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Introduction

Classical Dynamics

Let’s begin simply. The classical dynamics for
classical particles starts with the Liouville equation

dA
dt (q,p, t) =

∂A
∂t +

∂A
∂q

∂q
∂t +

∂A
∂p

∂p
∂t .

Knowing Hamilton’s equations we can write a compact form.

Liouville equation
dA
dt =

∂A
∂t + {A,H}

with


dq
dt = ∂H

∂p
dp
dt = −∂H

∂q

Rudy Marty Relativistic Dynamics 3/ 32



Introduction

Classical Dynamics

Let’s begin simply. The classical dynamics for
classical particles starts with the Liouville equation

dA
dt (q,p, t) =

∂A
∂t +

∂A
∂q

∂q
∂t +

∂A
∂p

∂p
∂t .

Knowing Hamilton’s equations we can write a compact form.

Liouville equation
dA
dt =

∂A
∂t + {A,H}

with


dq
dt = ∂H

∂p
dp
dt = −∂H

∂q

Rudy Marty Relativistic Dynamics 3/ 32



Introduction

Quantum Dynamics

The probabilistic aspect of particles can be considered
by the Wigner density of a Gaussian wave function

fW (qi ,pi , t) ∝ exp
(
−(qi − q0

i (t))2

L

)
· exp

(
−(pi − p0

i (t))2L
)

Using the time dependent version of
the Ritz variational principle we find

dfW
dt = {fW ,H}

(Aichelin, Phys. Rep., 202:233 (1991))
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Introduction

Toward Relativistic Dynamics

To extend the classical dynamics to the
relativistic one, let’s try a simple example

H = E =
√
p2 + m2 − V (q)

From this Hamiltonian we find the
well-known equations of motion

dq
dt = {q,H} = ∂H

∂p =
p
E

dp
dt = {p,H} = −∂H

∂q =
1
2E

∂V
∂q
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Introduction

Toward Relativistic Dynamics

Then the problems are that :

the energy E is not Lorentz invariant (energy conservation ?),

we can’t use an absolute time t (causality ?).

That is why people worked around these problems
creating the Quantum Field Theory. Nevertheless

it must be possible to formulate a relativistic
dynamics to follow the trajectories of particles.
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Introduction

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a
system with a speed close to the speed of light.

Assumptions :
Invariant world-lines (respect of Poincaré’s algebra),

8N independent degrees of freedom (qµ, pµ),

Space-time dissociation (clusterization).

(Currie, Rev. Mod. Phys. 35 (1963))
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A problem of phase space

Equations of motion

Classical equations of motion

∂qi
∂t

= {qi ,H} =
pi
Ei

∂pi
∂t

= {pi ,H} =
∑

k

1
2Ek

∂Vk
∂qi

+ 〈 coll. 〉

Classical dynamics is fine to describe particles with low energy
in the classical phase space (q,p) but for relativistic particles

we need to go to the Minkowski phase space (qµ, pµ).
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A problem of phase space

Equations of motion

Relativistic equations of motion

∂qµ
i

∂τ
= {qµ

i ,Z} =2λi pµ
i

∂pµ
i

∂τ
= {pµ

i ,Z} =
∑

k

λk
∂Vk
∂qµ

i
+ 〈 coll. 〉

Here we have a new definition of equations of motion which
are defined in a constrained phase space where λ plays

the role of a factor which depends on the reference frame.
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A problem of phase space

Relativistic Hamiltonian

Z is not a classical Hamiltonian !
It is just a combination of the constraints:

H = E → Z =
∑

k
λkφk = 0

with relativistic factors λk , and constraints φk = 0.
As well as H, Z is a quantity related to a time
evolution parameter : τ . In the classical case:

t = q0
1 = q0

2 = . . .

whereas in the relativistic case:

τ = t 6= q0
1 6= q0

2 6= . . .
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A problem of phase space

Constrained dynamics

We choose 2N constraints φk to fix the
times and the energies of the N particles.

