Production of K^+K^- pairs through decay of ϕ meson

Xin-Nan Zhu

2025-6-4

Collaborator: Xin-Li Sheng and Defu Hou

Arxiv: 2503.23919

Special topics in heavy-ion collision dynamics (Transport and Magnetohydrodynamics Meeting)

Outline

01 Introdution on ϕ meson's spin alignment

04

Relating K^+K^- pair production to ϕ meson's properties

03 Calculations in SU(3) NJL model

Summary

2025-6-4

Introdution on φ meson's spin alignment

Relativistic heavy-ion collision

Global spin polarization of Λ hyperon

> Serves as an important probe of the system's angular momentum and vorticity dynamics in heavy-ion collisions.

STAR, Nature 548, 62 (2017)

2025-6-4

Global spin alignment of ϕ meson

> The spin alignment of ϕ meson is above 1/3, while the spin alignment of K^{*0} is consistent with 1/3.

2025-6-4

Spin density matrix of vector meson $(J^P = 1^-)$:

$$\bar{\rho}_{\lambda\lambda'} = \begin{pmatrix} \bar{\rho}_{11} & 0 & 0\\ 0 & \bar{\rho}_{00} & 0\\ 0 & 0 & \bar{\rho}_{-1,-1} \end{pmatrix}$$

 $\overline{\rho}_{\lambda\lambda}$: the number density of particles in spin state λ

Spin alignment

$$\rho_{00} = \frac{\overline{\rho}_{00}}{\sum_{\lambda=0,\pm 1} \overline{\rho}_{\lambda\lambda}}$$

- > The 00-element ρ_{00} of its normalized spin density matrix
- The probability of mesons in the spin-0 states

X.-L. Sheng, L. Oliva, Q. Wang, PRD 101, 096005 (2020); PRD 105, 099903 (2022) STAR, Nature, 614(7947):244–248, 2023.

Meson's motion leads to energy splitting

٠

the rotation axis is parallel and perpendicular to

2025-6-4

Different resistence: $f_a \neq f_b$

- Power: $P = \vec{F} \cdot \vec{v}$
- Different applied power: $P_a \neq P_b$

Disc in water flow	Mesons pass through QGP	
Reference system	Rest frame of meson	
Moving water flow	Moving QGP background relative to meson	
Direction of rotation axis	Spin state of mesons	
Different applied power	Different energy	

the flow direction, respectively. power

>Motion leads to mesons in different spin states having different energy.

Energy splitting may lead to spin alignment

Meson's motion break the rotation symmetry

2025-6-4

The vector meson's mass will depend on its spin.

8

Diagonal spin density matrix of meson in bound state:

$$f_{\lambda} \sim \frac{1}{\exp\left(M_{\phi,\lambda}/T\right) - 1}$$

Mean value of of mesons under different spin states:

$$\overline{M}_{\phi} = \frac{1}{3} \sum_{\lambda=0,\pm 1} M_{\phi,\lambda}$$

$$M_{\phi,0} = \overline{M}_{\phi} + \Delta, \quad M_{\phi,\pm 1} = \overline{M}_{\phi} - \frac{\Delta}{2},$$
Spin alignment of vector meson:

$$\rho_{00} \equiv \frac{f_0}{f_1 + f_0 + f_{-1}} \simeq \frac{1}{3} - \frac{\Delta}{3T} \left[1 + \frac{1}{\exp(\overline{M}_{\Phi}/T) - 1} \right] + O\left[\left(\frac{\Delta}{T}\right)^2 \right]$$

Production of K⁺K⁻ pairs through ϕ meson decay

Relating $K^+K^$ pair production 2. to ϕ meson's properties

2025-6-4 Production of K⁺K⁻ pairs through ϕ meson decay

How to measure ϕ meson?

2025-6-4

Breit-Wigner distirbution:

$$egin{aligned} f(E) &= rac{k}{(E^2-M^2)^2+M^2\Gamma^2} \ k &= rac{2\sqrt{2}\,M\Gamma\gamma}{\pi\sqrt{M^2+\gamma}}, \quad \gamma &= \sqrt{M^2(M^2+\Gamma^2)} \end{aligned}$$

STAR, Nature 614(7947): 244–248, 2023.

