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Motivation for small collision
systems



Phase diagram of QCD

e At high temperature and pressure: transition from confined quarks (hadrons) to

deconfined quark gluon plasma

e Lattice QCD: smooth phase transition
at up =0
e Where is the critical endpoint?

e Goal: Studying the limits of QGP
formation in small collision systems

2
A
Temperature [MeV] &

2
-
5}

Critical
4 . Point?
Early Universe
Hadron Gas
Color
Nuclear Super-
Neut|
|~ Vacuum .\t"}tter ctard conductor

—

>
~923 Baryon Chemical Potential [MeV]

1



Signatures of QGP formation

o QGP behaves like an almost ideal fluid
— Anisotropic Flow: initial anisotropic density profile (almond shape) — particles
are pushed outwards anisotropically
— Jet Quenching: high pr particles from initial hard scatterings travel through the
created medium
e Data is well described by hybrid approaches:
Pre-Equilibrium, Hydrodynamics, hadronic evolution
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IC & Initial Propagation QGP & Hydrodynamic Expansion Hadronic Rescattering
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Collectivity in small systems
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e Anisotropic flow
observed in p-p:

e Jet quenching
observed in p-p: X

[ 5
Observation of partonic flow in proton—proton and
proton—nucleus collisions, ALICE Collaboration
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Intermediate small systems: O and Ne
—

e Bridging region between high multiplicity p-p and low
multiplicity Pb-Pb

e Sharper energy gradients and higher event-by-event

fluctuations compared to heavy-ion collisions

e Nuclear clustering:
— structure leaves imprint on energy profile
— small timescales allow us to take snapshots

e Configurations can be obtained by Nuclear Lattice
Effective Field Theory (NLEFT)

Giacalone et al.



Model Descriptions



SMASH initial conditions

e SMASH solves the relativistic Boltzmann equation numerically
PHOufi(%, B) + miFORf(X, B) = Cloy

e For the initial conditions, a hypersurface of constant proper time 7q is defined

e Particles that cross this hypersurface get removed from the evolution and stored
for the hydrodynamical evolution



Hydrodynamic Evolution - vHLLE

e The particles are smeared according to
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e The system is governed by the conservation of energy and momentum, as well as
the net-baryon, net-charge and net-strangeness.

0, T =0 9=

e Equation of state needed!
— Chiral mean field EoS from QCD that is fitted to HRG at lower temperatures



Particlization and Hadronic Afterburner

e When the system reaches €4,:cp: Construct hypersurface of constant energy
density
e Each surface element is particlized individually in 2 steps:
1. Sample number of particles of each species using a Poisson distribution

2. Particles’ momenta are sampled according to the Cooper-Frye formula
dN g p.“'
— = = fo(x, p) + 0f(x, p)] —=d
- o | (600 + (] S,
— Conservation laws only satisfied on average!

e Resulting particles are put into SMASH for hadronic evolution until kinetic
freezeout



e Extrapolation of PYTHIA p-p events to A-A collisions
e Advanced Monte Carlo Glauber model to determine wounded nucleons
— Sub-collisions are combined to obtain full heavy-ion event

— No collective effects



Implementation of a-Clustered Oxygen

e Sample 4 helium nuclei with Woods-Saxon distribution

e Place each on the vertex of a regular tetrahedron

Woods — Saxen a — Clustering
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Results




Applicabillity of hydrodynamics

e Assumption of local thermal equilibrium not necessarily true - especially in small
systems!
e Assess degree of equilibration: Opacity

1 dE 1 O-O collisions, v/snn=7 TeV
A -1 T\* 4.0
7 = (517/5) - R | | Woods—Sa.xon
anm d ns 35 \\ B o«clustering

3.0
254 \

N
(=]

e Measure for the interaction rate in a medium
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e Hydrodynamics found to be accurate to kinetic
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Eccentricity

e The Eccentricity describes the shape
of the reaction zone in the transverse

plane

e ¢ and e3 are the ellipticity and

triangularity, they measure how close 7
to an ellipse or a triangle the shape is Ellpti flow Triangular flow

