, RHIC, LHC data

- Investigation of different equations of state
- Further dilepton calculations with hybrid model (transport + hydro)
- Using different input from transport (e.g. from GiBUU)
Summary

- New approach to combine realistic transport calculations with in-medium modified spectral functions for vector mesons.

- Non-equilibrium treatment highly non-trivial ⇒ Use equilibrium rates for a coarse-grained transport dynamics.

- First calculations show that we get a good description of the invariant mass spectrum, the coarse-graining is applicable for all energy regimes.

- Explanation of dilepton measurements is still a challenge for theory ⇒ Need for more experimental input!

- Waiting for HADES Au+Au data and for the pion beam!

- Further work in progress...!