
git
An Introduction

What is it?
Why should you use it?

How does it work?

25.04.19

Jan Staudenmaier
Software Development Center Z02

!2

What is it?
“Git is a free and open source distributed version

control system, which is fast and efficient.“
- Git Homepage

distributed centralized

http://thepilcrow.net/explaining-basic-concepts-git-and-github/

• Version control system = tracks versions of files

e.g. source code, LaTeX thesis, paper or talk, website html, etc.
(Rule of thumb: Everything you edit in text editors)

• Distributed = everyone has a full local copy of the repository

!3

Why
should
you use

it?

!4

Why should you use it?

It helps you!

• Transparent history of all changes

• Moving back and forth in time

• Everything is easily traceable and reversible (e.g. errors)

Good scientific practices:

• Reproducibility and traceability

• Enables collaboration

!5

How does it work?

• Repository = database containing all
versions of the files

• Snapshot-based system

• Snapshots are called commits

• Commits are named by checksums
(also used to ensure data integrity)

• Almost every operation is local

• Working without network connecting

• Distributed system
(everyone carries a backup)

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

!6

How does it work?

also staging area

4 distinct places

local

Manually synced copies of
all committed versions of

all project files

All of your

(to be) edited
project files

For now: All changes go
here first

(Later: Helps disentangling
changes)

!7

How does it work?

(Not discussed)

diff --staged

also staging area

status

log

Don’t Panic

This is an
introduction.

It is worth it.

• Overview of most
common commands

• Most common use by
command line

!8

Gist of this Introduction

1. The basic workflow: Set up a local repository
and save changes to it
—> Exercise 1

2. Branches: Work on different features in parallel
—> Exercise 2

3. Basic interactions with a remote repository

Command by command

!9

Notation

what follows are commands to be entered on the command

line e.g. $ $ git log

 <…> marks names and other variables that change during

use e.g. $ git branch <branch_name>

Tips for more advanced user will be in green
boxes

Advanced:

!10

 $ git help

 $ git help <command>

 $ git <command> --help

 $ man git-<command>

Get help for any command

Works offline!

Installation: Good changes it is already installed, if not [Link]

https://git-scm.com/book/en/v1/Getting-Started-Installing-Git

!11

Commands

config
init
status
add

commit
diff
log

branch
checkout
merge

clone
push
pull

!12

 $ git config

 $ git config --global user.name <your_name>
 $ git config --global user.email <your_email>

Before doing anything else: Identify yourself

Make sure this is consistent across all your machines

Aliases

„Did you mean?“

Advanced:

 $ git config --global help.autocorrect 10

 $ git config --global alias.st „status“Make your life easier:

Set up tab completion

[Link]

https://git-scm.com/book/en/v1/Git-Basics-Tips-and-Tricks

 $ git init

!13

$ git init
Initialized empty Git repository in /path/to/
example_repo/.git/

Initalizing a empty (local) Git repository

Adds a hidden .git directory, where git stores all of its
information

Git only uses relative paths (source directory can be moved
freely)

!14

 $ git status

Display status information of working directory and staging area

$ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 hello.cpp

nothing added to commit but untracked files present
(use "git add" to track)

(Output for a newly initialized repo with one new file hello.cpp)

!15

 $ git add

Adding changes to the staging area

 $ git add <file_name>

 $ git add <directory_name>
Adds all changes of all files in the directory to the staging area.

Adds all changes of a file to the staging
area

You can also add only specific changes to a
file (so called hunks) to the staging area.

Ignore certain files with .gitignore [Link]

Advanced:

 $ git add -p <file_name>

https://www.atlassian.com/git/tutorials/saving-changes/gitignore

!16

 $ git commit

Committing staged changes to your repository

 $ git commit
External text editor (most likely vi) will
open and ask for a commit message

Invest in good commit messages!

• Subject line + body (Follow 50/72 rule [Link])

• Write them like a email to yourself / the other developers

• Document why you made the changes

Don’t like vi: $ git config --global core.editor „nano“

Good commits are small and often, conceptually separated,
 only include source files & at best working code

https://medium.com/@preslavrachev/what-s-with-the-50-72-rule-8a906f61f09c

!17

 $ git diff

Display changes to your tracked files

 $ git diff

To be precise: Differences between working directory
and staging area ➡ only unstaged changes

Helpful to inspect what you have done

!18

 $ git log

Display history of your commits

 $ git log

See the last changes that were made

including the commit message (at least per default)

!19

Exercise 1

config
init
status
add

commit
diff
log

branch
checkout
merge

Solutions

can be found at the

end of the slides

!20

Exercise 1
1. Configure your git setup by setting your name and mail address.

If you done that, check the .gitconfig file in your home
directory.

