From IQCD to in-medium Heavy Quark interactions via Deep Learning

Kai Zhou (FIAS, Frankfurt)

With :
Shuzhe Shi, Jiaxing Zhao, Swagato Mukherjee, Pengfei Zhuang
for Advanced Studies

Introduction

Large mass scale : $m_{Q} \gg \Lambda_{Q C D}, T, p$

- Produced via Hard Processes from early stage
- 'Calibrated' QCD Force - HQ interaction

In Vacuum : NR potential (NRQCD), Cornell- like

$$
V(r)=-\frac{\alpha}{r}+\sigma r+B
$$

In Medium : Color Screening , Thermal Width
Laine, et.al, JHEP(2007)

Potential model : Shrödinger Eq.

$$
\hat{H} \psi_{n}=-\frac{\nabla^{2}}{2 m_{\mu}} \psi_{n}+V(r) \psi_{n}=E_{n} \psi_{n}
$$

M. Strickland, et.at., PRC(2015) PRD(2018), PLB(2020)

$$
\left\{\begin{array}{l}
\operatorname{Re}\left[E_{n}\right]=m-2 m_{b} \\
\operatorname{Im}\left[E_{n}\right]=-\Gamma
\end{array}\right.
$$

Potential model : Shrödinger Eq.

$$
\hat{H} \psi_{n}=-\frac{\nabla^{2}}{2 m_{\mu}} \psi_{n}+V(r) \psi_{n}=E_{n} \psi_{n}
$$

$$
V(T, r)=V_{R}(T, r)+i \cdot V_{I}(T, r)
$$

$$
\left\{\begin{array}{l}
\operatorname{Re}\left[E_{n}\right]=m-2 m_{b} \\
\operatorname{Im}\left[E_{n}\right]=-\Gamma
\end{array}\right.
$$

?

QCD measured mass and thermal width for Bottomonium with finite HQ mass

Thermal Width

IQCD measured (color box) m and width and best fit of HTL(open symbol) and DNNs (solid symbol)

HTL from "A. Rothkopf, et.al, ThMQ(2020)"

IQCD measured (color box) m and width and best fit of HTL(open symbol) and DNNs (solid symbol)

New IQCD results cannot be explained by HTL-inspired potential

How to extract potential in a model-independent way ?

Flow chart of HQ potential reconstruction

DNN basic :

Universal Function Approximator

$$
\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right) \quad \vec{x} \rightarrow \vec{y}
$$

$$
\begin{array}{cl}
z_{i}^{(l)}=b_{i}^{(1)}+\sum_{j} W_{\mathrm{i} j}^{(l)} a_{j}^{(l-1)}, & a_{i}^{(l)}=\sigma^{(l)}\left(z_{i}^{(l)}\right) \\
& \quad a^{(N)}=\tilde{y}(x ; \theta)
\end{array}
$$

Gradient Descent for parameter tuning :

$$
\Delta \theta \equiv \theta^{[k+1]}-\theta^{[k]} \sim-\nabla_{\theta} J(\theta)
$$

Cost, e.g. : $J(\theta)=\frac{1}{2} \sum_{x \in \text { data set }}|\widetilde{\mathbf{y}}(\theta, x)-y(x)|^{2}+\frac{\lambda}{2} \theta \cdot \theta$

DNN basic:

Back Propagation for Gradients

$$
\begin{aligned}
& \left.\frac{\partial J}{\partial \theta_{i}}=\sum_{\mathbf{x} \in \text { data set }}(\tilde{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{x})-\mathbf{y}(\mathbf{x})) \cdot \frac{\partial \tilde{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{x})}{\partial \theta_{i}}\right)+\lambda \theta_{i} \\
& Z_{i}^{(l)}=b_{i}^{(1)}+\sum_{j} W_{i j}^{(l)} a_{j}^{(l-1)}, \quad a_{i}^{(l)}=\sigma^{(l)}\left(Z_{i}^{(l)}\right) \\
& \longrightarrow \frac{\partial J}{\partial w_{i j}^{[l]}}=a_{j}^{[l-1]} \frac{\partial J}{\partial Z_{i}^{[l]}}=\frac{\partial J}{\partial b_{i}^{[l]}}=\frac{\partial J}{\partial Z_{i}^{[l]}} \\
& \frac{\partial J}{\partial Z_{i}^{[l]}}=\sigma^{\prime}\left(Z_{i}^{[l]}\right) \sum_{j} W_{j i}^{[l+1]} \frac{\partial J}{\partial Z_{j}^{[l+1]}} \\
& \text { BP }
\end{aligned}
$$

Cost function for 'DNN+ Shrödinger Eq.'

