g1t
An Introduction

What is it?
Why should you use it?
How does it work?

Ay 25.04.19
GOETHE
UNIVERS ITAT Sgolr?g-icnter;!:ioanza\;Itl

FRANKFURT AM MAIN under extreme conditions

What is it?

“Git is a free and open source distributed version
control system, which is fast and efficient.”
- Git Homepage

* Version control system = tracks versions of files

e.g. source code, LaTeX thesis, paper or talk, website html, etc.
(Rule of thumb: Everything you edit in text editors)

* Distributed = everyone has a full local copy of the repository

d iStri bUted all collaborators

has a repository each

“FINALdoc

Why
should
you use

E ' Ve
= t ? FINAL_rev.6.COMMENTS. doc FINAL _rev.8.commenteS.
Il

CORRECTIONS.doc

JORGE CHAM © 2012

‘
corrections?.MORE.30.doc ¢ orrections. (0. #@$%WHYDID

WWW.PHDCOMICS.COM

Why should you use it?

It helps you!

* Transparent history of all changes

* Moving back and forth in time

 Everything is easily traceable and reversible (e.g. errors)
Good scientific practices:

* Reproducibility and traceability

e Enables collaboration

How does 1t work?

 Repository = database containing all
versions of the files

* Snapshot-based system Fite A M M w2 0

File B B B Bl B2

 Snapshots are called commits

File C C1 C2 C2 =

o C O m m itS a re n a m ed by C h eC kS u m S Figure 5. Storing data as snapshots of the project over time.
(al SO Used tO ensure d a-ta | nteg rlty) https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

* Almost every operation is local Input Checksum

e Working without network connecting | rox . Checksum | 1 oo 054665

function

e Distributed system
(everyone carries a backup)

4 distinct places

local
 — Cb
. remote
index .
also staging area feposﬂor y

T T T T

All of your For now: All changes go Manually synced copies of
(to be) edited here first all committed versions of

project files (Later: Helps disentangling all project files
changes)

How does 1t work?

Git Data Transport Commands
® Overview Of mOSt http://csteele.com

common commands = >
add (-u) t> commit D>
 Most common use by T >
command line —{ status ——
workspace repository
Don’t Panic < ou1! I

This Is an
introduction. FTE———

diff HEAD

It is worth It.

compare

diff

Gist of this Introduction

Command by command

1. The basic workflow: Set up a local repository
and save changes to it
—> EXxercise 1

2. Branches: Work on different features in parallel
—> EXxercise 2

3. Basic interactions with a remote repository

Notation

what follows are commands to be entered on the command

INCHACKM ¢ git log

marks names and other variables that change during
ICTCANOm ¢ git branch <branch_name>

<™

Advanced:

$ git help

Get help for any command

$ git help <command>

$ git <command> ——help

$ man git—-<command>

Works offline!

Installation: Good changes it is already installed, if not [Link]

10

https://git-scm.com/book/en/v1/Getting-Started-Installing-Git

config

init
status
add
commit
diff
log

11

$ git config

Before doing anything else: Identify yourself

$ git config ——global user.name <your_name>

$ git config ——global user.emalil <your_email>

Make sure this is consistent across all your machines

Advanced:

Make your life easier: $ git config ——global alias.st ,status”
Set up tab completion

[Link $ git config ——global help.autocorrect 10

12

https://git-scm.com/book/en/v1/Git-Basics-Tips-and-Tricks

$ git 1nit

Initalizing a empty (local) Git repository

$ git init

Initialized empty Git repository in /path/to/
example_repo/.git/

Adds a hidden . g1t directory, where git stores all of its
information

Git only uses relative paths (source directory can be moved
freely)

13

$ git status

Display status information of working directory and staging area

$ git status
On branch master

No commits yet
Untracked files:

(use "git add <file>..." to include in what will be
committed)

hello.cpp

nothing added to commit but untracked files present
(use "git add" to track)

(Output for a newly initialized repo with one new file hello. cpp)
14

$ git add

Adding changes to the staging area

$ git add <file_name>

Adds all changes of a file to the staging
area

$ git add <directory_name>

add (-u) l commit

status

workspace

index
also staging area

e ———]
local
repository

Adds all changes of all files in the directory to the staging area.

Advanced:

$ git add —-p <file_name>

15

https://www.atlassian.com/git/tutorials/saving-changes/gitignore

$ git commit

Committing staged changes to your repository

add (-u

$ git commit

External text editor (most likely v1) will D
workspace

open and ask for a commit message

index
also staging area

DlelaRBN/CCRVARM $ git config ——global core.editor ,nano*

Invest in good commit messages!
e Subiject line + body (Follow 50/72 rule [Link])

e Write them like a email to yourself / the other developers

e Document why you made the changes

Good commits are small and often, conceptually separated,

only include source files & at best working code

local
repository

https://medium.com/@preslavrachev/what-s-with-the-50-72-rule-8a906f61f09c

$ git diff

Display changes to your tracked files

$ git diff

To be precise: Differences between working directory
and staging area = only unstaged changes

Helpful to inspect what you have done

17

$ git log

Display history of your commits

$ git log

See the last changes that were made

including the commit message (at least per default)

18

config

init
status
add
commit
diff
log

Solutions
can be found at the
end of the slides

19

5.