ϕ (1020) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	K^+K^-	(49.9 ± 0.5)	% S=1.5
Γ ₂	$K_{L}^{0}K_{S}^{0}$	(33.6 ±0.4)	% S=1.3

How to extract ρ_{00} ?

Angular distribution of daughter particles's momenta in the mother meson's rest frame:

2025-6-4

$$\frac{dN}{d\cos\theta^*} = \frac{3}{4} \left[1 - \rho_{00} + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

STAR, Nature 614(7947): 244–248, 2023. Chen J, Liang Z T, Ma Y G, Wang Q, Sci.Bull. 68 (2023), 874-877.

11

K^+K^- pairs production through ϕ meson decay

S-matrix element for scattering from an initial state i to a final state f with a K^+K^- pair:

Kaon's current:

2025-6-4

$$J_{\nu}^{K}(x) \equiv \int d^{4}x_{1} \int d^{4}x_{2} \varphi^{*}(x_{1}) \Gamma_{\nu}^{\text{vac}}(x;x_{1},x_{2}) \varphi(x_{2})$$

Applying $J_{\nu}^{K}(x)$ to the state $\langle f, K^{+}K^{-}|$ $\langle f, K^{+}K^{-}|J_{\nu}^{K}(x) = \frac{1}{2V\sqrt{E_{+}E_{-}}}\int \frac{d^{4}q}{(2\pi)^{4}}\Gamma_{\nu}^{\text{vac}}(q;p_{+},p_{-})e^{-iq\cdot x}\langle f|$ C. Gale , J. I. Kapusta , Nucl.Phys.B 357 (1991), 65-89, Nucl.Phys.B 357 (1991), 65-89. arXiv:2503.23919v1 [hep-ph]. $E_{\pm} = \sqrt{p_{\pm}^{2}} + M_{K}^{2}$

K^+K^- pairs production through ϕ meson decay

The transition probability per unit space time volume:

$$\begin{split} R_{fi} &\equiv \lim_{\tau V \to \infty} \frac{|S_{fi}|^2}{\tau V} = \int \frac{d^3 \mathbf{p}_+}{(2\pi)^3 2E_+} \frac{d^3 \mathbf{p}_-}{(2\pi)^3 2E_-} \int d^4 y \, e^{-ip \cdot y} \left\langle i \right| J_{\mu_2}^*(y/2) \left| f \right\rangle \left\langle f \right| J_{\mu_1}(-y/2) \left| i \right\rangle \\ &\times D_{\mathrm{R,vac}}^{\mu_1 \nu_1}(p) \tilde{\Gamma}_{\nu_1}^{\mathrm{vac}}(p_+, p_-) \left[D_{\mathrm{R,vac}}^{\mu_2 \nu_2}(p) \tilde{\Gamma}_{\nu_2}^{\mathrm{vac}}(p_+, p_-) \right]^* \,, \end{split}$$

Production rate of K^+K^- :

$$n_{K^{+}K^{-}} = \sum_{f} \sum_{i} \frac{1}{Z} e^{-E_{i}/T} R_{fi} \qquad \begin{bmatrix} \text{Total energy:} \\ \omega = E_{+} + E_{-} \end{bmatrix} \qquad \begin{bmatrix} \text{Total momentum:} \\ p^{\mu} = p_{+}^{\mu} + p_{-}^{\mu} \end{bmatrix} \\ = -2 \int \frac{d^{3}\mathbf{p}_{+}}{(2\pi)^{3}2E_{+}} \frac{d^{3}\mathbf{p}_{-}}{(2\pi)^{3}2E_{-}} n_{B}(\omega) \tilde{\Gamma}_{\mu}^{\text{vac}*}(p_{+}, p_{-}) \rho^{\mu\nu}(p) \tilde{\Gamma}_{\nu}^{\text{vac}}(p_{+}, p_{-}) \end{bmatrix}$$

Spectral function of ϕ meson:

2025-6-4

$$\rho^{\mu\nu}(p) = -\left[D_{\mathrm{R,vac}}^{\alpha\mu}(p)\right]^* \left[\mathrm{Im}\Pi_{\alpha\beta}^{\mathrm{R}}(p)\right] D_{\mathrm{R,vac}}^{\beta\nu}(p)$$