Perturbation treatment for Shrödinger Eq.

$$
\begin{aligned}
& \left(\frac{\widehat{p}^{2}}{2 m}+V(r)\right)\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \\
& \left(\frac{\widehat{p}^{2}}{2 m}+V(r)+\delta V(r)\right)\left|\psi_{i}^{\prime}\right\rangle=\left(E_{i}+\delta E_{i}\right)\left|\psi_{i}^{\prime}\right\rangle
\end{aligned}
$$

$$
\delta E_{i}=\left\langle\psi_{i}\right| \delta V(r)\left|\psi_{i}\right\rangle, \quad\left|\psi_{i}^{\prime}\right\rangle=\left|\psi_{i}\right\rangle+\sum_{j \neq i} \frac{\left\langle\psi_{j}\right| \delta V(r)\left|\psi_{i}\right\rangle}{E_{i}-E_{j}}\left|\psi_{j}\right\rangle .
$$

Hellmann-Feynman theorem
Phys. Rev. (1939)

Perturbation treatment for Shrödinger Eq.

$$
\begin{aligned}
& \left(\frac{\widehat{p}^{2}}{2 m}+V(r)\right)\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \\
& \left(\frac{\widehat{p}^{2}}{2 m}+V(r)+\delta V(r)\right)\left|\psi_{i}^{\prime}\right\rangle=\left(E_{i}+\delta E_{i}\right)\left|\psi_{i}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \begin{array}{l}
\delta m_{i}=\left\langle\psi_{i}\right| \delta V_{R}(r)\left|\psi_{i}\right\rangle, \quad\left|\psi_{i}^{\prime}\right\rangle=\left|\psi_{i}\right\rangle+\sum_{j \neq i} \frac{\left\langle\psi_{j}\right| \delta V(r)\left|\psi_{i}\right\rangle}{E_{i}-E_{j}}\left|\psi_{j}\right\rangle . \\
\delta \Gamma_{i}=-\left\langle\psi_{i}\right| \delta V_{I}(r)\left|\psi_{i}\right\rangle .
\end{array} \\
& \delta V(r)=v \delta\left(r-r_{k}\right), \longleftrightarrow \begin{array}{l}
\frac{\delta m_{i}}{\delta V_{R}(r)}=-\frac{\delta \Gamma_{i}}{\delta V_{I}(r)}=\left|\psi_{i}(r)\right|^{2}, \\
\frac{\delta m_{i}}{\delta V_{I}(r)}=\frac{\delta \Gamma_{i}}{\delta V_{R}(r)}=0 .
\end{array}
\end{aligned}
$$

Gradients for the Cost

$$
\begin{aligned}
& \chi^{2}=\sum_{T, i, j}\left(R_{i j}^{(T)} \Delta m_{T, i} \Delta m_{T, j}+I_{i j}^{(T)} \Delta \Gamma_{T, i} \Delta \Gamma_{T, j} \quad \frac{\partial \chi^{2}}{\partial \theta_{R, n}}=\sum_{T, i, k} \frac{\partial \chi^{2}}{\partial m_{T, i}} \frac{\partial V_{R}\left(T, r_{k}\right)}{\partial \theta_{R, n}}\left|\psi_{i}\left(T, r_{k}\right)\right|^{2} \mathrm{~d} r,\right. \\
& \left.+2 M_{i j}^{(T)} \Delta m_{T, i} \Delta \Gamma_{T, j}\right), \\
& \frac{\partial \chi^{2}}{\partial \theta_{I, n}}=-\sum_{T, i, k} \frac{\partial \chi^{2}}{\partial \Gamma_{T, i}} \frac{\partial V_{I}\left(T, r_{k}\right)}{\partial \theta_{I, n}}\left|\psi_{i}\left(T, r_{k}\right)\right|^{2} \mathrm{~d} r, \\
& \frac{\partial J}{\partial \theta_{R, n}}=\sum_{T, i}\left\{\left[\sum_{k} \frac{\partial V_{R}\left(T, r_{k}\right)}{\partial \theta_{R, n}}\left|\psi_{i}\left(T, r_{k}\right)\right|^{2} \mathrm{~d} r\right] \times\right. \\
& \left.\sum_{j}\left[R_{i, j}^{(T)} \Delta m_{T, j}+M_{i j}^{(T)} \Delta \Gamma_{T, j}\right]\right\}+\lambda \theta_{R, n}, \\
& \frac{\partial J}{\partial \theta_{I, n}}=-\sum_{T, i}\left\{\left[\sum_{k} \frac{\partial V_{I}\left(T, r_{k}\right)}{\partial \theta_{I, n}}\left|\psi_{i}\left(T, r_{k}\right)\right|^{2} \mathrm{~d} r\right] \times\right. \\
& \left.\sum_{j}\left[I_{i, j}^{(T)} \Delta \Gamma_{T, j}+M_{i j}^{(T)} \Delta m_{T, j}\right]\right\}+\lambda \theta_{I, n},
\end{aligned}
$$

Bayesian Inference for Uncertainty Estimation

$\operatorname{Posterior}(\boldsymbol{\theta} \mid$ data $)=N_{0} \exp \left[-\frac{\chi^{2}(\boldsymbol{\theta})}{2}-\frac{\lambda}{2} \boldsymbol{\theta} \cdot \boldsymbol{\theta}\right]$
Sample potentials $\sim P\left(V_{\boldsymbol{\theta}}(T, r)\right)=\operatorname{Posterior}(\boldsymbol{\theta} \mid$ data $)$.
Reference Sampler \(\sim \begin{array}{r}\widetilde{P}(\boldsymbol{\theta})=(2 \pi)^{-N_{\theta} / 2} \sqrt{\operatorname{det}\left[\Sigma^{-1}\right]} \times

