

FIAS Frankfurt Institute for Advanced Studies

Vorticity and polarization in SMASH via a coarse-grained approach

Robin Sattler, Gabriele Inghirami, Nils Saß and Hannah Elfner

Transport Meeting

June 27, 2024

Motivation STAR Collaboration (at RHIC) findings in 2017

- Angular momentum of order 1000ħ (in non-central collisions)
- Alignment between angular momentum and spin of emitted particles
- Λ (and $\bar{\Lambda}$) hyperons chosen for analysis
 - Proton of weak decay ($\Lambda \rightarrow p + \pi^-$) tends to be emitted along spin direction of Λ (self-analyzing)

SMASH transport approach Simulating Many Accelerated Strongly-interacting Hadrons

Relativistic hadronic transport approach based on

Relativistic Boltzmann equation

$$p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$$

(no potentials used in this work, hence $F^{\alpha} = 0$)

- Includes all hadrons from the PDG (2018) up to m ~ 2.35 GeV
- Publicly available at <u>www.smash-transport.github.io</u>

DOI 10.5281/zenodo.3484711

J. Weil et al., Phys. Rev. C 94, 054905 (2016)

Geometrical collision criterion

$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}}$$

Pb-Pb collision at Elab = 40 GeV

t = 6 fm

 $t = -2.5 \, \text{fm}$

t = 12 fm

O. Vitiuk et al., Physics Letters B Volume 803, 135298 (2020)

Coarse-grained approach

- Space divided into many small cells
 - Done by SMASH which provides thermodynamic output $(T^{\mu\nu}, \text{Landau velocity}, j^{\mu}_{O}, j^{\mu}_{B}, j^{\mu}_{S})$
- Averaging over many events calculating vorticity and spins of emitted Λ
 - Done by codes written by Gabriele Inghirami Publicly available at <u>www.github.com/gabriele-inghirami/</u>

Global angular momentum in SMASH

 SMASH-3.0 shows high global angular momentum in line with STAR statement of order $1000\hbar$ (in the first few Fermi)

https://de-academic.com/dic.nsf/dewiki/1045183

X▲

Angular momentum per octant Momentum space

https://de-academic.com/dic.nsf/dewiki/1045183

Hyperon decay in SMASH

- Weak & electromagnetic decays in SMASH disabled by default
- Following decays do not occur and mother particles are stable in SMASH
 - $\Lambda \rightarrow p + \pi^{-}$
 - $\Sigma^0 \to \Lambda + \gamma$
 - $\Xi^0 \rightarrow \Lambda + \pi^0$
 - $\Xi^- \rightarrow \Lambda + \pi^-$
 - Ω decays into Λ , Ξ^0 or Ξ^-

Λ and $\overline{\Lambda}$ emission time evolution

- Chemical freeze-out: Point in time where last inelastic collision of a particle takes place
- **Kinetic freeze-out**: Interaction point of last elastic collision

L. Kumar, Nucl. Phys. A 931 (2014)

SMASH-3.0, Au+Au, b = 6 fm 10^{-1} $\bar{\Lambda} @ 7.7 \text{ GeV}$ $\Lambda @ 7.7 \text{ GeV}$ $\bar{\Lambda} @ 11.5 \text{ GeV}$ $\Lambda @ 11.5 \text{ GeV}$ $\overline{\Lambda} @ 14.5 \text{ GeV}$ $\Lambda @ 14.5 \text{ GeV}$ 10^{-2} $\overline{\Lambda}$ @ 19.6 GeV $\Lambda @ 19.6 \text{ GeV}$ $4N/dt \ [1/fm]$ 10 10 10^{-5} 10^{-6} 200 50 100250300 150 $t \, [\mathrm{fm}]$

Chemical freeze-out

A and $\Lambda + \Sigma^0$ emission time evolution Chemical and kinetic freeze-out compared to UrQMD data

UrQMD data: O. Vitiuk et al., Physics Letters B Volume 803, 135298 (2020)

$\Lambda + \Sigma^0 + \Xi^0 + \Xi^- + \Omega$ emission time evolution Chemical and kinetic freeze-out compared to UrQMD data

UrQMD data: O. Vitiuk et al., Physics Letters B Volume 803, 135298 (2020)

$\Lambda + \Sigma^0$ production yields SMASH, UrQMD, and NA49 experimental data

- Deviation by factor of 2 from UrQMD and experimental data
 - Strangeness production in SMASH too low...

