Constraints on neutron star properties from GW170817

Elias Roland Most & Lukas Weih Institute for Theoretical Physics, Frankfurt

Supervisors: Luciano Rezzolla, Jürgen Schaffner-Bielich

GW170817

LIGO Lab MIT/Caltech

Abbott et al 2017

Time (seconds)

-10

0

-20

-30

6

Can we translate GW170817 to constraints on the EOS?

Ingredients to constrain EOS

Numerical relativity

Physics modelling

EOS CONSTRAINTS

Maximum mass constraints from GW170817

Maximum mass constraints

CONSTRAINING THE MAXIMUM MASS OF NEUTRON STARS FROM MULTI-MESSENGER OBSERVATIONS OF GW170817

BEN MARGALIT & BRIAN D. METZGER

GW170817: Modeling based on numerical relativity and its implications

Masaru Shibata,¹ Sho Fujibayashi,¹ Kenta Hotokezaka,^{2,1} Kenta Kiuchi,¹ Koutarou Kyutoku,^{3,1} Yuichiro Sekiguchi,^{4,1} and Masaomi Tanaka⁵

USING GRAVITATIONAL-WAVE OBSERVATIONS AND QUASI-UNIVERSAL RELATIONS TO CONSTRAIN THE MAXIMUM MASS OF NEUTRON STARS

LUCIANO REZZOLLA^{1,2}, ELIAS R. MOST¹, AND LUKAS R. WEIH¹

GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass

Milton Ruiz,¹ Stuart L. Shapiro,^{1,2} and Antonios Tsokaros¹

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

• Sequences of equilibrium models of nonrotating stars will have a maximum mass: $M_{\rm TOV}$

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

• Sequences of equilibrium models of nonrotating stars will have a maximum mass: $M_{\rm TOV}$

• This is true also for **uniformly** rotating stars at mass shedding limit: $M_{\rm max}$

• M_{max} simple and **quasiuniversal** function of M_{TOV} (Breu & Rezzolla 2016) $M_{\text{max}} = (1.20^{+0.02}_{-0.05}) M_{\text{TOV}}$ • The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

Green region is for uniformly rotating equilibrium models.
Salmon region is for differentially rotating equilibrium models. The outcome of GW170817 • The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

• Green region is for uniformly rotating equilibrium models. • Salmon region is for differentially rotating equilibrium models. Supramassive stars have $M > M_{\rm TOV}$ Hypermassive stars have $M > M_{\max}$

The outcome of GW170817

 Merger product in GW170817 could have followed two possible tracks in diagram: fast (2) and slow (1)

- It rapidly produced a BH when still **differentially** rotating **(2)**
- It lost differential rotation leading to a **uniformly** rotating core **(I)**.
- •(I) is more likely because of large ejected mass (long lived).
- Final mass is near $M_{\rm max}$ and we know this is universal!

The outcome of GW170817

 Merger product in GW170817 could have followed two possible tracks in diagram: fast (2) and slow (1)

- It rapidly produced a BH when still **differentially** rotating **(2)**
- It lost differential rotation leading to a **uniformly** rotating core **(I)**.
- •(I) is more likely because of large ejected mass (long lived).
- Final mass is near $M_{\rm max}$ and we know this is universal!

Cho, Bicknell, Science 2018

Maximum mass constraint

• The merger product of GW170817 was initially **differentially** rotating but collapsed as **uniformly** rotating object.

 $2.01^{+0.04}_{-0.04} \le M_{\rm TOV}/M_{\odot} \lesssim 2.16^{+0.17}_{-0.15}$

- HMNS core has about 95% gravitational mass of M₁ + M₂ = 2.74^{+0.04}_{-0.01} M_☉
 Ejected rest mass deduced from kilonova emission M^{blue}_{ej} = 0.014^{+0.010}_{-0.010} M_☉
- Use **universal relations** and account errors to obtain

pulsar

timing

Rezzolla, ERM, LW (ApJL 2018)

universal relations and GW170817; similar estimates by other groups

Overview of different results

MARGALIT+	Baysian analysis + threshold mass	< 2.17 M _{sun}
SHIBATA+	numerical simulations	< 2.25 M _{sun}
REZZOLLA, ERM,LW	universal relations	< 2.16 M _{sun}
RUIZ+	Ruffini-Treves mass limit	< 2.17 M _{sun}

Note: All groups use input from kilonova modelling

Bottom line: M_{max} ~ 2.2 M_{sun}

Radius constraints from GW170817: A Frankfurt perspective

GW170817: What do we know?

