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Heavy ion collision in the view of hybrid models

Initial State Relativistic Fluid

Pre-equilibrium Hadronization
Dynamics g . fm/c

0 ~1 ~10 ~20
@ Hydrodynamics: local thermal equilibrium,
0, TH =0, 9" =0, EoS, boundary conditions
Applicability: A ~ (no)™! < L = high density
@ Transport: Monte-Carlo simulation of particle collisions
Applicability: negligible multi-particle collisions = low density

@ Hybrid: hydro at high density + transport at low density
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Conventional hybrid models

Solve hydro equations in the light cone
Find freeze-out hypersurface aposteriori
Particlization (Cooper-Frye formula)

°
°
°
@ Particles are decoupled from hydro, but can scatter with each other

Conventional approximation breaks (many particles return to hydro)
@ at low collision energies

@ in event-by-event simulations

DO, HP [PRC 91, 2, 024906 (2015)]
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Particlization and negative contributions

o Particlization

> know €, p, u, on the surface
"positive" > from EoS - T,
> want particles

@ "Cooper-Frye formula”
vV d3N(P) =f(p )(2th) p_od
s - doy, - analog of n- V
e.g. ideal hydro f(p) = <epMU‘Tﬁ“ + 1) B
@ Negative contribution

» ptdo, > 0: positive contribution,
particles fly out
» ptdo, < 0: negative contribution,
do,, - normal 4-vector particles fly in
u, = (7,7 V) - 4-velocity
T - temperature
1 - chemical potential
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Negative contributions using coarse-grained UrQMD (1)

Hypersurface of constant Landau rest frame energy density:
mimic hybrid model transition surface

@ Generate many UrQMD events

Hoov
@ On X,V,Z) gri lcul T = —5=
On a (t,x,y,z) grid calculate Ve E 0
iecell event average

@ In each cell go to Landau frame: TE” = (€.,0,0,0)

e Construct surface €;(t,x,y,z) = €

Example: E = 160 AGeV, Au+Au central collision, ¢g = 0.3 GeV/fm3

B

t=4fm/c t=11fm/c t =13 fm/c t =18 fm/c
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Negative contributions using coarse-grained UrQMD (II)

Au-+Au central collisions, ¢ = 0.3 GeV/fm3 hypersurface projected to t-z.
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Definitions for negative contributions

@ Hypersurface of constant Landau rest frame energy density
» A) T and u from Hadron Gas EoS, Cooper-Frye formula
» B) Many UrQMD events, count particles crossing hypersurface

@ Will coincide if particle distribution from UrQMD is exactly
equilibrated

A) Cooper-Frye B) "by particles”

d3N+ ptdo :
0 H v o
— 0(p”do,
dp? exp(p’u,/T) £1 (pdo)
d3N— ptdo
0 © v
P dp? exp(p¥u,/T) £ 1 (=p"doy) —
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Negative contributions: particle mass dependence
E =40 AGeV, b = 0, ¢g = 0.3 GeV/fm3, dN/dy distributions

Smaller mass - larger negative contribution
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Negative contributions: energy dependence

Lower collision energy - slower expansion - larger negative contributions
Non-equilibrium calculation gives much smaller values
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Negative contributions: surface lumpiness

E =160 AGeV, b =0
Smooth surface Lumpy surface
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Hybrid model in a perfect world

@ Coupled hydrodynamics and kinetic equations

@ Transition surface found dynamically
(so-called dynamical decomposition)

@ Some works in this direction
K. Bugaev, Phys Rev Lett. 2003; L. Czernai, Acta Phys. Hung., 2005

Example from non-relativistic hydrodynamics [Tiwari, J. Comp. Phys. 144, 710726 (1998)]
2D flow of gas around solid ellipse
White domains - Boltzmann equation, grey domains - Euler equation
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Summary of introduction

@ Hybrid approaches adopt approximations:

» aposteriori determination of particlization surface
» particles decouple from hydrodynamics once and cannot get back into it

@ These approximations become inadequate for

> low collision energies
» large fluctuations (event-by-event/fluctuating hydrodynamics)

@ In non-relativistic hydrodynamics there are dynamic decomposition
approaches, which go beyond these approximations
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Alternative way: hydro bubbles in transport

Pure transport
Force instant local thermalization, where density is high
Effectively accounts for multiparticle collisions

Conceptually similar to hybrid model, where

» "Hydro" region defined dynamically
» "Hydro" and transport are coupled
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SMASH transport model

@ hadronic cascade, 2 <> 2 and 2 < 1 reactions

» Mesons: 7, p, 0, w, @, o, f, K, K*(892), K*(1410)
» Baryons: up to m >~ 2GeV - N, N*, A, A", A, N, X, Y% =, Q

@ simulates AA collision as a sequence of elementary reactions
@ timesteps: --- — collide/decay — propagate — ...

o testparticles ansatz: N — N - Niest, 0 — 0/ Niest
@ model in active development, no strings yet
> currently only reliable at low energies

