

Finanziato dall'Unione europea NextGenerationEU

Recent progress on spin hydrodynamics

David Wagner

based mainly on

Sapna, S. K. Singh, DW, 2503.22552 (2025) DW, Phys.Rev.D 111 (2025) 1, 016008 DW, M. Shokri, D. H. Rischke, Phys.Rev.Res. 6 (2024) 4, 4 DW, N. Weickgenannt, D. H. Rischke, Phys.Rev.D 106 (2022) 11, 116021

02.04.2025

2 Spin hydrodynamics

Motivation & open questions

Global Λ -Polarization

- "Global": Integrated polarization along the direction of orbital angular momentum
- Can be explained by assuming spins in equilibrium
- \rightarrow "Polarization through rotation"
 - Analogous to Barnett effect

Local Λ -Polarization

F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, A. Palermo, PRL 127, 272302 (2021)

- "Local": Angle-dependent polarization along beam-direction
- Can only be explained by incorporating shear effects
 - $\rightarrow\,$ Simple picture of equilibrated spins not complete
- Possible answer: develop a theory of spin hydrodynamics to describe polarization dynamics

Analogy: Magnetic resonance imaging (MRI)

- MRI: Large constant *B*-field in *z*-direction and short-lived alternating field in *x*, *y*-plane
- Identify materials by relaxation times T_1 , T_2

$$\mu_1 \coloneqq T_1 \frac{gq}{2m}$$
, $\mu_2 \coloneqq T_2 \frac{gq}{2m}$

https://en.wikipedia.org/wiki/Bloch_equations

Bloch equations

$$T_2 \dot{M}_{x,y} + M_{x,y} = \mu_2 \left(\mathbf{M} \times \mathbf{B} \right)_{x,y} ,$$

$$T_1 \dot{M}_z + M_z = \mu_1 \left(\mathbf{M} \times \mathbf{B} \right)_z + M_0 .$$

Spin hydrodynamics

Spin hydrodynamics: Basics

- Theory is based on conservation laws
- Uncharged fluid: consider energy-momentum tensor and total angular momentum tensor

Conservation equations

$$\partial_{\mu} T^{\mu\nu} = 0$$
$$\partial_{\lambda} J^{\lambda\mu\nu} =: \hbar \partial_{\lambda} S^{\lambda\mu\nu} + T^{[\mu\nu]} = 0$$

- 10 equations for 16+24 quantities
 - Underdetermined system
 - Additional information about dissipative quantities has to be provided
- Here: Use *quantum kinetic theory* as the microscopic basis

 $A^{[\mu}B^{\nu]} := A^{\mu}B^{\nu} - A^{\nu}B^{\mu}$

Spin hydrodynamics: Procedure

QKT: Boltzmann equation

DW, NW, DHR, Phys.Rev.D 106 (2022) 11, 116021

Boltzmann equation with collisions

$$\begin{aligned} k \cdot \partial f(x,k,\mathfrak{s}) &= \frac{1}{2} \int \mathrm{d}\Gamma_1 \mathrm{d}\Gamma_2 \mathrm{d}\Gamma' \delta^{(4)}(k_1 + k_2 - k - k') \mathcal{W} \\ &\times \left[f(x + \Delta_1 - \Delta, k_1, \mathfrak{s}_1) f(x + \Delta_2 - \Delta, k_2, \mathfrak{s}_2) \right. \\ &\times \widetilde{f}(x,k,\mathfrak{s}) \widetilde{f}(x + \Delta' - \Delta, k',\mathfrak{s}') \\ &- \widetilde{f}(x + \Delta_1 - \Delta, k_1, \mathfrak{s}_1) \widetilde{f}(x + \Delta_2 - \Delta, k_2, \mathfrak{s}_2) \\ &\times f(x,k,\mathfrak{s}) f(x + \Delta' - \Delta, k',\mathfrak{s}') \right] . \end{aligned}$$

Equivalence up to first order in quantum corrections:

 $f(x,k,\mathfrak{s}) + \Delta^{\mu}\partial_{\mu}f(x,k,\mathfrak{s}) \approx f(x+\Delta,k,\mathfrak{s})$

A (momentum- and spin-dependent) spacetime shift Δ^μ enters
 → Particles do not scatter at the same spacetime point!

$$\mathrm{d}\Gamma := 2\mathrm{d}^4 k \delta(k^2 - m^2) \mathrm{d}S(k), \ \widetilde{f} := 1 - f$$

David Wagner

Nonlocal collisions

W. Florkowski, A. Kumar, R. Ryblewski, Prog. Part. Nucl. Phys. 108, 103709 (2019)

- Assume that collisions take place in a point
 - ightarrow Total orbital angular momentum vanishes
 - \rightarrow Spin is conserved on its own
 - ightarrow No exchange of spin and orbital angular momenta
- Collisions must be **nonlocal** for spin equilibration!
- Becomes manifest through a spacetime shift Δ^{μ} that is fixed by the microscopic interaction

David Wagner

Spin hydrodynamics: Procedure

Conservation equations

$$\partial_{\mu}T^{(\mu\nu)} = 0 + \mathcal{O}(\hbar^2) ,$$

$$\partial_{\lambda}S^{\lambda\mu\nu} = \frac{1}{\hbar}T^{[\nu\mu]} .$$

- No backreaction of spin on fluid evolution, fluid profile serves as input for spin potential
- "Ideal" fluid: Determined through local equilibrium, i.e., by $f_{\rm eq} = \left[\exp\left(-\alpha_0 + \beta_0 u \cdot k + \frac{\hbar}{4m} \epsilon^{\mu\nu\alpha\beta} \Omega_{0,\mu\nu} k_\alpha \mathfrak{s}_\beta \right) + 1 \right]^{-1}$
- "Ideal" spin evolution determined by **spin potential** $\Omega_0^{\mu\nu} = u^{[\mu} \kappa_0^{\nu]} + \epsilon^{\mu\nu\alpha\beta} u_{\alpha} \omega_{0,\beta}$

Beyond equilibrium: Moment method

- Split distribution function $f=f_{\rm eq}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$\rho_r^{\mu_1\cdots\mu_\ell}(x) := \int \mathrm{d}\Gamma E_{\mathbf{k}}^r k^{\langle \mu_1}\cdots k^{\mu_\ell\rangle} \delta f(x,k,\mathfrak{s})$$

$$\tau_r^{\mu,\mu_1\cdots\mu_\ell}(x) := \int \mathrm{d}\Gamma \mathfrak{s}^{\mu} E_{\mathbf{k}}^r k^{\langle \mu_1}\cdots k^{\mu_\ell\rangle} \delta f(x,k,\mathfrak{s})$$

- Equations of motion can be derived from Boltzmann equation
- Knowing the evolution of all moments is equivalent to solving the Boltzmann equation

$$k^{\langle \mu_1} \cdots k^{\mu_\ell} \coloneqq \Delta^{\mu_1 \cdots \mu_\ell}_{\nu_1 \cdots \nu_\ell} k^{\nu_1} \cdots k^{\nu_\ell}$$

Beyond equilibrium: Moment method

- Split distribution function $f=f_{\rm eq}+\delta f$
- Perform moment expansion including spin degrees of freedom

- Equations of motion can be derived from Boltzmann equation
- Knowing the evolution of all moments is equivalent to solving the Boltzmann equation

$$k^{\langle \mu_1} \cdots k^{\mu_\ell} \coloneqq \Delta^{\mu_1 \cdots \mu_\ell}_{\nu_1 \cdots \nu_\ell} k^{\nu_1} \cdots k^{\nu_\ell}$$

Resumming (spin) hydrodynamics: IReD

DW, A. Palermo, V. E. Ambruş, Phys. Rev. D **106**, 016013 (2022) DW, Phys.Rev.D 111 (2025) 1, 016008)

