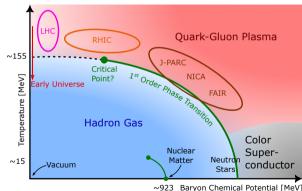
Collective effects in O-O collisions from a hybrid approach

Lucas Constantin

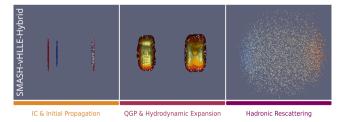
Transport Meeting


Goethe-Universität Frankfurt am Main

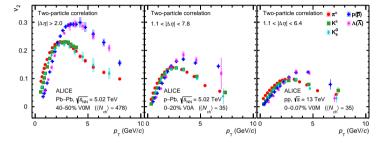
Motivation for small collision systems Model Descriptions SMASH-vHLLE Hybrid Angantyr Results Initial State Nuclear Modification Factor Anisotropic Flow Conclusions

Motivation for small collision systems

• At high temperature and pressure: transition from confined quarks (hadrons) to deconfined quark gluon plasma

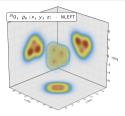

- Lattice QCD: smooth phase transition at $\mu_b\approx 0$
- Where is the critical endpoint?
- **Goal:** Studying the limits of QGP formation in small collision systems

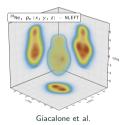
Signatures of QGP formation


- QGP behaves like an almost ideal fluid
- \rightarrow **Anisotropic Flow:** initial anisotropic density profile (almond shape) \rightarrow particles are pushed outwards anisotropically
- \rightarrow Jet Quenching: high p_T particles from initial hard scatterings travel through the created medium
 - Data is well described by hybrid approaches:

Pre-Equilibrium, Hydrodynamics, hadronic evolution

Collectivity in small systems


Observation of partonic flow in proton-proton and proton-nucleus collisions, ALICE Collaboration


• Jet quenching observed in p-p: ×

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dp_T dy}{d^2 N_{pp}/dp_T dy}\Big|_{y=0}$$

Intermediate small systems: O and Ne

- Bridging region between high multiplicity p-p and low multiplicity Pb-Pb
- Sharper energy gradients and higher event-by-event fluctuations compared to heavy-ion collisions
- Nuclear clustering:
 - \rightarrow structure leaves imprint on energy profile
 - \rightarrow small timescales allow us to take snapshots
- Configurations can be obtained by Nuclear Lattice Effective Field Theory (NLEFT)

Model Descriptions

• SMASH solves the relativistic Boltzmann equation numerically

$$p^{\mu}\partial_{\mu}f_{i}(\vec{x},\vec{p})+m_{i}F^{\alpha}\partial^{p}_{\alpha}f_{i}(\vec{x},\vec{p})=C^{i}_{coll}$$

- For the initial conditions, a hypersurface of constant proper time au_0 is defined
- Particles that cross this hypersurface get removed from the evolution and stored for the hydrodynamical evolution

Hydrodynamic Evolution - vHLLE

• The particles are smeared according to

$$\Delta P^{\alpha}_{ijk} = P^{\alpha} C \exp\left(-\frac{\Delta x_i^2 + \Delta y_j^2}{R_{\perp}^2} - \frac{\Delta \eta_k^2}{R_{\eta}^2} \gamma_{\eta}^2 \tau_0^2\right)$$

• The system is governed by the conservation of energy and momentum, as well as the net-baryon, net-charge and net-strangeness.

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}j^{\mu}_{c} = 0$$

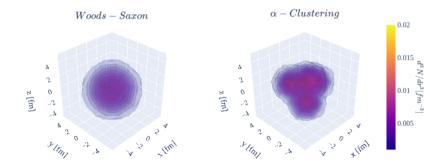
• Equation of state needed!

 \rightarrow Chiral mean field EoS from QCD that is fitted to HRG at lower temperatures

Particlization and Hadronic Afterburner

- When the system reaches ε_{switch} : Construct hypersurface of constant energy density
- Each surface element is particlized individually in 2 steps:
 - 1. Sample number of particles of each species using a Poisson distribution
 - 2. Particles' momenta are sampled according to the Cooper-Frye formula

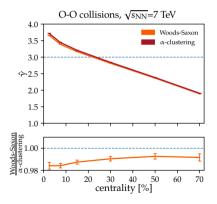
$$\frac{\mathrm{d}N}{\mathrm{d}\vec{p}} = \frac{\mathrm{g}}{(2\pi)^3} \int_{\sigma} \left[f_0(x,\vec{p}) + \delta f(x,\vec{p}) \right] \frac{p^{\mu}}{E} \mathrm{d}\sigma_{\mu}$$


- $\rightarrow\,$ Conservation laws only satisfied on average!
 - Resulting particles are put into SMASH for hadronic evolution until kinetic freezeout

