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Motivation for small collision

systems



Phase diagram of QCD

• At high temperature and pressure: transition from confined quarks (hadrons) to

deconfined quark gluon plasma

• Lattice QCD: smooth phase transition

at µb ≈ 0

• Where is the critical endpoint?

• Goal: Studying the limits of QGP

formation in small collision systems
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Signatures of QGP formation

• QGP behaves like an almost ideal fluid

→ Anisotropic Flow: initial anisotropic density profile (almond shape) → particles

are pushed outwards anisotropically

→ Jet Quenching: high pT particles from initial hard scatterings travel through the

created medium

• Data is well described by hybrid approaches:

Pre-Equilibrium, Hydrodynamics, hadronic evolution
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Collectivity in small systems

• Anisotropic flow

observed in p-p:
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Observation of partonic flow in proton–proton and

proton–nucleus collisions, ALICE Collaboration

• Jet quenching

observed in p-p:
RAA(pT ) =

1

⟨Ncoll⟩
d2NAA/dpTdy

d2Npp/dpTdy

∣∣∣
y=0
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Intermediate small systems: O and Ne

• Bridging region between high multiplicity p-p and low

multiplicity Pb-Pb

• Sharper energy gradients and higher event-by-event

fluctuations compared to heavy-ion collisions

• Nuclear clustering:

→ structure leaves imprint on energy profile

→ small timescales allow us to take snapshots

• Configurations can be obtained by Nuclear Lattice

Effective Field Theory (NLEFT)
Giacalone et al.

4



Model Descriptions



SMASH initial conditions

• SMASH solves the relativistic Boltzmann equation numerically

pµ∂µfi (x⃗ , p⃗) +miF
α∂p

αfi (x⃗ , p⃗) = C i
coll

• For the initial conditions, a hypersurface of constant proper time τ0 is defined

• Particles that cross this hypersurface get removed from the evolution and stored

for the hydrodynamical evolution
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Hydrodynamic Evolution - vHLLE

• The particles are smeared according to

∆Pα
ijk = Pα C exp

(
− ∆x2i +∆y2

j

R2
⊥

− ∆η2k
R2
η
γ2η τ

2
0

)
• The system is governed by the conservation of energy and momentum, as well as

the net-baryon, net-charge and net-strangeness.

∂µT
µν = 0 ∂µj

µ
c = 0

• Equation of state needed!

→ Chiral mean field EoS from QCD that is fitted to HRG at lower temperatures
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Particlization and Hadronic Afterburner

• When the system reaches εswitch: Construct hypersurface of constant energy

density

• Each surface element is particlized individually in 2 steps:

1. Sample number of particles of each species using a Poisson distribution

2. Particles’ momenta are sampled according to the Cooper-Frye formula

dN

dp⃗
=

g

(2π)3

∫
σ

[f0(x , p⃗) + δf (x , p⃗)]
pµ

E
dσµ

→ Conservation laws only satisfied on average!

• Resulting particles are put into SMASH for hadronic evolution until kinetic

freezeout
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Angantyr

• Extrapolation of Pythia p-p events to A-A collisions

• Advanced Monte Carlo Glauber model to determine wounded nucleons

→ Sub-collisions are combined to obtain full heavy-ion event

→ No collective effects
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Implementation of α-Clustered Oxygen

• Sample 4 helium nuclei with Woods-Saxon distribution

• Place each on the vertex of a regular tetrahedron
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Results



Applicabillity of hydrodynamics

• Assumption of local thermal equilibrium not necessarily true - especially in small

systems!

• Assess degree of equilibration: Opacity

γ̂ = (5η/s)−1

(
1

aπ
R
dET

dηs

) 1
4

• Measure for the interaction rate in a medium

• Hydrodynamics found to be accurate to kinetic

theory if γ̂ > 3

→ Applicable in central collisions up to 20% in

O-O

Werthman et al.
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Eccentricity

• The Eccentricity describes the shape

of the reaction zone in the transverse

plane

• ϵ2 and ϵ3 are the ellipticity and

triangularity, they measure how close

to an ellipse or a triangle the shape is

|ϵn| =
√
⟨rnsin(nφ)⟩2 + ⟨rncos(nφ)⟩2

⟨rn⟩
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Eccentricity
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SMASH 3.1-IC, O-O collisions, √sNN=7 TeV