- Basic idea: Power-counting scheme to second order in
 - Knudsen number $\operatorname{Kn} \coloneqq \lambda_{\mathrm{mfp}} / L_{\mathrm{hydro}}$
 - inverse Reynolds numbers $\mathrm{Re}^{-1} \sim \delta f/f_{\mathrm{eq}}$
- Derive asymptotic (Navier-Stokes) relations to close the system

Asymptotic matching (example)

$$\rho_r^{\mu\nu} = \eta_r \sigma^{\mu\nu} + \mathcal{O}(\mathrm{KnRe}^{-1}) = \frac{\eta_r}{\eta_0} \pi^{\mu\nu} + \mathcal{O}(\mathrm{KnRe}^{-1})$$

- The same procedure can be done for the moments $au_r^{\mu,\mu_1\cdots\mu_\ell}$
- Many moments can be related to ω^{μ}_{0} and κ^{μ}_{0}
 - No need to introduce more dynamical quantities
- Exception: tensor-valued moments $t_r^{\mu\nu} \coloneqq \tau_{r,\alpha,\beta} {}^{\langle \mu} \epsilon^{\nu \rangle \alpha \beta \rho} u_{\rho}$
 - \blacktriangleright Additional dynamical quantity $\mathfrak{t}^{\mu\nu}$ is needed, $S^{\lambda\mu\nu}\sim\mathfrak{t}^{\lambda[\mu}u^{\nu]}$

Dissipative spin hydrodynamics

DW, Phys.Rev.D 111 (2025) 1, 016008

$$\begin{split} \tau_{\omega}\dot{\omega}_{0}^{\langle\mu\rangle} + \omega_{0}^{\mu} &= -\beta_{0}\omega^{\mu} + \delta_{\omega\omega}\omega_{0}^{\mu}\theta + \lambda_{\omega\omega}\sigma^{\mu\nu}\omega_{0,\nu} + \lambda_{\omega\mathfrak{t}}\mathfrak{t}^{\mu\nu}\omega_{\nu} \\ &+ \epsilon^{\mu\nu\alpha\beta}u_{\nu}\left(\ell_{\omega\kappa}\nabla_{\alpha}\kappa_{0,\beta} - \tau_{\omega}\dot{u}_{\alpha}\kappa_{0,\beta} + \lambda_{\omega\kappa}I_{\alpha}\kappa_{0,\beta}\right) \\ \tau_{\kappa}\dot{\kappa}_{0}^{\langle\mu\rangle} + \kappa_{0}^{\mu} &= -\beta_{0}\dot{u}^{\mu} + \mathfrak{b}I^{\mu} + \delta_{\kappa\kappa}\kappa_{0}^{\mu}\theta + \left(\lambda_{\kappa\kappa}\sigma^{\mu\nu} + \frac{\tau_{\kappa}}{2}\omega^{\mu\nu}\right)\kappa_{0,\nu} \\ &+ \epsilon^{\mu\nu\alpha\beta}u_{\nu}\left(\frac{\tau_{\kappa}}{2}\nabla_{\alpha}\omega_{0,\beta} + \tau_{\kappa}\dot{u}_{\alpha}\omega_{0,\beta} + \lambda_{\kappa\omega}I_{\alpha}\omega_{0,\beta}\right) \\ &+ \mathfrak{t}^{\mu\nu}\left(\tau_{\kappa\mathfrak{t}}\dot{u}_{\nu} + \lambda_{\kappa\mathfrak{t}}I_{\nu}\right) + \ell_{\kappa\mathfrak{t}}\Delta_{\lambda}^{\mu}\nabla_{\nu}\mathfrak{t}^{\nu\lambda} \\ \tau_{\mathfrak{t}}\dot{\mathfrak{t}}^{\langle\mu\nu\rangle} + \mathfrak{t}^{\mu\nu} &= \mathfrak{d}\beta_{0}\sigma^{\mu\nu} + \delta_{\mathfrak{tt}}\mathfrak{t}^{\mu\nu}\theta + \lambda_{\mathfrak{tt}}\mathfrak{t}_{\lambda}\langle^{\mu}\sigma^{\nu}\rangle^{\lambda} + \frac{5}{3}\tau_{\mathfrak{t}}\mathfrak{t}_{\lambda}\langle^{\mu}\omega^{\nu}\rangle^{\lambda} + \ell_{\mathfrak{t\kappa}}\nabla^{\langle\mu}\kappa_{0}^{\nu\rangle} \\ &+ \lambda_{\mathfrak{t\kappa}}I^{\langle\mu}\kappa_{0}^{\nu\rangle} + \tau_{\mathfrak{t}\omega}\omega^{\langle\mu}\omega_{0}^{\nu\rangle} + \lambda_{\mathfrak{t}\omega}\sigma_{\lambda}\langle^{\mu}\epsilon^{\nu}\rangle^{\lambda\alpha\beta}u_{\alpha}\omega_{0,\beta} \end{split}$$