\exp \left[-\frac{\Sigma_{a b}^{-1}}{2}\left(\theta_{a}-\theta_{a}^{opt}\right)\left(\theta_{b}-\theta_{b}^{opt}\right)\right]\end{array}\)| $\Sigma_{a b}^{-1} \equiv \frac{\partial^{2} J(\boldsymbol{\theta})}{\partial \theta_{a} \partial \theta_{b}}$ |
| :--- |

re-weighting with :
$\omega(\theta)=p\left(V_{\theta}(T, r)\right) / \tilde{p}(\theta)$ to grantee posterior sampling

Vacuum potential \& B-quark mass Calibration

CornellPotential

$$
V(r)=-\frac{\alpha}{r}+\sigma r+B
$$

$$
m_{b}=6.00 \mathrm{GeV} \quad \alpha=0.406
$$

$$
\sigma=0.221 \mathrm{GeV}^{2} \quad B=-2.53 \mathrm{GeV}
$$

	1 S	2 S	3 S	1 P	2 P
experiment (MeV)	9445	10017	10352	9891	10254
model (MeV)	9449	10003	10356	9893	10258
difference (MeV)	+4	-14	+4	+2	+4

Proof of Concept :

limited spectrum $\left\{\mathrm{En}^{\text {\} }}\right.$ to continuous interaction $\mathrm{V}(\mathrm{r})$?

Proof of Concept :

limited spectrum \{ En \} to continuous interaction $\mathrm{V}(\mathrm{r})$?

Learn $\mathrm{V}(\mathrm{r})$ from 5 eigenvalues: $\left\{E_{n}\right\}=\{3 / 2,7 / 2,11 / 2,15 / 12,19 / 2\} \mathrm{GeV}$

Proof of Concept :

limited spectrum \{ En \} to continuous interaction $\mathrm{V}(\mathrm{r})$?

Closure Test

$$
\begin{aligned}
V_{R}(T, r)= & \frac{\sigma}{\mu_{D}}\left(2-\left(2+\mu_{D} r\right) e^{-\mu_{D} r}\right) \\
& -\alpha\left(\mu_{D}+\frac{e^{-\mu_{D} r}}{r}\right)+B, \\
V_{I}(T, r)= & -\frac{\sqrt{\pi}}{4} \mu_{D} T \sigma r^{3} G_{2,4}^{2,2}\left(\left.\begin{array}{l}
-\frac{1}{2},,-\frac{1}{2},-\frac{3}{2},-1
\end{array} \right\rvert\, \frac{\mu_{D}^{2} r^{2}}{4}\right) \\
& -\alpha T \phi\left(\mu_{D} r\right),
\end{aligned}
$$

$$
\left\{\begin{array}{l}
-\alpha T \phi\left(\mu_{D} r\right) \\
{\left[\begin{array}{l}
m_{b}=4.676 \mathrm{GeV}, \alpha=0.39 \\
\sigma=0.223 \mathrm{GeV}^{2}, B=0 \mathrm{GeV} \\
\text { assume that } \mu_{D}(T)=T / 2
\end{array} .\right.}
\end{array}\right.
$$

Provide mass and width of

$1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}, 1 \mathrm{P}$, and 2 P states. @ (0, 151, 173, 199, 251, 334) MeV

Best fit of IQCD measured mass and width from : HTL(open symbols) and DNNs (solid symbols)

Chi2-per-data $=16.5 / 30 \quad \mathrm{~T}(\mathrm{MeV})$

Consistency Check : with different parameterization

1, DNN(2D):

T \& r dependency

2, DNN(1D):

only r dependency
3, Polynomial :

$$
\begin{aligned}
& V_{R}(r)=\sum_{i=-1}^{3} c_{R, i} r^{i}, \\
& V_{I}(r)=-\sum_{i=1}^{3} c_{I, i} r^{i} .
\end{aligned}
$$

The reconstructed (B) interaction potentials

Unconventional in-medium behavior

- Traditional picture,
V \& F show platform at large r, and decrease in height with increase T , So : binding energy decrease, average size increase, until a melting Temperature
- New picture,

Im[V] induced thermal width are so significant (continuous dynamic dissociation), its enhancement compensates the vanishing of the melting effect (mild T -dependence of $\mathrm{Re}[\mathrm{V}]$)

Summary

- Bias-free HQ complex interaction is reconstructed from our novel methodology 'NN+perterb.+Bayesian'
- Both T and r dependence of the interaction potential are captured via network representation
- We found mild T-dependent screening effect for Re[V], while the strength of the Im[V] increases significantly with T
- Color Screening melting to

Continuous dynamic dissociation

von lattice QCD
 nach in-medium heavy-quark interactions über deep learning

Kai Zhou (FIAS, Frankfurt)

With :
Shuzhe Shi, Jiaxing Zhao, Swagato Mukherjee, Pengfei Zhuang
Ticket \# : arXiv:2105.07862