Retarded current-current correlator:

$$\Pi^{\rm R}_{\mu\nu}(p) \equiv -i \int d^4 y \,\theta(y^0) e^{-ip \cdot y} \left\langle \left[J_{\mu}(y), J_{\nu}(0) \right] \right\rangle$$

Relating the production rate to spin alignmnet

The momentum integral in the rest frame of K^+K^- : $M_{\phi} = \sqrt{\omega^2 - p^2}$

$$d^{3}\mathbf{p}_{+}d^{3}\mathbf{p}_{-} = \frac{1}{2}E_{+}E_{-}\sqrt{1 - \frac{4M_{K}^{2}}{M_{\phi}^{2}}}d^{4}p\,\sin\theta^{*}d\theta^{*}d\phi^{*}$$

Differential production rate:

2025-6-4

$$\frac{dn_{K^+K^-}}{d^4p\,d\cos\theta^*d\phi^*} = -\frac{1}{4(2\pi)^6}\sqrt{1-\frac{4M_K^2}{M_\phi^2}}n_B(\omega)\tilde{\Gamma}_{\mu}^{\rm vac\,*}(p_+,p_-)\rho^{\mu\nu}(p)\tilde{\Gamma}_{\nu}^{\rm vac}(p_+,p_-)$$

Project the spectral function into spin space

$$\rho^{\mu\nu}(p) = -\sum_{\lambda=0,\pm 1} \epsilon^{\mu}(\lambda,p) \epsilon^{*\nu}(\lambda',p) \xi_{\lambda\lambda'}(p)$$

Spin polarization vectors:
$$\epsilon^{\mu}(\lambda,p) = \left(\frac{\mathbf{p} \cdot \boldsymbol{\epsilon}_{\lambda}}{M_{\phi}}, \boldsymbol{\epsilon}_{\lambda} + \frac{\mathbf{p} \cdot \boldsymbol{\epsilon}_{\lambda}}{M_{\phi}(\omega + M_{\phi})} \mathbf{p}\right)$$

The spectral function can be decomposed into longitudinal and transverse components as $\epsilon_{\rm H}^{\mu} = \frac{1}{M_{\phi}} \left(|\mathbf{p}|, \omega \frac{\mathbf{p}}{|\mathbf{p}|} \right)$

$$\rho^{\mu\nu}(p) = -\epsilon^{\mu}_{\mathrm{H}}(p)\epsilon^{\nu}_{\mathrm{H}}(p)\rho_{L}(p) + \left[g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^{2}} + \epsilon^{\mu}_{\mathrm{H}}(p)\epsilon^{\nu}_{\mathrm{H}}(p)\right]\rho_{T}(p)$$

Production of K⁺K⁻ pairs through ϕ meson decay

Relating the production rate to spin alignmnet

The differential production rate experssed with ρ_L and ρ_T

$$\frac{dn_{K^+K^-}}{d^4p\,d\cos\theta^*d\phi^*} = \frac{1}{4(2\pi)^6} \sqrt{1 - \frac{4M_K^2}{M_\phi^2}} n_B(\omega) \left\{ \left| \epsilon_{\rm H}^{\mu}(p) \tilde{\Gamma}_{\mu}^{\rm vac}(p_+, p_-) \right|^2 \left[\rho_L(p) - \rho_T(p) \right] \right. \\ \left. - \tilde{\Gamma}_{\mu}^{\rm vac}(p_+, p_-) \tilde{\Gamma}_{\nu}^{\rm vac}(p_+, p_-) \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2} \right) \rho_T(p) \right\} ,$$

The effective three meson vertex in vacuum:

$$\tilde{\Gamma}^{\rm vac}_{\mu}(p_+, p_-) = q_{\mu}\Gamma^{\rm vac}_1(p_+, p_-) + p_{\mu}\Gamma^{\rm vac}_2(p_+, p_-)$$
$$p_{\mu}\epsilon^{\mu}_H(p) = 0, \quad p_{\mu}\left(g^{\mu\nu} - p^{\mu}p^{\nu}/p^2\right) = 0$$

