Deep Learning Stochastic Process with QCD Phase Transition

Speaker: Lingxiao Wang (FIAS)

With: Lijia Jiang (Northwest Uni. and FIAS) and Kai Zhou (FIAS)

Phys. Rev. D 103, 116023 (2021)

15 July, 2021 Transport Meeting
Main Content
Deep Learning Meets Physics

• Background
 • QCD phase transition
 • Deep learning in physics

• Deep Learning Dynamics
 • Understanding stochastic processes as images
 • Recognizing phase transition orders
 • Learning dynamical parameters

• Summary
Background
Phase Transition

Critical Point

- **QCD Phase Structures**
 - Chiral symmetry restoration
 - Deconfinement
 - Finite chemical potential μ_B, μ_I, B, ω

- **Searching Critical End Point**
 - Theoretical calculations: (P)NJL, QM, FRG, DSE, etc
 - Lattice calculations
 - Experiments: BES

A schematic QCD phase diagram

A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu, Physics Reports (2020).
Stochastic Process

Criticality

• Along the freeze-out surface
 • Critical fluctuations
 • Statistical fluctuations
 • Dynamical critical fluctuations?

 • Memory effects from dynamical evolution
 • The Skewness and Kurtosis of the high order cumulants could be different from the equilibrated

• With Deep Learning
 • Detecting phase transition
 • Extracting dynamical information

 … in stochastic processes

QCD phase diagram from the linear sigma model with constituent quarks

from Swagato’s talk @201509, Kobe
Deep Learning
AI in Physics

• Classify phases

• Predict properties/signals

• Innovate computation

• New developments

Deep Learning

AI in High Energy Nuclear Physics

- **White Paper**

- **Experiments**

- **Lattice calculations**

 - From lattice QCD to in-medium heavy-quark interactions via deep learning
 Kai Zhou 24 June, *Transport Meeting 2021*

- **New Developments**

 - Compact stars
 - Phase structures
 - Dynamical processes

- **Recognizing QCD Phase Transitions**

 \[\rho(p_T, \Phi) \]

 Cross-over ?

 1st order phase transition

Deep Learning
Critical Dynamics
Problem Set-Up
Stochastics Process

- **QCD phase transition in Langevin equation**

\[
\mathcal{L} = \bar{q} \left[i\gamma^\mu \partial_\mu - g \left(\sigma + i\gamma_5 \vec{\tau} \cdot \vec{\pi} \right) + \gamma_0 \mu \right] q \\
+ \frac{1}{2} \left(\partial_\mu \sigma \partial_\mu \sigma + \partial_\mu \vec{\pi} \cdot \partial_\mu \vec{\pi} \right) - U(\sigma, \pi)
\]

\[V_{\text{eff}}(\sigma) = U(\sigma) + \Omega_{\bar{q}q}(\sigma; T, \mu)\]

\[U(\sigma) = \frac{1}{4} \lambda^2 \left(\sigma^2 - v^2 \right)^2 - \frac{h}{2} \sigma - U_0\]

\[\Omega_{\bar{q}q}(\sigma; T, \mu) = -d_q \int \frac{d^3 p}{(2\pi)^3} \left\{ E + T \ln \left[1 + e^{-(E-\mu)/T} \right] + T \ln \left(1 + e^{-(E+\mu)/T} \right) \right\}\]

\[\frac{T(t)}{T_0} = \left(\frac{t}{t_0} \right)^{-0.45}\]

\[\langle \xi(t)\xi(t') \rangle = \frac{1}{V} m_\sigma \eta \coth \left(\frac{m_\sigma}{2T} \right) \delta(t-t')\]

\[\xi(x) = B \sqrt{\frac{1}{V} m_\sigma \eta \coth \left(\frac{m_\sigma}{2T} \right)} \frac{1}{dt} G(x)\]

- **Flucuations**

Linear Sigma Model
Effective potential
Hubble-like

\[-2E8\]

\[-3E8\]

\[-1.6E8\]

\[-1.8E8\]

\[
\begin{align*}
T & \quad [\text{MeV}] \\
\mu & \quad [\text{MeV}] \\
\sigma & \quad [\text{MeV}] \\
\end{align*}
\]

\[
\begin{align*}
T & = T_c & \text{first-order} \\
T > T_c & \text{crossover} \\
T < T_c & \text{1st order}
\end{align*}
\]
Problem Set-Up

Stochastics Process

• QCD phase transition in Langevin equation

\[\mathcal{L} = \bar{q} \left[i \gamma^\mu \partial_\mu - g \left(\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi} \right) + \gamma_0 \mu \right] q + \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \vec{\pi} \partial^\mu \vec{\pi} \right) - U(\sigma, \pi) \]

\[V_{\text{eff}}(\sigma) = U(\sigma) + \Omega_{\bar{q}q}(\sigma; T, \mu) \]

\[U(\sigma) = \frac{1}{4} \sigma^2 \left(\sigma^2 - v^2 \right)^2 - h \sigma - U_0 \]

\[\Omega_{\bar{q}q}(\sigma; T, \mu) = - d_\mu \int \frac{d^3 p}{(2\pi)^3} \left\{ E + T \ln \left[1 + e^{-(E-\mu)/T} \right] + T \ln \left[1 + e^{-(E+\mu)/T} \right] \right\} \]