• As expected, both ε2 and ε3

increase with centrality

• Woods–Saxon generates

higher eccentricities across all

centrality classes

• No significant ε3

enhancement from clustering

visible in central collisions
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Eccentricity Distribution
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• Similar between centrality

classes and distributions

→ Random orientations and

event-by-event fluctuations

dilute geometric effects
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Centrality Selection
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• Centrality determined via final state

charged particle multiplicity Nch in

rapidity region |y | < 2.5

• Results reflect entropy production of
the 3 models:

→ Angantyr has no hadronic

rescatterings

→ Hybrid has viscous effects

• α-clustered configuration yields

slightly higher multiplicities
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Nuclear Modification Factor
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RAA(pT ) =
1

⟨Ncoll⟩
d2NAA/dpTdy
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∣∣∣
y=0

• Angantyr and SMASH

transport nearly constant

• Hybrid shows expected result

for thermal spectra over

vacuum spectra

• Mass ordering: Baryons show higher RAA

→ Interpretation: radial flow pushes particles, α-clustered configurations create

denser medium 15



Anisotropic Flow

Goal: Fourier-decomposition of azimuthal particle distribution

dN

dϕ
=

1

2π

(
1 + 2

∞∑
n=1

vncos(n(ϕ−Ψn))

)

Problem: Non-flow → correlations that do not originate from collective flow

• Sources: particle decays, Coulomb interactions, back-to-back jets

→ Mostly short ranged (small ∆y and ∆φ)

→ Scaling with 1
N−1
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Cumulant Method

• Flow coefficients vn are extracted from multi-particle azimuthal correlations

• Cumulants capture the genuinely correlated part of a distribution function:

cn{2} = ⟨⟨e in(ϕ1−ϕ2)⟩⟩
cn{4} = ⟨⟨e in(ϕ1+ϕ2−ϕ3−ϕ4)⟩⟩ − 2⟨⟨e in(ϕ1−ϕ2)⟩⟩2

• Corresponding flow coefficients:

vn{2} =
√
cn{2} vn{4} = 4

√
−cn{4}

→ k-particle cumulant does not contain contributions from lower order particle

correlations
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Elliptic Flow
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• Hybrid: highest v2 in central

collisions, decreasing in less

central events

• SMASH and Angantyr:

Opposite trend (Non-flow)

• Sub-event method can

significantly reduce non-flow

effects
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4-particle cumulant c2{4}
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• Angantyr and SMASH

transport close to zero

(mostly)

• Incorrect sign prohibits

calculation of v2{4}
• In general, Correct/Incorrect

sign does not mean the flow

is collective or not

vn{4} = 4
√

−cn{4}
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Flow Fluctuations

• Cumulants give estimates for the squared/quadrupled flow coefficients

→ Biased by event-by-event fluctuations

→ Sources: Multiplicity fluctuations, fluctuating initial geometry

Impact of flow fluctuations:

v2n{2} = ⟨vn⟩2 + σ2
vn v2n{4} ≈ ⟨vn⟩2 − σ2

vn

Unbiased flow estimate:

⟨vn⟩ =
√

v2n{2}+ v2n{4}
2

Flow fluctuations:

σvn =

√
v2n{2} − v2n{4}

2
.
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Unbiased Flow Results
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• Finally, the expected v2 picture in heavy-ion collisions emerges!

• Flow fluctuations highest in central collisions → Multiplicity fluctuations
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Differential Flow

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v
2(p

T
)

0-5%

SMASH 3.1 + vHLLE
mesons
baryons
Woods-Saxon
α-clustering

10-20%

Angantyr
mesons
baryons
Woods-Saxon
α-clustering

40-60%

1 2 3 4 5 6
pT [GeV]

0.75
1.00
1.25

W
oo

ds
-S
ax
on

α
-c
lu
st
er
in
g

1 2 3 4 5 6
pT [GeV]

1 2 3 4 5 6
pT [GeV]

O-O collisions, √sNN=7 TeV

• Hybrid: Mass ordering at low pT visible, no baryon meson splitting at high pT

→ No individual parton description

• Angantyr: Non-flow goes through the roof once the number of particles decreases 22



Conclusions



Conclusion & Outlook

• Hydrodynamic evolution causes big enhancement of v2 in central to mid-central

collisions

→ Non-flow and flow fluctuations need to be considered

→ The α-clustered configuration creates a denser medium, making a hydrodynamic

description especially sensitve to the nuclear structure

Outlook:

• NLEFT configurations are available now

• Compare to Ne-Ne collisions

→ Light ions run at LHC in July 2025
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Triangular Flow
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• Hybrid: similar picture

• SMASH and Angantyr:

dominated by non-flow again

→ Flow from sub-event method

is imaginary!
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Triangular Flow
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