 $I^{\mu} \coloneqq \nabla^{\mu} \alpha_0$

Relaxation times and first-order coefficient

DW, Phys.Rev.D 111 (2025) 1, 016008

- au_{ω} grows with z^2 compared to au_{κ} and $au_{\mathfrak{t}}$
- $\tau_{\mathfrak{t}}$ vanishes for $z \to 0$

Numerical results

Spin evolution

Sapna, S.K. Singh, DW, 2503.22552 (2025)

$$\begin{split} SP: \ \mathcal{L}_{\mathsf{int}} &\sim G\left[\left(\overline{\psi}\psi\right)^2 - \left(\overline{\psi}\gamma_5\psi\right)^2\right] \ ,\\ S: \ \mathcal{L}_{\mathsf{int}} &\sim G\left(\overline{\psi}\psi\right)^2 \ ,\\ V: \ \mathcal{L}_{\mathsf{int}} &\sim G\left(\overline{\psi}\gamma^\mu\psi\right)\left(\overline{\psi}\gamma_\mu\psi\right) \ . \end{split}$$

Sapna, S.K. Singh, DW, 2503.22552 (2025)

Polarization results

Sapna, S.K. Singh, DW, 2503.22552 (2025)

David Wagne

Comparison to BBP

Sapna, S.K. Singh, DW, 2503.22552 (2025)

David Wagne

Centrality and mass dependence

Sapna, S.K. Singh, DW, 2503.22552 (2025)

David Wagner

- Resummed spin hydrodynamics was derived from QKT
 - Main result: Only the quantities ω_0^{μ} , κ_0^{μ} , $t^{\mu\nu}$ need dynamical treatment
 - All transport coefficients have been computed
- Numerical implementation shows promising results
 - Global polarization rather robust
 - Local polarization depends on interaction, correct sign can be reproduced
- Future avenues:
 - Study of the spin dynamics in various setups
 - Expected to become especially relevant at lower collision energies

Appendix

Appendix: Coefficients

Sapna, S.K. Singh, DW, 2503.22552 (2025)

David Wagne

Conserved currents in QKT

Conserved currents

$$\frac{1}{2}T^{(\mu\nu)} = \int d\Gamma k^{\mu}k^{\nu}f ,$$
$$S^{\lambda\mu\nu} = \frac{1}{2m}\int d\Gamma k^{\lambda}\epsilon^{\mu\nu\alpha\beta}k_{\alpha}\mathfrak{s}_{\beta}f .$$
$$T^{[\mu\nu]} = \frac{1}{2}\int [d\Gamma]\widetilde{\mathcal{W}}\Delta^{[\mu}k^{\nu]} \left(f_{1}f_{2} - ff'\right)$$

Conservation laws

$$\int \mathrm{d}\Gamma k^{\mu} C[f] = 0$$
$$\frac{\hbar}{2m} \int \mathrm{d}\Gamma \epsilon^{\mu\nu\alpha\beta} k_{\alpha} \mathfrak{s}_{\beta} C[f] = \frac{\hbar}{m} \int \frac{\mathrm{d}^4 k}{(2\pi\hbar)^4} k^{[\mu} \mathcal{D}_{\mathcal{V}}^{\nu]}$$