Relativistic constraints :
On-shell mass constraint for energy (conservation):

Ki = pi
µpi µ −mi

2 + Vi = 0

and for the time fixation (causality):

χi =
∑
j 6=i

qµ
ij Uµ = 0 and χN =

∑
j qµ

j

N
Uµ − τ = 0 Uµ

ref
= (1,~0)

Uµ is the projector for the reference frame with time τ .
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A problem of phase space

Constrained dynamics

We choose 2N constraints φk to fix the
times and the energies of the N particles.

Relativistic constraints :
On-shell mass constraint for energy (conservation):

∂E
∂τ

= 0

and for the time fixation (causality):

∆q0 = 0 and 〈q0〉 − τ = 0

Uµ is the projector for the reference frame with time τ .
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A problem of phase space

Constrained dynamics

We still need the calculation of λk .
The conservation of constraints gives us :

dφi
dτ =

∂φi
∂τ

+ {φi ,Z} = 0

=
∂φi
∂τ

+
2N∑
k
λkC−1

ik = 0.

with C−1
ik = {φi , φk} and finally :

λk = −Ck2N
∂φN
∂τ

= Ck2N .
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A problem of phase space

A complex problem

We immediately see that λk are very important quantities,
and therefore the constraints φk have to be chosen carefully.

Indeed, we want to avoid to invert this matrix of constraints C−1
ik .

Matrix of constraints

C−1
ik = {φi , φk} =

(
{Ki ,Kk} {Ki , χk}
{χi ,Kk} {χi , χk}

)

We need some additional conditions on the constraints
in order to find consistent equations of motion
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A problem of phase space

A complex problem

dqµi
dτ =

N∑
k=1

λk
∂Kk
∂piµ

+
2N∑

k=N+1
λk

∂χk
∂piµ

dpµi
dτ = −

N∑
k=1

λk
∂Kk
∂qiµ

−
2N∑

k=N+1
λk

∂χk
∂qiµ

If {Ki ,Kk} 6= 0→ λk 6= 0 (N + 1 < k < 2N) and time
constraints χk appear in the equations of motion.

Komar-Todorov condition

{Ki ,Kj} = 2pµij
∂Vi
∂qµj

+ {Vi ,Vj} 6= 0

(Currie, Rev. Mod. Phys. 35 (1963))
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A problem of phase space

Reference frame

Among all these constraints and conditions, there
is an important concept to introduce: the choice
of reference frame. From this choice depends:

the projector Uµ
ref
= (1,~0), from which the time τ is correlated,

and the potential V from the mass-shell constraint, from which the
Komar-Todorov condition can be fulfilled (or not . . . ).

We can instinctively define two different frames:
the center of mass system (cms) for 2 particles,

and the laboratory (lab) where the full system is at rest (
∑
~p = ~0).
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A problem of phase space

Reference frame

Consequently we define two different projectors:

uµij =
pµij√
p2

ij

cms
= (1, 0, 0, 0)

Uµ =
Pµ

√
P2

lab
= (1, 0, 0, 0)

where pµij = pµi + pµj and Pµ =
∑

i pµi . In the case of a system
of 2 particles, these projectors are equal. We can use these
projectors in the time constraint, and for the potential V
in order to have an invariant distance (here for Uµ):

qT
µ
ij = qµij − (qij,σUσ)Uµ
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Examples for 2/3 particles

Case of 2 particles

Using a potential V = V (qT ), we find that the Komar-Todorov
condition is fulfilled for the 2 particles case. Then

∂qµi
∂τ

=2λipµi
∂pµi
∂τ

=
∑

k
λk
∂Vk
∂qµi

with λk = SkN and S−1
ij = {χi ,Kj}. Constraints are:

K1 = p1
2 −m1

2 + V = 0
K2 = p2

2 −m2
2 + V = 0

and
χ1 = qµ12 u12µ = 0

χ2 =
1
2(q1 + q2)

µu12µ − τ = 0
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Examples for 2/3 particles

Case of 2 particles

Then we calculate the matrix of constraints:

S−1
ij =

(
2 pµ1 uµ12 −2 pµ2 u12µ
pµ1 uµ12 pµ2 u12µ

)
which we inverse:

Sij =

(
(4 pµ1 u12µ)

−1 (2 pµ1 u12µ)
−1

(4 pµ2 u12µ)
−1 (2 pµ2 u12µ)

−1

)
and we find for 2 particles:

λ1 = (2 pµ1 u12µ)
−1 =

1
2E1

λ2 = (2 pµ2 u12µ)
−1 =

1
2E2
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Examples for 2/3 particles

Case of 2 particles

The equations of motion become:

∂qµi
∂τ

=
pµi
Ei

∂pµi
∂τ

= −
2∑

k=1

1
2Ek

∂V
∂qiµ

We use these equations in 6 dimensions,
not in 8 because we have constrained proper times

and energies for each particle (4 equations).
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Examples for 2/3 particles

Case of 3 particles

The case of 3 particles is the case of N. The third particle
always acts on the 2 first particles as an external field.

Moreover for 3 particles, the Komar-Todorov condition can’t
be fulfilled. Both projectors give problems and we should
work on a better definition of relativistic potential.

Nevertheless, assuming that the KT condition remains fulfilled,
we can test the effect of the projector on the time constraint.

For this example we simply take V = 0.
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Examples for 2/3 particles

Case of 3 particles

We start with constraints for Uµ:

K1 = p1
2 −m1

2 = 0
K2 = p2

2 −m2
2 = 0

K3 = p3
2 −m3

2 = 0

and

χ1 = (q12 + q13)
µUµ = 0

χ2 = (q21 + q23)
µUµ = 0

χ3 = (q1 + q2 + q3)
µUµ/3− τ = 0
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Examples for 2/3 particles

Case of 3 particles

In this case the matrix of constraints is

S−1
ij =

 4 pµ1 Uµ −2 pµ2 Uµ −2 pµ3 Uµ
−2 pµ1 Uµ 4 pµ2 Uµ −2 pµ3 Uµ
2/3 pµ1 Uµ 2/3 pµ2 Uµ 2/3 pµ3 Uµ


and the inverse :

Sij =

 (6 pµ1 Uµ)−1 0 (2 pµ1 Uµ)−1

0 (6 pµ2 Uµ)−1 (2 pµ2 Uµ)−1

−(6 pµ3 Uµ)−1 −(6 pµ3 Uµ)−1 (2 pµ3 Uµ)−1


As for the 2 particles case we find:

λk =
1

2Ek
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Examples for 2/3 particles

Case of 3 particles

If we take the other projector uµij :

χ1 = qµ12u12µ + qµ13u13µ = 0
χ2 = qµ21u21µ + qµ23u23µ = 0

and then :

S−1
ij =

4 pµ1 (u12 + u13)µ −2 pµ2 u12µ −2 pµ3 u13µ
−2 pµ1 u12µ 4 pµ2 (u21 + u23)µ −2 pµ3 u23µ
2/3 pµ1 Uµ 2/3 pµ2 Uµ 2/3 pµ3 Uµ


whose inverse is highly non trivial.
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Examples for 2/3 particles

Case of 3 particles

Finally if we keep the full system projector Uµ we
find the same equations of motion than the 2 particles case,
which is also the same as “classical” relativistic equations.

The other choice uµij , which was chosen in Sorge’s
paper for the RQMD code gives unphysical trajectories
with velocities which can be above the speed of light.

(Sorge, Ann. Phys. 192:266 (1989))
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Results

Time constraint test

We already know how the case of 2 particles is treated

but what happens if we add an observing particle ?

m = 10 MeV, p = 1000 MeV, b = 0.1 fm, L = 1 fm
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Results
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Results

Heavy Ion Collision
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Conclusion
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Conclusion

Conclusion
What is the solution which works for relativistic dynamics ?

dqµi
dτ =

pµi
Ei

dpµi
dτ = −

N∑
k=1

1
2Ek

∂Vk(qT )

∂qiµ
+ 〈coll.〉

using the Uµ projector for V (qT ). This is basically
what is already done by all transport codes.

What do we still have to investigate ?

We must work on a definition of relativistic potential which
fulfills the Komar-Todorov condition for few-body dynamics.
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