- $\bullet\,$ Extrapolation of $\operatorname{Pythia}\,$ p-p events to A-A collisions
- Advanced Monte Carlo Glauber model to determine wounded nucleons
- $\rightarrow\,$ Sub-collisions are combined to obtain full heavy-ion event
- $\rightarrow~$ No collective effects

Implementation of α -Clustered Oxygen

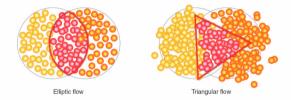
- Sample 4 helium nuclei with Woods-Saxon distribution
- Place each on the vertex of a regular tetrahedron


Results

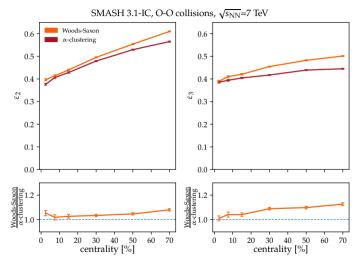
Applicabillity of hydrodynamics

- Assumption of local thermal equilibrium not necessarily true especially in small systems!
- Assess degree of equilibration: Opacity

$$\hat{\gamma} = (5\eta/s)^{-1} \left(\frac{1}{a\pi} R \frac{dE_T}{d\eta_s}\right)^{\frac{1}{4}}$$

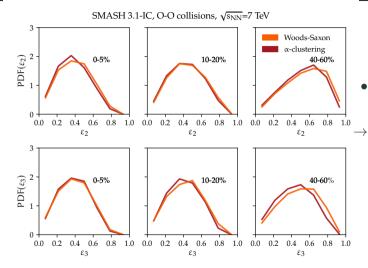

- Measure for the interaction rate in a medium
- Hydrodynamics found to be accurate to kinetic theory if $\hat{\gamma}>3$
- $\rightarrow\,$ Applicable in central collisions up to 20% in $\,$ O-O $\,$

Werthman et al.

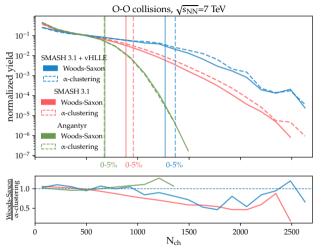

Eccentricity

- The Eccentricity describes the shape of the reaction zone in the transverse plane
- *ϵ*₂ and *ϵ*₃ are the ellipticity and triangularity, they measure how close to an ellipse or a triangle the shape is

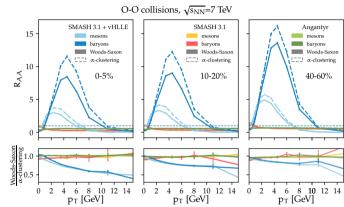
$$|\epsilon_n| = \frac{\sqrt{\langle r^n \sin(n\varphi) \rangle^2 + \langle r^n \cos(n\varphi) \rangle^2}}{\langle r^n \rangle}$$


Eccentricity

- As expected, both ε₂ and ε₃ increase with centrality
- Woods–Saxon generates higher eccentricities across all centrality classes
- No significant ε₃
 enhancement from clustering


visible in central collisions

Eccentricity Distribution


 Similar between centrality classes and distributions
 Random orientations and event-by-event fluctuations dilute geometric effects

Centrality Selection

- Centrality determined via final state charged particle multiplicity N_{ch} in rapidity region |y| < 2.5
- Results reflect entropy production of the 3 models:
 - $\rightarrow\,$ Angantyr has no hadronic rescatterings
 - $\rightarrow~$ Hybrid has viscous effects
- α -clustered configuration yields slightly higher multiplicities

Nuclear Modification Factor

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dp_T dy}{d^2 N_{pp}/dp_T dy} \Big|_{y=0}$$

- Angantyr and SMASH transport nearly constant
- Hybrid shows expected result for thermal spectra over vacuum spectra

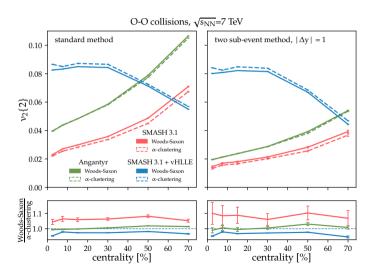
- Mass ordering: Baryons show higher R_{AA}
- \rightarrow Interpretation: radial flow pushes particles, $\alpha\text{-clustered}$ configurations create denser medium

Goal: Fourier-decomposition of azimuthal particle distribution

$$\frac{dN}{d\phi} = \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n)) \right)$$

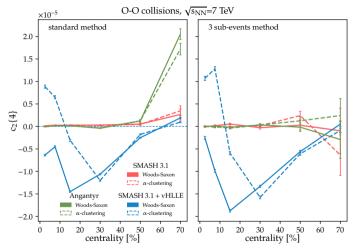
Problem: Non-flow \rightarrow correlations that do not originate from collective flow