V. Steinberg et al., Phys. Rev. C 99.6 (2019), 064908

Ieading to lower hyperon yields

UrQMD data: H. Petersen et al., arXiv:0805.0567v1 [hep-ph] NA49 data: C. Blume et al., Journal of Physics G: Nuclear and Particle Physics 31.6 (2005), s685

Vorticity in the reaction plane

UrQMD EoS used to calculate vorticity D. Zschiesche et al., Phys. Lett. B 547, 7 (2002)

Vorticity in the reaction plane

Au+Au, $\sqrt{s_{NN}} = 7.7$ GeV, b = 6 fm

UrQMD EoS used to calculate vorticity D. Zschiesche et al., Phys. Lett. B 547, 7 (2002)

Vorticity in the reaction plane Au+Au, $\sqrt{s_{NN}} = 7.7$ GeV, b = 6 fm, t = 15 fm Vorticity 30

- "Central area" of SMASH and UrQMD vorticity similar
- "Upper and lower area" different
- Vorticity dependent on used equation of state

UrQMD EoS used to calculate SMASH vorticity D. Zschiesche et al., Phys. Lett. B 547, 7 (2002) O. Vitiuk et al., Physics Letters B Volume 803, 135298 (2020)

Global Hyperon Polarization

Hui Li et al., arXiv:1704.01507v2 [nucl-th]; F. Becattini et al., Phys. Rev. C 77.2, 024906 (2008)

O. Vitiuk et al., Physics Letters B Volume 803, 135298 (2020)

- Computation of polarization with time and spatial emission points of the Λ hyperons and vorticity of fluid cells

Thermal vorticity
$$\beta_{\mu} - \partial_{\mu}\beta_{\nu}$$
) with $\beta_{\mu} = \frac{u_{\mu}}{T}$

Global Hyperon Polarization Feed-down contributions

Chemical freeze-out

Kinetic freeze-out

Global Λ **Polarization** Chemical vs. kinetic freeze-out

- Feed-down contributions negligible
 - Only A polarization taken into account
- Chemical freeze-out polarization
 higher than kinetic one
 - Possible explanation: Vorticity drop per cell due to system expansion ⇒ lower "kinetic freezeout" polarization

Global A Polarization SMASH-3.0 vs. UrQMD

- Possible reasons for differences:
 - EoS has impact on vorticity
 ⇒ impact on polarization
 - Last elastic and inelastic interaction dependent on cross sections leading to a shift in emission times of the hyperons

 \Rightarrow impact on polarization

Summary and outlook

- Summary •
 - Global angular momentum and per octant meet expectations
 - Polarization dependent on freeze-out definition and EoS
 - Feed-down contributions from $\Sigma^0 + \Xi^0 + \Xi^- + \Omega$ negligible for polarization
 - SMASH's global Λ polarization differs significantly from UrQMD's
- Outlook
 - Study the vorticity and polarization dependence of different EoS
 - Investigate the impact of the difference in cross sections between SMASH and UrQMD

Backup Slides

SMASH transport approach Simulating Many Accelerated Strongly-interacting Hadrons

- Effective solution of the relativistic Boltzmann equation $p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$
- Geometrical collision criterion $d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}}$ with d_{trans}^2
- Includes all hadrons from the PDG(2018) up to m ~ 2.35 GeV
- Publicly available at <u>www.smash-transport.github.io</u> DOI 10.5281/zenodo.3484711

