Photon Production from a Medium-Induced Parton Cascade

Jannis Gebhard

gebhard@fias.uni-frankfurt.de

supervised by

Prof. Dr. Hannah Elfner & Dr. Oscar Garcia-Montero

20.05.2021

Contents

1 Motivation **2** Parton Evolution **3** Photon Rates 4 Summary and Outlook

General Motivation

• Learning about the Quark-Gluon-Plasma (QGP) + QCD phase diagram

> Production of back-to-back partons with high- p_T (jet)

Altered jet structure and energy due to propagation through QGP (jet quenching)

Figure from C.S. Fischer, Progress in Particle and Nuclear Physics 105 (2019)

In-Medium Jet Fragmentation

QCD medium

In-Medium Jet Fragmentation

QCD medium

Photons from Jet-Medium Interactions

QCD medium

photon

- interact only electromagnetically
- mean free path > typical size of the medium

• photons are produced by interactions of jet partons with medium partons

Parton Evolution

Y. Mehtar-Tani and S. Schlichting (2018). "Universal quark to gluon ratio in medium-induced parton cascade" [arXiv:1807.06181v1]

• Boltzmann equation

$$\left(\partial_t + \frac{\vec{p}}{|\vec{p}|} \boldsymbol{\nabla}_{\vec{r}}\right) f_a(t, \vec{r}, \vec{p}) = \left(\frac{\partial f_a}{\partial t}\right)_{coll} \equiv C_a[\{f_i\}]$$

• Include jet partons as a linearized perturbation

$$f_a(t, \vec{r}, \vec{p}) = n_a(|\vec{p}|) + \delta f_a(t, \vec{r}, \vec{p})$$

thermal jet

Evolution Equations

• Valid in LPM regime ($T \ll E \ll E_{jet}$) and infinitely large medium

with

$$\partial_t D_g(x,t) = \frac{1}{\bar{t}_{br}(E_{jet})} \left(\int_0^1 \mathrm{d}z \; \mathcal{K}_{gg}(z) \left[\sqrt{\frac{z}{x}} D_g\left(\frac{x}{z}\right) - \frac{z}{\sqrt{x}} D_g(x) \right] + \int_0^1 \mathrm{d}z \; \mathcal{K}_{gq}(z) \sqrt{\frac{z}{x}} D_S\left(\frac{x}{z}\right) - \int_0^1 \mathrm{d}z \; \mathcal{K}_{qg}(z) \frac{z}{\sqrt{x}} D_g(x) \right)$$
$$\partial_t D_S(x,t) = \frac{1}{\bar{t}_{br}(E_{jet})} \left(\int_0^1 \mathrm{d}z \; \mathcal{K}_{qq}(z) \left[\sqrt{\frac{z}{x}} D_S\left(\frac{x}{z}\right) - \frac{1}{\sqrt{x}} D_S(x) \right] + \int_0^1 \mathrm{d}z \; \mathcal{K}_{qg}(z) \sqrt{\frac{z}{x}} D_g\left(\frac{x}{z}\right) \right)$$
$$\partial_t D_{NS}^{(a)}(x,t) = \frac{1}{\bar{t}_{br}(E_{jet})} \int_0^1 \mathrm{d}z \; \mathcal{K}_{qq}(z) \left[\sqrt{\frac{z}{x}} D_{NS}^{(a)}\left(\frac{x}{z}\right) - \frac{1}{\sqrt{x}} D_{NS}^{(a)}(x) \right]$$

$$D_a(t,x) = x \frac{\mathrm{d}N_a}{\mathrm{d}x}$$

$$\bar{t}_{br}(E) \equiv \frac{\pi}{\alpha_s} \sqrt{\frac{C_{R,jet} E}{\hat{q}}}$$