How is BH-BH different from NS-NS?

Read et al. (2013)

How is BH-BH different from NS-NS?

Neutron stars in binary are tidally deformed by companion

 $U = G\frac{M}{r} + G\frac{Q}{r^3}P_2(\cos\theta)$

Q: quadrupole moment

What is the quadrupole moment?

 $GQ = 2(\kappa_2)R^5\left(\frac{GM'}{h^3}\right)$ Tidal field of companion star

Tidal Love number

$$\Lambda = \frac{2}{3}\kappa_2 \left(\frac{Rc^2}{GM}\right)^5$$

Tidal deformability of the isolated neutron star

Imprint on gravitational wave: $\tilde{h}_{\rm GW}(f) = \mathscr{A}_{\rm SPA}(f) \exp i\psi_{\rm SPA}(f)$ $\psi_{\text{SPA}} \sim \dots - \frac{39}{2} \nu \left(2\tilde{\Lambda} \left(\pi \mathcal{M} f \right)^{10/3} \right)^{10/3}$ Mass weighted average

GWI708I7: What do we know?

Abbott et al 2017

Light curves

Observations consistent with two component model

Kilonova constraints on the tidal deformability

 Consistency with kilonova modelling (mass ejection) requires lower limit on tidal deformability

$$\tilde{\Lambda} = \frac{16}{13} \left[\frac{(M_A + 12M_B)M_A^4 \Lambda_2^{(A)}}{(M_A + M_B)^5} + (A \leftrightarrow B) \right],$$

Errors unclear Might be as low as ~200 (Coughlin+ 2018)

Radice et al 2018

Limits on radii and deformabilities

- Constraining NS radii of neutron stars is an effort with thousands of papers published over the last 40 years.
- Question is deeply related with EOS of nuclear matter.
- Can new constraints be set by GW170817?

 Ignorance can be parameterised and EOSs can be built arbitrarily as long as they satisfy specific constraints on low and high densities.

Mass-radius relations

• We have produced 10⁶ EOSs with about 10⁹ stellar models.

 Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817

ERM, LW, Rezzolla, Schaffner-Bielich (PRL 2018)

one-dimensional cuts

• Closer look at a mass of $M=1.40\,M_{\odot}$

 Can play with different constraints on maximum mass and tidal deformability.

 Overall distribution is very robust

 $12.00 < R_{1.4} / \text{km} < 13.45$ $\bar{R}_{1.4} = 12.45 \text{ km}$

ERM, LW, Rezzolla, Schaffner-Bielich (PRL 2018)

Constraining tidal deformability

- Can explore statistics of all properties of our 10⁹ models.
- In particular can study PDF of tidal deformability: $\tilde{\Lambda}$

ERM, LW, Rezzolla, Schaffner-Bielich (PRL 2018)

- LIGO has already set upper limit:
 - $\tilde{\Lambda}_{1.4} \lesssim 800$
- Our sample naturally sets a lower limit:

 $\Lambda_{1.4} > 375$

What about phase transitions?

• All EOSs so far are purely hadronic; a conservative but probably **reasonable** assumption.

- What about the possibility of **phase transitions**?
- These are not trivial but not too difficult to model.

What about phase transitions?

• All EOSs so far are purely hadronic; a conservative but probably **reasonable** assumption.

- What about the possibility of **phase transitions**?
- These are not trivial but not too difficult to model.

Mass-radius relations Christian+ (2018)

 Presence of a phase transition leads to second stable branch and "twin-star" models.