J. Weil et al., Phys. Rev. C 94, 054905 (2016)

$$s = (\vec{r}_a - \vec{r}_b)^2 - \frac{((\vec{r}_a - \vec{r}_b) \cdot (\vec{p}_a - \vec{p}_b))^2}{(\vec{p}_a - \vec{p}_b)^2}$$

Global polarization of Λ hyperons

- S[/] • Λ spin 4-vector at space-time point x
- Thermal vorticity $\boldsymbol{\varpi}$
- Λ spin 4-vector in local rest frame
- Average of over all Λ s emitted
- Global polarization

O. Vitiuk et al., Physics Letters B Volume 803, 135298 (2020)

$$S^{\mu}(x,p) = -\frac{1}{8m} \epsilon^{\mu\nu\rho\sigma} p_{\nu} \overline{\varpi}_{\rho\sigma}(x)$$

$$\overline{\varpi}_{\mu\nu} = \frac{1}{2} (\partial_{\nu}\beta_{\mu} - \partial_{\mu}\beta_{\nu}) \quad \text{with } \beta_{\mu} = \frac{u_{\mu}}{T}$$

$$\mathbf{S}^{*}(x,p) = \mathbf{S} - \frac{\mathbf{p} \cdot \mathbf{S}}{E_{p}(m + E_{p})} \cdot \mathbf{p} \quad \text{with } E_{p} = \sqrt{\mathbf{p}^{2} + m^{2}}$$

$$\langle \mathbf{S}^{*} \rangle = \frac{1}{N} \sum_{i=1}^{N} \mathbf{S}^{*}(x_{i}, p_{i})$$

$$P = \frac{\langle \mathbf{S}^{*} \rangle \cdot \mathbf{J}}{|\langle \mathbf{S}^{*} \rangle| \cdot |\mathbf{J}|}$$

P

Global angular momentum in SMASH

- Angular momentum conservation is violated in SMASH (as in all transport approaches)
 - Geometrical collision criterion enables instantaneous interactions over finite distances
 N. Sass et al., Phys. Rev. C 108.4, 044903 (2023)

Geometrical collision criterion
$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}}$$

Angular momentum per octant **Coordinate space**, Au+Au collisions at b = 6 fm and $\sqrt{s_{NN}} = 7.7$ GeV

SMASH-3.0

Angular momentum per octant **Momentum space**, Au+Au collisions at b = 6 fm and $\sqrt{s_{NN}} = 7.7$ GeV

SMASH-3.0

Λ and $\Lambda + \Sigma^0$ emission time evolution Chemical freeze-out

Chemical freeze-out

A and $\overline{\Lambda}$ emission time evolution Chemical vs. kinetic freeze-out

Chemical freeze-out

$\Lambda + \Sigma^0$ and $\bar{\Lambda} + \bar{\Sigma}^0$ emission time evolution Chemical vs. kinetic freeze-out

Chemical freeze-out

Kinetic freeze-out

A and A production yields SMASH vs. UrQMD vs. NA49 experimental data

UrQMD data: H. Petersen et al., arXiv:0805.0567v1 [hep-ph] NA49 data: C. Blume et al., Journal of Physics G: Nuclear and Particle Physics 31.6 (2005), s685

Vorticity in the reaction plane

- SMASH hadron resonance gas EoS A. Schäfer et al., arXiv:2109.08578v1 [hep-ph]
- Au+Au, $\sqrt{s_{NN}} = 7.7$ GeV, b = 6 fm
- Reaction plane: $\overrightarrow{p}_{\text{beam}} \times \overrightarrow{b}$

SMASH-3.0

SMASH settings

- Angular momentum N = 2000:
 - Global Fermi motion frozen, per octant Fermi motion off
- Λ emission time evolution $N = 10^6$
- Vorticity and polarization plots:

•
$$\sqrt{s_{NN}} = 7.7 \text{ GeV } N = 50000, \sqrt{s_N}$$

- Λ rapidity spectra N = 2000
- Fermi motion "frozen" was used if not stated otherwise

$\overline{NN} = 14.5 \text{ GeV} N = 30000$