£

Y. Mehtar-Tani and S. Schlichting, JHEP 09 (2018)

Evolution Equations

• Valid in LPM regime ($T \ll E \ll E_{jet}$) and infinitely large medium

$$\partial_t D_g(x,t) = \frac{1}{\overline{t}_{br}(E_{jet})} \left(\int_0^1 \mathrm{d}z \, \mathcal{K}_{gg}(z) \left[\sqrt{\frac{z}{x}} D_g\left(\frac{x}{z}\right) - \frac{z}{\sqrt{x}} D_g(x) \right] + \int_0^1 \mathrm{d}z \, \mathcal{K}_{gq}(z) \sqrt{\frac{z}{x}} D_S\left(\frac{x}{z}\right) - \int_0^1 \mathrm{d}z \, \mathcal{K}_{qg}(z) \frac{z}{\sqrt{x}} D_g(x) \right)$$

$$\partial_t D_S(x,t) = \frac{1}{\overline{t}_{br}(E_{jet})} \left(\int_0^1 \mathrm{d}z \, \mathcal{K}_{qq}(z) \left[\sqrt{\frac{z}{x}} D_S\left(\frac{x}{z}\right) - \frac{1}{\sqrt{x}} D_S(x) \right] + \int_0^1 \mathrm{d}z \, \mathcal{K}_{qg}(z) \sqrt{\frac{z}{x}} D_g\left(\frac{x}{z}\right) \right)$$

$$\partial_t D_{NS}^{(a)}(x,t) = \frac{1}{\overline{t}_{br}(E_{jet})} \int_0^1 \mathrm{d}z \, \mathcal{K}_{qq}(z) \left[\sqrt{\frac{z}{x}} D_{NS}^{(a)}\left(\frac{x}{z}\right) - \frac{1}{\sqrt{x}} D_{NS}^{(a)}(x) \right]$$

Inelastic collisions and ra
$$1 \leftrightarrow 2$$
 processes: $g \leftarrow 1$

adiative emissions (LPM suppressed)

 $\rightarrow gg, g \leftrightarrow q\bar{q}, q \leftrightarrow gq \text{ and } \bar{q} \leftrightarrow g\bar{q}$

- Early peak at high parton energies ($x \sim 1$)
- Power-law dependent energy flow towards smaller energies
- Rising distributions (x < 1) until $\xi \sim 0.2$

Photon Production

• General kinetic production rate:

$$E_{\gamma} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}t \, \mathrm{d}^3 r \, \mathrm{d}^3 p_{\gamma}} = \frac{1}{2(2\pi)^8} \int \frac{\mathrm{d}^3 p_1}{2E_1} \frac{\mathrm{d}^3 p_2}{2E_2} \frac{\mathrm{d}^3 p_3}{2E_3} \, \delta^4(P_1 + P_2) \, \delta^4(P_2) + \delta^4(P_2) \, \delta^4$$

• General kinetic production rate:

$$E_{\gamma} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}t \, \mathrm{d}^3 r \, \mathrm{d}^3 p_{\gamma}} = \frac{1}{2(2\pi)^8} \int \frac{\mathrm{d}^3 p_1}{2E_1} \frac{\mathrm{d}^3 p_2}{2E_2} \frac{\mathrm{d}^3 p_3}{2E_3} \, \delta^4(P_1 + P_2) \, \delta^4(P_2) + \delta^4(P_2) \, \delta^4(P_2) \, \delta^4(P_2) + \delta^4(P_2) \, \delta^4(P_2) \, \delta^4(P_2) + \delta^4(P_2) \, \delta^4$$

$$f_a(t, \vec{r}, \vec{p}) = n_a(|\vec{p}|) + \delta f_a(t, \vec{r}, \vec{p})$$

thermal jet

Keeping only terms of order $\mathcal{O}(\delta f)$

• General kinetic production rate:

$$E_{\gamma} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}t \, \mathrm{d}^{3}r \, \mathrm{d}^{3}p_{\gamma}} = \frac{1}{2(2\pi)^{8}} \int \frac{\mathrm{d}^{3}p_{1}}{2E_{1}} \frac{\mathrm{d}^{3}p_{2}}{2E_{2}} \frac{\mathrm{d}^{3}p_{3}}{2E_{3}} \delta^{4}(P_{1}+P_{2}-P_{3}-P_{\gamma}) |\mathcal{M}(P_{1},P_{2},P_{3},P_{\gamma})|^{2} f_{1}(P_{1}) f_{2}(P_{2}) \left(1 \pm f_{3}(P_{3})\right)$$