 $[d\Gamma]:=d\Gamma_1\,d\Gamma_2\,d\Gamma\,d\Gamma'$

David Wagne

Polarization observables in kinetic theory

Vector Polarization (Pauli-Lubanski Pseudovector)

$$S^{\mu}(k) \coloneqq \operatorname{Tr}\left[\hat{S}^{\mu}\,\hat{
ho}(k)
ight] = rac{1}{N(k)} \int \mathrm{d}\Sigma_{\lambda}k^{\lambda} \int \mathrm{d}S(k)\mathfrak{s}^{\mu}f(x,k,\mathfrak{s})$$

Tensor Polarization

$$\begin{split} \rho_{00}(\boldsymbol{k}) &= \frac{1}{3} - \sqrt{\frac{2}{3}} \epsilon_{\mu}^{(0)}(\boldsymbol{k}) \epsilon_{\nu}^{(0)}(\boldsymbol{k}) \Theta^{\mu\nu}(\boldsymbol{k}) \\ \Theta^{\mu\nu}(\boldsymbol{k}) &\coloneqq \frac{1}{2} \sqrt{\frac{3}{2}} \operatorname{Tr} \left[\left(\hat{S}^{(\mu} \hat{S}^{\nu)} + \frac{4}{3} K^{\mu\nu} \right) \hat{\rho}(\boldsymbol{k}) \right] \\ &= \frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(\boldsymbol{k})} \int \mathrm{d}\Sigma_{\lambda} \boldsymbol{k}^{\lambda} \int \mathrm{d}S(\boldsymbol{k}) K^{\mu\nu}_{\alpha\beta} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} f(\boldsymbol{x}, \boldsymbol{k}, \mathfrak{s}) \end{split}$$

$$N(\mathbf{k}) \coloneqq \int \mathrm{d}\Sigma_{\gamma} \mathbf{k}^{\gamma} \int \mathrm{d}S(\mathbf{k}) f(x, \mathbf{k}, \mathfrak{s}), \qquad \hat{S}^{\mu} \coloneqq -(1/2m) \epsilon^{\mu\nulphaeta} \hat{J}_{
ulpha} \hat{P}_{eta}$$

David Wagner

Polarization in spin hydrodynamics

Local Polarization

$$S_{0}^{\mu} = \frac{2\sigma^{2}\hbar}{N(k)m} \int d\Sigma_{\lambda}k^{\lambda} \left(u^{\mu}\omega_{0}^{\nu}k_{\nu} - E_{\mathbf{k}}\omega_{0}^{\mu} + \epsilon^{\mu\nu\alpha\beta}u_{\nu}k_{\alpha}\kappa_{0,\beta} \right) f_{0}\widetilde{f}_{0}$$
$$\delta S^{\mu} = -\frac{2\sigma}{N(k)} \int d\Sigma_{\lambda}k^{\lambda}K^{\mu\gamma}\Xi_{\gamma\alpha}f_{0}\widetilde{f}_{0}$$
$$\times \left(\mathfrak{x}_{n}\epsilon^{\alpha\beta\rho\sigma}u_{\beta}k_{\rho}n_{\sigma} + \mathfrak{x}_{t}\mathfrak{t}_{\rho}{}^{\langle\beta}\epsilon^{\gamma\rangle\alpha\sigma\rho}u_{\sigma}k_{\langle\beta}k_{\gamma\rangle} \right)$$

Global Polarization

$$\overline{S}_{0}^{\mu} = -\frac{2\sigma^{2}\hbar}{\overline{N}m} \int d\Sigma_{\lambda} \left(J_{21}u^{\mu}\omega_{0}^{\lambda} + J_{20}\omega_{0}^{\mu}u^{\lambda} + J_{21}\epsilon^{\mu\nu\lambda\beta}u_{\nu}\kappa_{0,\beta} \right)$$
$$\delta\overline{S}^{\mu} = \frac{\sigma}{\overline{N}}\frac{1}{2} \int d\Sigma_{\lambda} B_{0}\epsilon^{\mu\lambda\alpha\beta}u_{\alpha}n_{\beta}$$

$$\mathfrak{x}_n \coloneqq \frac{1}{2} \sum_n \mathcal{H}_{\mathbf{k}n}^{(1,1)} \frac{\mathfrak{b}_n^{(1)}}{\varkappa} , \quad \mathfrak{x}_\mathfrak{t} \coloneqq \frac{2}{3} \sum_n \mathcal{H}_{\mathbf{k}n}^{(1,2)} \frac{\mathfrak{d}_n}{\mathfrak{d}_0}$$