2.0

1.8

1.6

1.4

1.2

8

 $400 < \tilde{\Lambda}_{1.4} < 800$

9

 $2.01 < M_{\scriptscriptstyle
m TOV} < 2.16$

10

 $[M_{\odot}]$

M

0.8

0.2-

0.0

PDF for

One-dimensional cuts: PTs

Applying all constraints from GW170817:

 $8.53 < R_{1.4} / \text{km} < 13.74$ $\bar{R}_{1.4} = 13.06 \text{ km}$

phase transitions (with twins)

Constraining tidal deformability: PTs

- Can repeat considerations with EOSs having PTs
- Lower limit much weaker: $\tilde{\Lambda}_{1.4} \gtrsim 35$
- Large masses have sharp cut-off on upper limit:

 $\tilde{\Lambda}_{1.7} \lesssim 460$

GW detection with $\tilde{\Lambda}_{1.7} \sim 700$ would rule out twin stars!

Conclusions from Frankfurt

***GWI70817** provides new limits on maximum mass and radii:

$$2.01^{+0.04}_{-0.04} \le M_{\rm TOV}/M_{\odot} \lesssim 2.16^{+0.17}_{-0.15}$$

 $12.00 < R_{1.4} / \text{km} < 13.45 \qquad R_{1.4} = 12.45 \text{ km} \qquad \text{hadronic EOS} \\ 8.53 < R_{1.4} / \text{km} < 13.74 \qquad \bar{R}_{1.4} = 13.06 \text{ km} \qquad \text{transitions} \end{cases}$

 $\tilde{\Lambda}_{1.7} \lesssim 460$

Upper limit on deformability can rule out twin stars

A flood of publications

Methods

Comparison to numerical simulations

No prompt collapse \longrightarrow $M_{\rm thres} > M_{\rm tot}^{\rm GW170817} = 2.74^{+0.04}_{-0.01} M_{\odot}$

Comparison to numerical simulations

Bauswein, Just, Janka, Stergioulas (2017)

Comparison to numerical simulations

$$M_{\rm thres} = \left(-3.606 \frac{GM_{\rm max}}{c^2 R_{1.6}} + 2.38\right) \cdot M_{\rm max}$$

- I. Only purely hadronic EOSs
- 2. Not dereived in full GR: error at least 5%

Bauswein, Just, Janka, Stergioulas (2017)

Universal relations (+ statistics)

- Chirp mass:
- Mass ratio:
- Symmetric deformability:
- Asymmetric deformability:
- EOS-independent (universal) relation #1:
- EOS-independent (universal) relation #2:

$$\mathcal{M}_{chirp} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = 1.188 M_{\odot}$$

$$q = m_1/m_2 = 0.7 - 1$$

$$\Lambda_s = (\Lambda_1 + \Lambda_2)/2$$

$$\Lambda_a = (\Lambda_1 - \Lambda_2)/2$$

$$\Lambda_a = \Lambda_a (\Lambda_s, q)$$

$$\Lambda = \Lambda(C) \text{ with compactness } C = M/R$$

Universal relations (+ statistics)

NS1: 9.1 <
$$R_1$$
 < 12.8 (90%)
NS2: 9.2 < R_2 < 12.8 (90%)
nclude M_{max} > 2.01 M_{sun} constraint:

Ligo/Virgo (2018) arXiv:1805.1158

Summary

Summary

What about phase-transitions?

So what about the EOS?

Summary

FROM <u>ONLY ONE</u> MULTI-MESSENGER SIGNAL

Different approaches yield the same results:

- M_{max} < 2.2M_{sun}
- $|0(|2) > R_{1.4} > (|3.5)|4$
- No tight limits for EOS with phase transition
 BUT: could be destinguished via tidal
 deformability

<u>To-Do:</u>

How does this compare to constraints from X-ray observations?

Summary

 GW170817 has helped to improve our knowledge of maximum masses and radii of neutron stars

• Future **multimessenger observations** will help to even more narrow down uncertainties of neutron star properties and will help to unravel the **EOS**

< 50 per year