Exercise 1

Configure your git setup by setting your name and mail address.
If you done that, check the .gitconfig file in your home
directory.

Create a new directory and initialize an empty git repository in it.
Create a simple sample code file in the directory and commit it.

Modify the sample code file and commit the changes. Check the
changes first.

Look at the commit history you created.

Optional: If you currently work on a "code" project (remember, this also might e.g. be a LaleX paper
project), repeat step 2 and 3 and make it git repository. Instead of creating a sample file, you just
commit your source files. Do not worry, your project files will remain untouched by this. The next time
you change your project files, just commit your changes (step 4 and 5). Just continue to repeat step 4
and 5 every time you work on your project and you will have already mastered the main git workflow.

20

WORK

git status / git diff

v

git add

¥

git commit

21

$ git commit -a

Directly commit unstaged changes
Advanced.:

$ git commit -a

SeivUaiclll ¢ it add -u
$ git commit

What is the purpose of the staging area?

$ git add -u

* Allows to only commit part of your changes (Assemble
your commit to your liking)

* Split changes across commits
* Also other use cases e.g. for reviewing your changes, ...

22

config

init
branch clone
status back
~dd checkout push
commit merge pull
diff

log

23

Branches

Branches store different versions of your project

Parallel development

* Implement new features

* Fix bugs

* Try out something

Cheap to do in git

(technically just pointers to a commit)

Main branch = master

™

Big Feature

https://www.atlassian.com/git/tutorials/using-branches

By default created at initialization

e Usually development is done on other (feature) branches

24

$ git branch

Create new branch

$ git branch <branch_name>

List all branches of local repository
$ git branch

Delete branch

$ git branch -d <branch_name>
Save option to delete a branch, since it prevents data loss

$ git branch -D <branch_name>

Use CAREFULLY! Be sure you want to lose this progress

25

$ git checkout

for branches

Switch between existing branches

$ git checkout <branch_name>

Changes your project files

Only works with no uncommitted changes (,,Clean working tree®)

Shortcut: Create and checkout new branch

$ git checkout -b <new_branch_name>

20

$ git checkout master = $ git checkout testing
4"/////’

master

c2b%e

/ c2b9%e
- f30ab 98ca9
-g\\\\\\

98ca9 - 34ac2

<——— 34ac2 =—— f30ab

T~

87ab2

87ab2

testing

Figure 17. Divergent history

Figure 17. Divergent history

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

27

$ git diff

Display changes to your tracked files

$ git diff

To be precise: Differences between working directory

Complete Overview

and staging area = only unstaged changes

Helpful to inspect what you have done

$ git diff HEAD

Differences between working directory and i
HEAD (last commit) : | '

$ git diff —--staged

Differences between staging area and HEAD

28

Merge changes in checked out branch

$ git merge <feature_branch>

Smart automatic three-way merges

Only changes the checked out
branch (ensure you are on the
correct branch)

eeeeeeeeeee

MMMMMM

eeeeeeeeeee

MMMMMM

https://www.atlassian.com/qit/tutorials/
using-branches/git-merge

29

Two different merges:

Fast-forward

Three-way

OO0

MMMMMM

eeeeeeeeeee

MMMMMM

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Only three-way
merges have
merge
commits

and potential
merge conflicts

30

Merge conflicts

$ git merge <branch_name>

Auto—-merging <file>

CONFLICT (content): Merge conflict in <file>

Automatic merge failed; fix conflicts and then commit the result.

Conflicts if same part of file (hunk) is changed in both branches

Resolve
1. Run glt status to see ,unmerged paths® emsliumem
2. Find problematic hunks: Highlighted in files by [RESSEIpCs
<<<LLLL<L , =======, >>>>>>>
3. Create the intended code version and remove <<<<<<<,... R

4. Thengit add <file_with_merge_conflict>
5. git commit (Auto-generated merge commit message)

31

config

init
branch clone
status N
~dd checkout push
commi merge pull
diff

log

32

branch

checkout
merge

Solutions
can be found at the
end of the slides

33

Exercise 2

. Create a new branches and check that you created them by looking at the branch list.
. Delete the new branches right away without risking data loss.

. Create and directly switch to another new branch (e.g. name it add_readme) using only
one command. Check again that you created the branch and that it is checked out.

. Add a new file on the branch (e.g. a README) and commit the new file.

. Switch back to master. Verify that the new file is gone. Merge the branch with the new
file (Notice that this was a fast-forward merge). Check the history and that the new file
IS now reappeared. Safely delete the merged branch, which is possible now that the
changes are in master.

. Provoke a merge conflict by creating a new branch (e.g. name it edit_sample_file) and
change the sample file from Exercise 1. Commit the changes on the new branch. Edit
the same part of the file back on master and also commit the changes. Now, try
merging the new branch with the edited sample file.

. Fix the merge conflict.