V/(r7sin(ne))? + (r"cos(ny))?
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Eccentricity

SMASH 3.1-1C, O-O collisions, y/snn=7 TeV

06| wctuonrng. 061 e As expected, both €5 and €3

051 05 % increase with centrality

04 1 041 e Woods—Saxon generates
“ 034 “ 031 higher eccentricities across all

02 021 centrality classes

011 014 e No significant e3

00— 00— enhancement from clustering
e 9212 visible in central collisions
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Eccentricity Distribution

SMASH 3.1-IC, O-O collisions, \/snn=7 TeV
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Centrality Selection

O-O collisions, y/snn=7 TeV
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Nuclear Modification Factor

1 d2NA/_\/dedy
Neon) d*Npp/dprdy ly=0

Raa(pT) = <

e Angantyr and SMASH

transport nearly constant

e Hybrid shows expected result

for thermal spectra over

vacuum spectra

O-0 collisions, v/syn=7 TeV
SMASH 3.1 + vHLLE SMASH 3.1 A Angantyr
15 1 mesons b mesons rY mesons
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e Mass ordering: Baryons show higher Raa
— Interpretation: radial flow pushes particles, a-clustered configurations create

denser medium
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Anisotropic Flow

Goal: Fourier-decomposition of azimuthal particle distribution

dN 1 -
9 = <1 + 2; vacos(n(¢p — Wn)))

Problem: Non-flow — correlations that do not originate from collective flow

e Sources: particle decays, Coulomb interactions, back-to-back jets
— Mostly short ranged (small Ay and Ay)

— Scaling with 5=
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Cumulant Method

e Flow coefficients v, are extracted from multi-particle azimuthal correlations

e Cumulants capture the genuinely correlated part of a distribution function:

{2} = <<ef’7(¢1—¢2)>>
cr{4) = ((eI(Oroa0s0u))) —a((elr=ey)2

e Corresponding flow coefficients:

va{2} = v/ cn{2} va{4} = v/ —ca{4}

— k-particle cumulant does not contain contributions from lower order particle

correlations
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Elliptic Flow

0O-0 collisions, v/sxyn=7 TeV

standard method
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Hybrid: highest v, in central
collisions, decreasing in less

central events

SMASH and Angantyr:
Opposite trend (Non-flow)

Sub-event method can
significantly reduce non-flow
effects
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4-particle cumulant c;{4}

O-O collisions, y/sxn=7 TeV
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Flow Fluctuations

e Cumulants give estimates for the squared/quadrupled flow coefficients
— Biased by event-by-event fluctuations

— Sources: Multiplicity fluctuations, fluctuating initial geometry
Impact of flow fluctuations:

va{2} = (va)® + 0y, va{4} = (va)? — o

Vn

Unbiased flow estimate: Flow fluctuations:
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Unbiased Flow Results

O-O collisions, \/syn=7 TeV
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e Finally, the expected v, picture in heavy-ion collisions emerges!

e Flow fluctuations highest in central collisions — Multiplicity fluctuations
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Differential Flow

0O-0 collisions, v/snn=7 TeV
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e Hybrid: Mass ordering at low p7 visible, no baryon meson splitting at high pr
— No individual parton description
e Angantyr: Non-flow goes through the roof once the number of particles decreases 22
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Conclusion & Outlook

e Hydrodynamic evolution causes big enhancement of v, in central to mid-central
collisions

— Non-flow and flow fluctuations need to be considered

— The a-clustered configuration creates a denser medium, making a hydrodynamic
description especially sensitve to the nuclear structure

Outlook:

e NLEFT configurations are available now
e Compare to Ne-Ne collisions

— Light ions run at LHC in July 2025
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Triangular Flow

0O-0 collisions, v/sxyn=7 TeV

standard method =~ SMASH3.1+VHLLE two sub-event method, |Ay| =1
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Angantyr
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Triangular Flow

0O-0 collisions, \/snn=7 TeV
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