\[\frac{T(t)}{T_0} = \left(\frac{t}{t_0} \right)^{-0.45} \]

\[\langle \xi(t) \xi(t') \rangle = \frac{1}{V m_\sigma \eta} \coth \left(\frac{m_\sigma}{2T} \right) \delta(t - t') \]

\[\xi(x) = B \sqrt{\frac{1}{V m_\sigma \eta} \coth \left(\frac{m_\sigma}{2T} \right) \frac{1}{dt} G(x)} \]

\[\text{Sigma configurations} \]

\[\text{Effective potential} \]

\[\text{Hubble-like} \]

\[\text{Linear Sigma Model} \]
Problem Set-Up

Stochastics Processes as Images

• Preparing configurations
 • Initial profiles sample with
 \[P[\sigma(x)] \sim \exp(-\varepsilon(\sigma)/T) \]
 \[\varepsilon(\sigma) = \int dx \left[\frac{1}{2}(\nabla \sigma(x))^2 + V_{\text{eff}}(\sigma(x)) \right] \]
 • Simulated 10,000 events at each parameter
 • \(\mu = 180 \text{ MeV} \) as “cross-over”
 • \(\mu = 240 \text{ MeV} \) as “1st order”
 • \(B = 0.5, 1 \)
 • Compressing \(\sigma(x, t) \) as images
 • \(dx = 0.2 \text{ fm}, dt = 0.1 \text{ fm/c} \)
 • \(L = 6.0 \text{ fm}, t \text{ in } [7, 11] \text{ fm/c} \)
 • \(N_t \times N_x = 40 \times 30 = 1200 \text{ pixels} \)
Neural Networks

Deep CNNs

- Compressing $\sigma(x, t)$ as images
 - $N_t \times N_x = 40 \times 30 = 1200$ pixels
 - Data-sets: 8:2 = training: validation

- Architecture
 - Inputs: $\sigma(x, t)$ configurations
 - 3 CNNs
 - 1 Fully-Connected layer
 - Outputs: 0,1 / damping coefficient η

- Loss function
 - Categorical cross entropy
 \[
 \text{loss} = - \sum_{i=1}^{C} y_i \log f_i(x)
 \]
 - Mean Square Error
Recognition
Phase Transition Orders

- **Fluctuations**

\[\xi(x) = B \sqrt{\frac{1}{V} m_{\eta} \eta \coth \left(\frac{m_x}{2T} \right) \frac{1}{dt} G(x)} \]

- **Training**
 - \(B = 0.5, 1 \)
 - Reaching saturation without over-fitting

- **Testing**
 - \(B = 0.5, 1, 1.5, 2, 2.5 \)
 - Accurate on low-noise configurations
 - Robust to the noises
Recognition

Phase Transition Orders

- **Training**
 - $B = 0.5, 1$

- **Testing**
 - $B = 0.5, 1, 1.5, 2, 2.5$
 - Accurate on low-noise configurations
 - Robust to the noises
 - Recognizing the phase transition orders on the spatial-temporal configurations
 - with spatial and initial fluctuations
Learning Dynamics

Damping Coefficients

• Training
 - $L = 6.0 \text{ fm}$, t in $[12, 16] \text{ fm/c}$
 - $N_t \times N_x = 50 \times 30 = 1500$ pixels
 - $\eta = (1.0 - 2.5), (4.6 - 5.5) \text{ fm}^{-1}$
 - $d \eta = 0.1 \text{ fm}^{-1}$
 - 1000 events in each bin

\[R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \]
\[SS_{res} = \sum_i \left(\eta_i, \text{truth} - \bar{\eta}_{\text{truth}} \right) \]
\[SS_{tot} = \sum_i \left(\eta_i, \text{truth} - \eta_i, \text{pred} \right) \]

• Testing
 - Ground truth vs Predictions
 - $\eta = (2.6 - 4.5) \text{ fm}^{-1}$
Learning Dynamics

Damping Coefficients

• Training
 • $\eta = (1.0 - 2.5), (4.6 - 5.5) \text{ fm}^{-1}$
 • $d\eta = 0.1 \text{ fm}^{-1}$
 • 1000 events in each bin

\[R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \]

• Testing
 • Ground truth vs Predictions
 • $\eta = (2.6 - 4.5) \text{ fm}^{-1}$
 • Learning dynamics of stochastic processes from configurations driven by the damping coefficient
Summary
Summary and Outlooks

• Take-home messages
 • Treat time-series as images
 • Learn dynamics from a stochastic process
 • The phase transition informations are encoded in the latent stage

• Related works
 • Detecting CME
 • from Pion Spectra
 • as a CME-meter
 • validated in AuAu and ZrZr, RuRu collision systems

Yuan-Sheng Zhao, Lingxiao Wang, Kai Zhou, Xu-Guang Huang, ArXiv:2105.13761
• **Take-home messages**
 - Treat time-series as images
 - Learn dynamics from a stochastic process
 - The phase transition informations are encoded in the latent stage

• **Future works**
 - 2+1D Langevin equation
 - Preparing $\sigma(x, y, t)$
 - Conv3D layers
 - Track dynamics with Generative Models
Future

AI in Physics, opportunities and challenges