-3.0fm/c 1.0fm/c 5.0fm/c 9.0fm/c 13.0 fm/c

0

central Au+Au collision, Eyi, = 2 GeV, Niest = 100
color coding: neutrons, protons, T
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Hydrodynamic bubble using SMASH

o take a cartesian grid, cells (0.5fm)3
@ in each cell compute local Landau rest frame energy density ¢
o €>en = 0.3 GeV/fm3 = forced thermalization in cell

@ A) forced isotropization

» reshuffles momenta microcanonically - no need for external EoS
> conserves total energy and momentum locally
» does not change hadronic content

e B) forced grand-canonical thermalization

» forced chemical equilibration
» allows to set Equation of State (EoS)

-3.0fm/c 1.0fm/c 5.0fm/c 9.0fm/c 13.0fm/c 17.0fm/c.

* 9 @ &

central Au4-Au collision, Ey;,, = 2 GeV, Niest = 100, purple region - hydrodynamic bubble, ez = 0.3 GeV/fm3:
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Effects of forced isotropization: pressure

Forced isotropization at t > 3 fm/c, where ¢ > 0.3 GeV/fm3.
Au+Au, CM frame Ekin =2 A GeV, b =0, Ngst = 100
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Effects of forced isotropization: my spectra

Forced isotropization at t > 1 fm/c, where ¢ > 0.3 GeV/fm3.

Au+Au, CM frame
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Particles move from low pt to high pr: "transverse push”
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Effecs of forced isotropization: y spectra

Forced isotropization at t > 1 fm/c, where ¢ > 0.3 GeV/fm3,
Au+Au, CM frame, Ekjn =2 A GeV, b =0, Niest = 100
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Nucleons move to midrapidity, less pions, more kaons
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Forced grand-canonical thermalization

Every time interval Atg:
© Span a lattice and compute TH”, jg, j& on it
@ Find rest frame €, np, ns, T, u from EoS in every cell
> Assuming ideal hydro form of T#¥, j*
© Remove particles from € > €. region
@ Sample new particles in € > €. region

» Thermal distribution function

» Isochronous Cooper-Frye formula — no negative contributions
» Conserving charges, energy and momentum globally - "modes
sampling" P. Huovinen, HP, Eur.Phys.J. A48 (2012) 171

© Let particles propagate, collide and decay within transport model until
next thermalization

Ways to interpret the procedure:

@ changing local distribution function to the thermal one
o effective treatment of multi-particle collisions
@ "Zero-time hydro" = fluidization + immediate particlization
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SMASH ideal hadron gas EoS

More hadron sorts - smaller pressure at given energy density

02 T T T T
— Pasi,n,=0
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Pasi = Hadron Gas EoS from P. Huovinen, P. Petreczky, Nucl.Phys. A837 (2010) 26-53
UrQMD = Hadron Gas EoS from UrQMD tables by J. Steinheimer
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Effects of forced thermalization
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Au+Au central collision, /s = 3 GeV

High-density region exists longer
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(T) and (ug) in the thermalization region

Au+Au central collision, /s = 3 GeV, (A)
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o Wiggles at every thermalization time
@ Equilibration by reactions and forced thermalization not identical
» Some particles cannot be produces by reactions, e.g. p

» Resonances sampled at pole mass
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Effects of forced thermalization: multiplicities

Au+Au central collision, \/_ =3 GeV
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High €. - no thermalization
Thermalization leads to strangeness enhancement
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Effects of forced thermalization: multiplicities

Au+Au central collision, \/_ =3 GeV, [1.0 x 1 0 x 0.5] lattice spacing
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Thermalization period and lattice spacing are not important for
multiplicities
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Summary

@ Hybrid approaches adopt approximations:
» aposteriori determination of particlization surface
» particles decouple from hydrodynamics once and cannot get back into it
@ These approximations become inadequate for
> low collision energies
» large fluctuations (event-by-event/fluctuating hydrodynamics)
@ Suggestion: pure transport, forced thermalization in regions with high
energy density
» one can plug in arbitrary EoS
» backflow is automatically taken into account
> transition hypersurface is determined dynamically
@ Tested on SMASH, observed
> longer lifetime of high-density region
» more energy transferred to midrapidity
» strangeness enhancement

Outlook: further testing, plug in EoS with 1st order phase transition
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S meari ng kernel DO, HP, Phys.Rev. C93 (2016) no.3, 034905

The energy-momentum tensor TH¥ is constructed as

= e S Y k(- Rp)

events |

Smearing kernel K(r) should be such that K(r)d3r is Lorentz-scalar

Ax' = NAXY
N = 0]+ (') /(1 +7)
(Ax')? = NAXTN AX
/\J’-/\;( = Ojkx + ujuk
(AR)? = (AX)? + (AX - )
2 (7. 72
K(7) = 7(2m0®) > 2exp (—r *;,2 g )

Normalization using [ (T]7_, dx;) e A" = 7/2 (detA)~1/2
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