Final differential production rate:

$$\frac{dn_{K^+K^-}}{d^4p\,d\cos\theta^*d\phi^*} \propto \left[q_\mu\epsilon_{\rm H}^\mu(p)\right]^2 \left[\rho_L(p) - \rho_T(p)\right] - q^2\rho_T(p)$$

Spin alignment:

2025-6-4

$$\rho_{00}(p) = \frac{\rho_L(p)}{\rho_L(p) + 2\,\rho_T(p)}$$

Calculation in SU(3) Nambu-Jonas-Lasinio model

2025-6-4 Production of $K^{+}K^{-}$ pairs through ϕ meson decay

16

Properties of SU(3) NJL model

- **¤** Chiral symmetry
- $-SU(3)_L \times SU(3)_R \to SU(3)_V$
- $\langle q \overline{q} \rangle \neq 0 \rightarrow \text{pion/kaon}$
- Free quark states exist

2025-6-4

- Requires a truncation scheme3D hardcut, Pauli-Villars,...
- Coupling constant G fitted to light meson masses

- Tree-level QCD NJL via integrating out gluons
- Approximates gluon exchange with local 4-fermion interaction

contract interaction

Lagrangian density of SU(3) NJL model

Lagrangian density :

scalar interaction

$$\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi + \left[G_{S}\sum_{a=0}^{8}\left[(\bar{\psi}\lambda_{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda_{a}\psi)^{2}\right]\right] + \left[G_{V}\sum_{a=0}^{8}\left[(\bar{\psi}\gamma_{\mu}\lambda_{a}\psi)^{2} + (\bar{\psi}i\gamma_{\mu}\gamma_{5}\lambda_{a}\psi)^{2}\right]\right] \text{ vector interaction} \\ - \left[K\left[\det\bar{\psi}(1+\gamma_{5})\psi + \det\bar{\psi}(1-\gamma_{5})\psi\right]\right], \text{ six point KMT interaction}$$

Lagrangian density under the Mean Field Approximation:

$$\mathcal{L}_{\rm MF} = \sum_{f=u,d,s} \bar{\psi}_f (i\gamma_\mu \partial^\mu - M_f) \psi_f - 2G_S \sum_{f=u,d,s} \sigma_f^2 + 4K\sigma_u \sigma_d \sigma_s$$

Chiral condensate: $\sigma_f = \langle \psi_f \bar{\psi}_f \rangle$

Dynamic quark mass: $M_f \equiv m_f - 4G_S\sigma_f + 2K \prod_{f' \neq f} \sigma_{f'}$

U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).

T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994).

V. Bernard, R. L. Jaffe, and U. G. Meissner, Nucl. Phys. B 308, 753 (1988).

S. Klimt, M. F. M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A 516, 429 (1990).

Kaon and quark-meson coupling $g_{Kq\bar{s}}$

Random phase approximation:

Kaon's self-energy:

2025-6-4

P. Rehberg, S.P. Klevansky, J. Hufner, Rev.C 53 (1996), 410-429.S.P. Klevansky, Rev.Mod.Phys. 64 (1992), 649-708.

Quark mass, kaon mass and $g_{Kq\bar{s}}$

Triangle graph

Effective three-meson vertex:

 $\left(+ \frac{1}{u \cdot p} \epsilon^{\mu\nu\alpha\beta} q_{\nu} p_{\alpha} u_{\beta} \Gamma_4(p_+, p_-) \right)$

$$q^{\mu} = p^{\mu}_{+} - p^{\mu}_{-}$$
 $p^{\mu}_{-} = p^{\mu}_{+} + p^{\mu}_{-}$

Simplified three-meson vertex :

2025-6-4

$$\tilde{\Gamma}^{\mu}(p_{+},p_{-}) \approx (p_{+}^{\mu} - p_{-}^{\mu})\Gamma_{1}(p_{+},p_{-}) \equiv (p_{+}^{\mu} - p_{-}^{\mu})\Gamma_{\mathrm{on}}(M_{\phi},|\mathbf{p}|)$$

Y.B. He, J. Hufner, S.P. Klevansky, P. Rehberg, Nucl. Phys. A 630 (1998), 719-742.