Included processes: 2 <-> 2 scatterings

pair annihilation

Compton scattering (quarks)

Compton scattering (antiquarks)

Static Medium

• low E_{γ} (< 5 GeV) thermally

dominated

- Power law dependence for 5 GeV < E_{γ} < E_{jet}
- High- E_{γ} peak at $\sim E_{jet}$ for early times
- At first rising rates

($E_{\gamma} < E_{jet}$) followed by

decreasing rates

Static Medium Quark jet vs Gluon jet

- Absence of initial high- E_{γ} peak
- Due to Compton scattering
- Slower decrease

Static Medium Jet energy comparison

Photon rates for jets with less energy decrease faster

Static Medium Medium temperature comparison

- Width of thermally dominated region bigger for higher *T*
- Initially higher photon
 production for higher T over
 all energy scales
- Photon rates for media with higher *T* decrease faster

Dynamical Evolution Bjorken expansion

- 1D Bjorken expanding medium
- Time-dependent medium temperature:

$$T(\tau) =$$

• Series of adiabatic temperature changes

 $T_{init} \left(\frac{\tau_{init}}{\tau}\right)^{1/3}$

Expanding Medium

- At earlier times, photon rates of the static medium are higher
 - Higher thermal contributions
 - Faster rise for smaller t
- Higher T imply faster
 - decrease

Rates for static medium smaller for bigger *t*

Summary

- Correlation of signatures of parton evolution and photon spectra:
 - power law dependence (energy flux)
 - peak at high energies
- Prediction of absence of high- E_{γ} peak for quark jet
- Analysis of how the photon spectrum depends on E_{iet} and T
- First improvement by introducing a Bjorken expanding medium

Outlook

× Further expanding the model - integrating rates over time - folding with distribution of jet production in HIC Including near-collinear bremsstrahlung X

Backup Slides

Collision Terms

Parton evolution equation

 $\partial_t D_a(t, x)$

$$C_{g}[\{D_{i}\}] = \int_{0}^{1} dz \left(\frac{d\Gamma_{gg}^{g}\left(\frac{xE_{jet}}{z}, z\right)}{dz} D_{g}\left(\frac{x}{z}\right) - \frac{1}{2} \frac{d\Gamma_{gg}^{g}\left(xE_{jet}, z\right)}{dz} D_{g}(x) \right) - \int_{0}^{1} dz \frac{1}{2} \frac{d\Gamma_{q\bar{q}}^{g}\left(xE_{jet}, z\right)}{dz} D_{g}(x) + \int_{0}^{1} dz \frac{d\Gamma_{gq}^{q}\left(\frac{xE_{jet}}{z}, z\right)}{dz} D_{S}\left(\frac{x}{z}\right) \\ C_{S}[\{D_{i}\}] = \int_{0}^{1} dz \left(\frac{d\Gamma_{gq}^{q}\left(\frac{xE_{jet}}{z}, 1-z\right)}{dz} D_{S}\left(\frac{x}{z}\right) - \frac{d\Gamma_{gq}^{q}\left(xE_{jet}, z\right)}{dz} D_{S}(x) \right) + \int_{0}^{1} dz \frac{d\Gamma_{q\bar{q}}^{g}\left(\frac{xE_{jet}}{z}, z\right)}{dz} D_{g}\left(\frac{x}{z}\right) \\ C_{NS}[\{D_{i}\}] = \int_{0}^{1} dz \left(\frac{d\Gamma_{gq}^{q}\left(\frac{xE_{jet}}{z}, 1-z\right)}{dz} D_{NS}\left(\frac{x}{z}\right) - \frac{d\Gamma_{gq}^{q}\left(xE_{jet}, z\right)}{dz} D_{NS}(x) \right) + \int_{0}^{1} dz \frac{d\Gamma_{q\bar{q}}^{g}\left(\frac{xE_{jet}}{z}, z\right)}{dz} D_{g}\left(\frac{x}{z}\right) \\ C_{NS}[\{D_{i}\}] = \int_{0}^{1} dz \left(\frac{d\Gamma_{gq}^{q}\left(\frac{xE_{jet}}{z}, 1-z\right)}{dz} D_{NS}\left(\frac{x}{z}\right) - \frac{d\Gamma_{gq}^{q}\left(xE_{jet}, z\right)}{dz} D_{NS}(x) \right)$$

$$C_{a}[\{D_{i}\}]$$
 where:

S. Schlichting and I. Soudi, arXiv:2008.04928 [hep-ph] (2020)

Collision Terms

Splitting rates:

$$\frac{\mathrm{d}\Gamma_{gg}^{g}\left(xE_{jet},z\right)}{\mathrm{d}z} \simeq \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} \mathcal{K}_{gg}(z) = \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} C_{A} \frac{\left(1-z(1-z)\right)^{2}}{z(1-z)} \sqrt{\frac{(1-z)C_{A}+z^{2}C_{A}}{z(1-z)}}$$

$$\frac{\mathrm{d}\Gamma_{q\bar{q}}^{g}\left(xE_{jet},z\right)}{\mathrm{d}z} \simeq \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} \mathcal{K}_{qg}(z) = \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} N_{f}T_{F}\left(z^{2}+(1-z)^{2}\right) \sqrt{\frac{C_{F}-z(1-z)C_{A}}{z(1-z)}}$$

$$\frac{\mathrm{d}\Gamma_{gq}^{q}\left(xE_{jet},z\right)}{\mathrm{d}z} \simeq \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} \mathcal{K}_{gq}(z) = \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} \frac{C_{F}}{2} \frac{1+(1-z)^{2}}{z} \sqrt{\frac{(1-z)C_{A}+z^{2}C_{F}}{z(1-z)}}$$

$$\frac{\mathrm{d}\Gamma_{gq}^{q}\left(xE_{jet},1-z\right)}{\mathrm{d}z} \simeq \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} \mathcal{K}_{qq}(z) = \frac{1}{\bar{t}_{br}(E_{jet})\sqrt{x}} \mathcal{K}_{gq}(1-z)$$

Y. Mehtar-Tani and S. Schlichting, JHEP 09 (2018) S. Schlichting and I. Soudi, arXiv:2008.04928 [hep-ph] (2020)

Photon Production Integral

Squared Amplitudes:

$$|\mathcal{M}_{anni}|^2 = \frac{64}{3} 16\pi^2 \alpha_{em} \alpha_s \frac{u^2 + t^2}{ut}$$

Expression summed over all processes m and terms of order $O(\delta f_i)$

$$E_{\gamma} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}t \,\mathrm{d}^{3}p_{\gamma}} = \frac{1}{2(2\pi)^{8}} \int \frac{\mathrm{d}^{3}p_{1}}{2E_{1}} \frac{\mathrm{d}^{3}p_{2}}{2E_{2}} \frac{\mathrm{d}^{3}p_{3}}{2E_{3}} \,\delta^{4}(P_{1}+P_{2}-P_{3}-P_{\gamma}) \sum_{m} \left[|\mathcal{M}_{m}(P_{1},P_{2},P_{3},P_{\gamma})|^{2} \times \left(n_{1}(|\vec{p_{1}}|)n_{2}(|\vec{p_{2}}|)\delta\bar{f}_{3}(t,\vec{r},\vec{p}) + n_{1}(|\vec{p_{1}}|)\delta\bar{f}_{2}(t,\vec{r},\vec{p}) \left(1 \pm n_{3}(|\vec{p_{3}}|)\right) + \delta\bar{f}_{1}(t,\vec{r},\vec{p})n_{2}(|\vec{p_{3}}|) \right) \right]$$

$$|\mathcal{M}_{Comp}|^2 = \frac{128}{3} 16\pi^2 \alpha_{em} \alpha_s \frac{u^2 + s^2}{-us}$$

 $ec{p_2}|)\,(1\pm n_3(|ec{p_3}|)$

Comparison Annihilation and Compton

Static Medium Parton Distributions different *T*