2. Create a new directory and initialize an empty git repository in it.

3. Create a simple sample code file in the directory and commit it.

4. Modify the sample code file and commit the changes. Check the
changes first.

5. Look at the commit history you created.

Optional: If you currently work on a "code" project (remember, this also might e.g. be a LaTeX paper
project), repeat step 2 and 3 and make it git repository. Instead of creating a sample file, you just

commit your source files. Do not worry, your project files will remain untouched by this. The next time
you change your project files, just commit your changes (step 4 and 5). Just continue to repeat step 4
and 5 every time you work on your project and you will have already mastered the main git workflow.

!21

Basic Workflow

WORK

git status / git diff

git add

git commit

!22

 $ git commit -a

Directly commit unstaged changes

 $ git commit -a

Shortcut for

What is the purpose of the staging area?

• Allows to only commit part of your changes (Assemble
your commit to your liking)

• Split changes across commits

• Also other use cases e.g. for reviewing your changes, …

 $ git add -u
 $ git commit

Stage all changes to
tracked files at once

Advanced:

 $ git add -u

!23

Commands

config
init
status
add

commit
diff
log

branch
checkout
merge

clone
push
pull

!24

Branches
• Branches store different versions of your project

• Parallel development

• Implement new features

• Fix bugs

• Try out something

• Cheap to do in git

 (technically just pointers to a commit)

• Main branch = master

• By default created at initialization

• Usually development is done on other (feature) branches

https://www.atlassian.com/git/tutorials/using-branches

!25

 $ git branch

Create new branch

 $ git branch <branch_name>

List all branches of local repository

 $ git branch

Delete branch

 $ git branch -d <branch_name>
Save option to delete a branch, since it prevents data loss
 $ git branch -D <branch_name>
Use CAREFULLY! Be sure you want to lose this progress

!26

 $ git checkout
for branches

Switch between existing branches

 $ git checkout <branch_name>

Shortcut: Create and checkout new branch

 $ git checkout -b <new_branch_name>

Changes your project files

Only works with no uncommitted changes („Clean working tree“)

!27

The HEAD

HEAD = special pointer to currently checked out branch (commit)

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

 $ git checkout master $ git checkout testing

!28

 $ git diff

Display changes to your tracked files

 $ git diff
To be precise: Differences between working directory
and staging area ➡ only unstaged changes

Helpful to inspect what you have done

 $ git diff --staged
Differences between staging area and HEAD

 $ git diff HEAD
Differences between working directory and
HEAD (last commit)

Complete Overview

already discussed

!29

 $ git merge

https://www.atlassian.com/git/tutorials/
using-branches/git-merge

Merge changes in checked out branch

 $ git merge <feature_branch>

Smart automatic three-way merges

Only changes the checked out
branch (ensure you are on the
correct branch)

!30

 $ git merge

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Two different merges:

 Fast-forward Three-way

Only three-way
merges have
merge
commits

and potential
merge conflicts

!31

 $ git merge

Merge conflicts
$ git merge <branch_name>
Auto-merging <file>
CONFLICT (content): Merge conflict in <file>
Automatic merge failed; fix conflicts and then commit the result.

1. Run git status to see „unmerged paths“

2. Find problematic hunks: Highlighted in files by

<<<<<<< , =======, >>>>>>>
3. Create the intended code version and remove <<<<<<< ,…

4. Then git add <file_with_merge_conflict>
5. git commit (Auto-generated merge commit message)

Resolve
Conflicts if same part of file (hunk) is changed in both branches

…
<<<<<<< HEAD
 std::cout << "Hello!“;
=======
 std::cout << „Goodbye!“;
>>>>>>> say_goodbye_branch
…

…
 std::cout << „Goodbye!“;
…

!32

Commands

config
init
status
add

commit
diff
log

branch
checkout
merge

clone
push
pull

!33

Exercise 2

config
init
status
add

commit
diff
log

branch
checkout
merge

Solutions

can be found at the

end of the slides

!34

Exercise 2
1. Create a new branches and check that you created them by looking at the branch list.

2. Delete the new branches right away without risking data loss.

3. Create and directly switch to another new branch (e.g. name it add_readme) using only
one command. Check again that you created the branch and that it is checked out.

4. Add a new file on the branch (e.g. a README) and commit the new file.

5. Switch back to master. Verify that the new file is gone. Merge the branch with the new
file (Notice that this was a fast-forward merge). Check the history and that the new file
is now reappeared. Safely delete the merged branch, which is possible now that the
changes are in master.

6. Provoke a merge conflict by creating a new branch (e.g. name it edit_sample_file) and
change the sample file from Exercise 1. Commit the changes on the new branch. Edit
the same part of the file back on master and also commit the changes. Now, try
merging the new branch with the edited sample file.

7. Fix the merge conflict.

!35

Interacting with Remotes
• So far everything were local operations

• Following interactions with a remote repository require
network connection

• Remote repositories enable collaboration and backup

• Local repository has to be manually synced with remote
repository

Note: In the following only
tracking branches are used
to interact with a remote
repository to keep it simple.