34

Interacting with Remotes

e So far everything were local operations

* Following interactions with a remote repository require
network connection

* Remote repositories enable collaboration and backup

* Local repository has to be manually synced with remote
repository

status
workspace i
also st

b > Advanced:

local remote
repository repository

35

Clone (download) a remote repository

$ git clone <link_to_repository>

Creates directory with project name in current directory
Remote repository is (by default) referred to as origin

You can also clone on the same machine locally

See all remote branches of repository

$ git branch -r

Branches that are in remote are prefixed by
origin/ then the <branch_name>

36

$ git pull

Checkout a branch of the repository (as usual)

$ git checkout <branch_name>

Do not use the origin/ prefix here

Update a branch with the new version from the remote repository

$ git pull

... While the branch is checked out

Changes your working directory

Make sure you pull before committing and merging to stay
in sync! (especially on master, maybe someone else updated it)

37

$ git push

Create a new branch in the remote repository

$ git push —u origin <branch_name>

from the currently checked out branch

Update the remote branch from the local branch afterwards

$ git push

Only changes that are committed are pushed
If the remote and local history diverge (e.g. forgot to pull
before committing) pushes will be rejected

Make sure you push after committing and merging
to stay Iin sync!

38

The Rest

Other useful commands worth looking up yourself

Quickly stash away your changes for

$ git stash later to obtain clean working tree

SRR V/Iadl Undoing changes and commits
$ git reset —> good tutorial under this [Link]

$ git blame See line for line, who and which commit is
<file> responsible for the last change to this line

Bisect the git history to find which

S g1t Disect [uguNgem introduced a bug

39

https://www.atlassian.com/git/tutorials/undoing-changes

sSummary

COnfi Git Data ;I'ransp(:):;:t FOmmands
- x b ra n C h —— > (Not discussed)
i1nlit .
checkout o)

status T

me rge wor;:ce status —
add ‘k | index
clone C .

commit
diff
log

push
p u -l. 1 & diff HEAD

compa

Beginner:
* Bitbucket Tutorials for git

* Resources to learn by Github (includes interactive tutorials)
e Git Documentation

More advanced:

e Pro Git by Scott Chacon and Ben Straub: THE git book (free)
e Good talk: Introduction to git with Scott Chacon of GitHub

e (Good talk: Linus Torvalds (creator of git) on git

41

https://www.atlassian.com/git/tutorials
https://try.github.io/
https://git-scm.com/docs
https://git-scm.com/book/en/v2
https://youtu.be/ZDR433b0HJY
https://www.youtube.com/watch?v=4XpnKHJAok8

Summary

confi
o J branch
inlit
checkout
status
merge
add
: clone
commit)
: us
diff P o
u
log P

Git Data Transport Co
eale.com

Feedback and questions
welcome!
staudenmaier@fias.uni-
frankfurt.de

http://csteele.

commit -a :>

mmands

B (Not discussed)

status
workspace i
also st

compare

remote
repository

diff --staged

diff HEAD

dif

f

Online Slides with the hands-on exercises:
CRC Redmine Z02 Project Wiki or Transport Meeting Website

mailto:staudenmaier@fias.uni-frankfurt.de
mailto:staudenmaier@fias.uni-frankfurt.de
https://rmp.physik.uni-bielefeld.de/projects/z02/wiki
https://th.physik.uni-frankfurt.de/~hees/transport-meeting/

Solutions to Exercise 1

Part 1 #

git config ——global user.name <your_name>
git config ——global user.email <your_email>
less ~/.gitconfig

Part 2 #

mkdir sample_project; cd sample_project
git init

ls —a # see hidden .git directory

Part 3 #

vi sample_file.cpp # create sample file

git status

git add sample_file.cpp

git status

git commit # editor open, type commit message, save and quit

Part 4 #

vi sample_file.cpp # modify sample file

git diff

git status

git add sample_file.cpp

git status

git commit # editor open, type commit message and save

Part 5 #
git log

#
$
$
$
#
$
$
$
#
$
$
$
$
$
#
$
$
$
$
$
$
#
$

43

Solutions to Exercise 2

Part 1/2

#
$
$
#
$
#
$
$
#
$
$
$
$
$
#
$
$
$
$
$
$

Part 1 #
git branch new_branch
git branch

Part 2 #
git branch -d new_branch # small d important

Part 3 #
git checkout -b add_readme
git branch # star marks the currently checked out branch

Part 4 #

vi README.md # create README file

git status

git add README.md

git commit

git status # shows working tree clean, so we can check out another branch

Part 5 #

git checkout master

ls # README is gone again

git merge add_readme # notice it says fast-forward merge
git log # has commit from add_readme

ls # README file now on master

git branch -d add_readme

Builds on
repository
created for

Ex. 1

44

Solutions to Exercise 2

Part 6 #

git checkout -b edit_sample_file

vi sample_file.cpp # modify file

git diff # always check you changes

git commit —a # only small change

git checkout master

vi sample_file.cpp # modify same part/line of file

git diff

git commit -a

git merge edit_sample_file # should have a merge conflict

Part 2/2

Part7 #

git status # see unmerged paths

vi sample_file.cpp # create intended code version + rm comments
git add sample_file

git commit # auto—generated merge commit message

#
$
$
$
$
$
$
$
$
$
#
$
$
$
$

45