Triangle graph

If the temperature is high enough, we will have $\sqrt{M_{\phi}^2 + p^2} < 2M_K$, the kaon loop does not contribute to the imaginary part of ϕ meson's self energy.

2025-6-4

ϕ meson 's self-energy

Dyson-Schwinger equation:

2025-6-4

Y.B. He, J. Hufner, S.P. Klevansky, P. Rehberg, Nucl.Phys.A 630 (1998), 719-742.M. Oertel, M. Buballa, and J. Wambach, Nucl. Phys. A 676, 247 (2000).M. Oertel, M. Buballa, and J. Wambach, Phys. Atom. Nucl. 64, 698 (2001).M. Oertel, M. Buballa, and J. Wambach, Phys. Lett. B 477, 77 (2000).

ϕ meson 's self-energy

Quark loop contribution(LO):

2025-6-4

Y.B. He, J. Hufner, S.P. Klevansky, P. Rehberg, Nucl. Phys. A 630 (1998), 719-742.

ϕ meson 's self-energy

Kaon tadpole contribition(NLO):

2025-6-4

$$\left[p^{\mu}\left[\Pi_{\mu\nu}^{\mathrm{K-tau}}(p)+\Pi_{\mu\nu}^{\mathrm{K-tau}}(p)\right]\right]$$

$$\Pi_{\mu\nu}^{\text{K-tad}}(p) = -g_{\mu\nu}\frac{p^{\alpha}p^{\beta}}{p^{2}}\Pi_{\alpha\beta}^{\text{K-loop}}(p)$$

Decompose the self-energy into longitidinal mode and transverse mode:

$$\Pi_{\rm tot}^{\mu\nu}(p) = -\epsilon_{H}^{\mu}\epsilon_{H}^{\nu}\Pi_{L}(p) + (g^{\mu\nu} - p^{\mu}p^{\nu}/p^{2} + \epsilon_{H}^{\mu}\epsilon_{H}^{\nu})\Pi_{T}(p)$$

Production of K⁺K⁻ pairs through ϕ meson decay

Invariant mass spectrum

Longitidinal / Transverse polarized propagator of ϕ meson:

$$D_{L/T}(p) = \frac{4G_V}{1 + 4G_V \Pi_{L/T}^{\text{tot}}(p)}$$

Spectral functions for longitudinally and transversely polarized modes

$$\rho_{L/T}(p) = -\left|\frac{4G_V}{1 + 4G_V \Pi_{\text{vac}}^{\text{tot}}(p)}\right|^2 \operatorname{Im} \Pi_{L/T}^{\text{tot}}(p)$$

Invariant mass spectrum of K^+K^- pair :

Numerical result for ϕ meson's spin alignment Spin alignment

$$\overline{\rho}_{00}(\mathbf{p}) - \frac{1}{3} = \frac{2 \int_{M_{\min}}^{M_{\max}} dM_{\phi} \delta f(p)}{3 \int_{M_{\min}}^{M_{\max}} dM_{\phi} \left[3 f_T(p) + \delta f(p)\right]}$$

Auxiliary function:

2025-6-4

$$\begin{pmatrix} f_T(p)\\\delta f(p) \end{pmatrix} \equiv \frac{1}{\omega} n_B(\omega) (M_{\phi}^2 - M_{K,\text{vac}}^2)^{3/2} \left| \Gamma_{\text{on}}^{\text{vac}}(M_{\phi}) \right|^2 \begin{pmatrix} \rho_T(p)\\\rho_L(p) - \rho_T(p) \end{pmatrix}$$

Summary

Key Findings

 \blacksquare Derived analytical expression for differential K⁺K⁻ production rate.

 \square At zero temperature, the invariant mass spectrum agrees with the experimental data observed in experiments.

□ Mass spectrum of K^+K^- pair is nearly temperature-independent for T ≤ 0.1 GeV, but quark coalescence broadens it significantly at higher T (disagreeing with data).

 \square Kaon loop corrections in self-energy open physical decay channels, giving ϕ meson a finite width.

Implication

2025-6-4

 \blacksquare Provides quantitative description of ϕ meson behavior in QCD matter.

Thank you for listening