Advanced:

!36

 $ git clone

Clone (download) a remote repository

 $ git clone <link_to_repository>

Creates directory with project name in current directory

Remote repository is (by default) referred to as origin

You can also clone on the same machine locally

Branches that are in remote are prefixed by
origin/ then the <branch_name>

See all remote branches of repository
 $ git branch -r

!37

 $ git pull

Checkout a branch of the repository (as usual)

 $ git checkout <branch_name>
Do not use the origin/ prefix here

Update a branch with the new version from the remote repository
 $ git pull

… while the branch is checked out

Changes your working directory

Make sure you pull before committing and merging to stay
in sync! (especially on master, maybe someone else updated it)

!38

 $ git push

Create a new branch in the remote repository

 $ git push -u origin <branch_name>
from the currently checked out branch

Update the remote branch from the local branch afterwards

 $ git push

Only changes that are committed are pushed

If the remote and local history diverge (e.g. forgot to pull
before committing) pushes will be rejected
Make sure you push after committing and merging
to stay in sync!

!39

The Rest

 $ git stash

 $ git blame
 <file>

 $ git bisect

Other useful commands worth looking up yourself

Quickly stash away your changes for
later to obtain clean working tree

 $ git revert
 $ git reset

Undoing changes and commits
—> good tutorial under this [Link]

See line for line, who and which commit is
responsible for the last change to this line

Bisect the git history to find which
commit introduced a bug

https://www.atlassian.com/git/tutorials/undoing-changes

!40

Summary
config
init
status
add

commit
diff
log

branch
checkout
merge

clone
push
pull

(Not discussed)

diff --staged

also staging area

status

log

!41

Good Resources

Beginner:
• Bitbucket Tutorials for git
• Resources to learn by Github (includes interactive tutorials)
• Git Documentation

More advanced:
• Pro Git by Scott Chacon and Ben Straub: THE git book (free)
• Good talk: Introduction to git with Scott Chacon of GitHub
• Good talk: Linus Torvalds (creator of git) on git

https://www.atlassian.com/git/tutorials
https://try.github.io/
https://git-scm.com/docs
https://git-scm.com/book/en/v2
https://youtu.be/ZDR433b0HJY
https://www.youtube.com/watch?v=4XpnKHJAok8

!42

Summary
config
init
status
add

commit
diff
log

branch
checkout
merge

clone
push
pull

(Not discussed)

diff --staged

also staging area

status

log

Feedback and questions
welcome!

staudenmaier@fias.uni-
frankfurt.de

Online Slides with the hands-on exercises:
 CRC Redmine Z02 Project Wiki or Transport Meeting Website

mailto:staudenmaier@fias.uni-frankfurt.de
mailto:staudenmaier@fias.uni-frankfurt.de
https://rmp.physik.uni-bielefeld.de/projects/z02/wiki
https://th.physik.uni-frankfurt.de/~hees/transport-meeting/

!43

Solutions to Exercise 1
Part 1 #
$ git config --global user.name <your_name>
$ git config --global user.email <your_email>
$ less ~/.gitconfig

Part 2 #
$ mkdir sample_project; cd sample_project
$ git init
$ ls -a # see hidden .git directory

Part 3 #
$ vi sample_file.cpp # create sample file
$ git status
$ git add sample_file.cpp
$ git status
$ git commit # editor open, type commit message, save and quit

Part 4 #
$ vi sample_file.cpp # modify sample file
$ git diff
$ git status
$ git add sample_file.cpp
$ git status
$ git commit # editor open, type commit message and save

Part 5 #
$ git log

!44

Solutions to Exercise 2
Part 1 #
$ git branch new_branch
$ git branch

Part 2 #
$ git branch -d new_branch # small d important

Part 3 #
$ git checkout -b add_readme
$ git branch # star marks the currently checked out branch

Part 4 #
$ vi README.md # create README file
$ git status
$ git add README.md
$ git commit
$ git status # shows working tree clean, so we can check out another branch

Part 5 #
$ git checkout master
$ ls # README is gone again
$ git merge add_readme # notice it says fast-forward merge
$ git log # has commit from add_readme
$ ls # README file now on master
$ git branch -d add_readme

Builds on
repository
created for

Ex. 1

Part 1/2

!45

Solutions to Exercise 2
Part 6 #
$ git checkout -b edit_sample_file
$ vi sample_file.cpp # modify file
$ git diff # always check you changes
$ git commit -a # only small change
$ git checkout master
$ vi sample_file.cpp # modify same part/line of file
$ git diff
$ git commit -a
$ git merge edit_sample_file # should have a merge conflict

Part7 #
$ git status # see unmerged paths
$ vi sample_file.cpp # create intended code version + rm comments
$ git add sample_file
$ git commit # auto-generated merge commit message

Part 2/2