David Wagner

Spin hydro

DW, NW, ES, 2306.05936 (2023)

Spacetime shifts

$$\Delta^{\mu} := -\frac{i\hbar}{8m} \frac{m^4}{\mathcal{W}} M^{\gamma_1 \gamma_2 \delta_1 \delta_2} M^{\zeta_1 \zeta_2 \eta_1 \eta_2} h_{1,\gamma_1 \eta_1} h_{2,\gamma_2 \eta_2} h'_{\zeta_2 \delta_2} [h, \gamma^{\mu}]_{\zeta_1 \delta_1}$$

• Depend on the transfer-matrix elements

$$\langle 11' | \hat{t} | 22' \rangle = \bar{u}_{1,\alpha} \bar{u}_{1',\beta} u_{2,\gamma} u_{2',\delta} M^{\alpha\beta\gamma\delta}$$

- Manifestly covariant
 - $\rightarrow\,$ no "no-jump" frame

$$h \coloneqq \frac{1}{4}(\mathbb{1} + \gamma_5 \not s)(\not k + m)$$

David Wagner

Scalar interaction

$$M_{\alpha\alpha'\alpha_1\alpha_2} = \frac{2G}{\hbar} \left(\delta_{\alpha\alpha_1} \delta_{\alpha'\alpha_2} - \delta_{\alpha\alpha_2} \delta_{\alpha'\alpha_1} \right)$$

Thermal gluon exchange

$$\begin{split} M_{\alpha\alpha'\alpha_{1}\alpha_{2}} &= \frac{2g}{\hbar} \left[\gamma_{\alpha\alpha_{1}}^{\mu} \frac{g_{\mu\nu}}{(k-k_{1})^{2} - m_{\text{th}}^{2}} \gamma_{\alpha'\alpha_{2}}^{\nu} - \gamma_{\alpha\alpha_{2}}^{\mu} \frac{g_{\mu\nu}}{(k-k_{2})^{2} - m_{\text{th}}^{2}} \gamma_{\alpha'\alpha_{1}}^{\nu} \right] \\ \bullet \ m_{\text{th}} &= \sqrt{2N_{C} + N_{f}} gT/(3\sqrt{2}) \end{split}$$

• Same procedure as for the moments of spin-rank 0

Moment equation for $\ell = 2$

$$\dot{\tau}_r^{\langle \mu \rangle, \nu \lambda} - \mathfrak{C}_{r-1}^{\langle \mu \rangle, \nu \lambda} = \cdots$$

- Navier-Stokes limit: $\mathfrak{C}_{r-1}^{\langle \mu \rangle, \nu \lambda} = 0$
- Contains local and nonlocal contributions
 - $\begin{array}{l} \bullet \ \mathfrak{C}_{r,\text{local}}^{\langle \mu \rangle,\nu\lambda} \sim \tau_r^{\mu,\nu\lambda} \\ \bullet \ \mathfrak{C}_{r,\text{nonlocal}}^{\langle \mu \rangle,\nu\lambda} \sim \sigma_{\rho}^{\langle \nu} \epsilon^{\lambda\rangle\mu\alpha\rho} u_{\alpha} \end{array}$
- Leads to shear-induced polarization, coefficient independent of total cross-section
- Magnitude not yet clear
- N. Weickgenannt, DW, E. Speranza, D. H. Rischke, Phys. Rev. D 106, L091901 (2022) N. Weickgenannt, DW, E. Speranza, D. H. Rischke, Phys. Rev. D 106, 096014 (2022)