- Sources: particle decays, Coulomb interactions, back-to-back jets
- ightarrow Mostly short ranged (small Δy and $\Delta arphi$)
- \rightarrow Scaling with $\frac{1}{N-1}$


- Flow coefficients v_n are extracted from multi-particle azimuthal correlations
- Cumulants capture the genuinely correlated part of a distribution function:

$$egin{aligned} c_n\{2\} &= \langle \langle e^{in(\phi_1 - \phi_2)}
angle
angle \ c_n\{4\} &= \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)}
angle
angle - 2 \langle \langle e^{in(\phi_1 - \phi_2)}
angle
angle^2 \end{aligned}$$

• Corresponding flow coefficients:


$$v_n\{2\} = \sqrt{c_n\{2\}}$$
 $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

 \rightarrow k-particle cumulant does not contain contributions from lower order particle correlations

- Hybrid: highest v₂ in central collisions, decreasing in less central events
- SMASH and Angantyr: Opposite trend (Non-flow)
- Sub-event method can significantly reduce non-flow effects

4-particle cumulant c_2 {4}

- Angantyr and SMASH transport close to zero (mostly)
- Incorrect sign prohibits calculation of v₂{4}
- In general, Correct/Incorrect sign does not mean the flow is collective or not

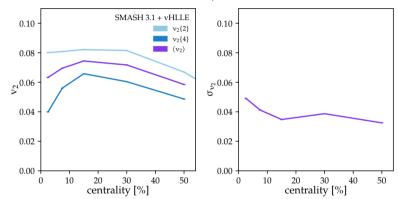
$$v_n{4} = \sqrt[4]{-c_n{4}}$$

Flow Fluctuations

- Cumulants give estimates for the squared/quadrupled flow coefficients
- $\rightarrow\,$ Biased by event-by-event fluctuations
- \rightarrow Sources: Multiplicity fluctuations, fluctuating initial geometry

Impact of flow fluctuations:

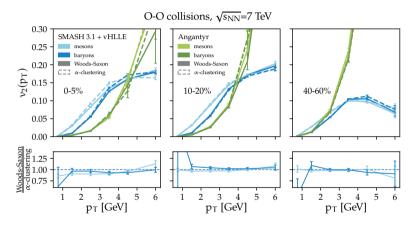
$$\langle v_n^2 \{2\} = \langle v_n \rangle^2 + \sigma_{v_n}^2$$
 $v_n^2 \{4\} \approx \langle v_n \rangle^2 - \sigma_{v_n}^2$


Unbiased flow estimate:

$$\langle v_n \rangle = \sqrt{\frac{v_n^2 \{2\} + v_n^2 \{4\}}{2}}$$

Flow fluctuations:

$$\sigma_{v_n} = \sqrt{\frac{v_n^2\{2\} - v_n^2\{4\}}{2}}.$$


Unbiased Flow Results

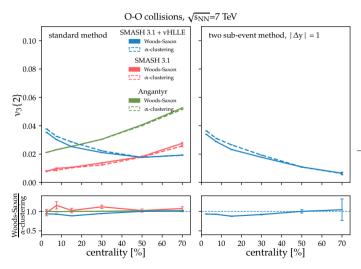
O-O collisions, $\sqrt{s_{NN}}$ =7 TeV

- Finally, the expected v_2 picture in heavy-ion collisions emerges!
- $\bullet\,$ Flow fluctuations highest in central collisions $\rightarrow\,$ Multiplicity fluctuations

Differential Flow

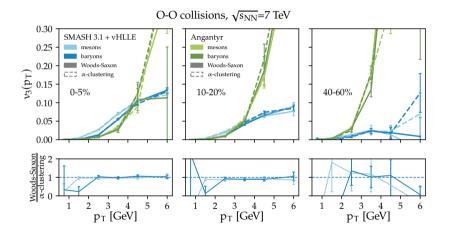
- Hybrid: Mass ordering at low p_T visible, no baryon meson splitting at high p_T → No individual parton description
- Angantyr: Non-flow goes through the roof once the number of particles decreases 22

Conclusions


Conclusion & Outlook

- Hydrodynamic evolution causes big enhancement of v_2 in central to mid-central collisions
- $\rightarrow\,$ Non-flow and flow fluctuations need to be considered
- \rightarrow The $\alpha\text{-clustered}$ configuration creates a denser medium, making a hydrodynamic description especially sensitve to the nuclear structure

Outlook:


- NLEFT configurations are available now
- Compare to Ne-Ne collisions
- $\rightarrow\,$ Light ions run at LHC in July 2025

Backup

- Hybrid: similar picture
- SMASH and Angantyr: dominated by non-flow again
 → Flow from sub-event method

is imaginary!

