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The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Non-equilibrium

I Non-equilibrium thermodynamics is a branch of
thermodynamics that deals with physical systems that are not
in thermodynamic equilibrium. [Wikipedia]

I Equilibrium thermodynamics ignores the time-courses of
physical processes, in contrast non-equilibrium
thermodynamics attempts to describe their time-courses in
continuous detail. [Wikipedia]

I Thermalisation is the process of physical systems reaching
thermal equilibrium through mutual interaction. [Wikipedia]
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The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

BUU-equation
Relativistic evolution equation of a bosonic (including quantum
statistics by Bose enhancement) system in non-equilibrium

1
E1

(
pµ1

∂

∂xµ + m ∂

∂pµ1
Kµ

1

)
f1 =

1
2E1

∫ d3 ~p2
2(2π)3E2

d3 ~p3
2(2π)3E3

d3 ~p4
2(2π)3E4

W12↔34

×
{

f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)
}

=: C[2↔ 2].

W12↔34 := (2π)4 |M12↔34|2

ν
δ(4)(P1 + P2 − P3 − P4).

Equilibrium feq? Detailed balance!

C[2↔ 2] !
= 0.
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The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Assumptions

I isotropic system f (t,~r , ~p)→ f (t,~r , p)
I homogeneous system f (t,~r , p)→ f (t, p)
I vanishing external forces Kµ = 0
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The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Detailed balance is satisfied by the Bose-Einstein distribution

feq(Ei) =
1

exp
(

Ei−µ
T

)
− 1

.

The ground state can become macroscopically large feq(E0)� 1.
Two cases are considered.
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The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Decreasing the temperature

f (Ei) =
1

exp
(

Ei−µ
T

)
− 1

T→0−→ 0 for Ei > E0 ≥ µ.

−→ The occupation number of the ground state f (E0) becomes
macroscopically large

Picture: http://www.erbium.at/FF/wp-content/uploads/2016/01/FirstErbiumBEC-1250x350.jpg
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The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Increasing the particle density

f (E0) =
1

exp
(

E0−µ
T

)
− 1

µ→m−→ ∞ for E0 = m ≥ µ.

−→ The occupation number of the ground state f (E0) becomes
macroscopic large
Can be applied to a very early stage of heavy ion collision:

f (p) ∼ 1/αs for p < Qs

' f0θ

(
1− p

Qs

)
f(p)

p

f0 ∼1/αs

Qs ∼1Gev
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Determining the equilibrium state
f(p)

p

ntot,εtot

f0

Qs

ntot =

∫ ∞
0

dp
2π2 p2finit =

f0Q3
s

6π2

εtot =

∫ ∞
0

dp
2π2 p2Efinit =

f0
16π2

{
QsEQs (m2 + 2Q2

s ) + m4 log m
Qs + EQs

}
EQs :=

√
m2 + Q2

s
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Decompose f (t, p) [Semikoz, Tchakev, arxiv.org/abs/hep-ph/9507306]

f (t, ~p) = fpart(t, ~p > 0) + nc(t)(2π)3δ(3)(~p)

Red known — Blue unknown — Green fixing
I ntot = npart,eq + nc,eq particle (density) conservation
I εtot = εpart,eq + εc,eq energy (density) conservation
I npart,eq =

∫
0

∞ dp
2π2 p2 1

exp
(

E−µeq
Teq

)
−1

I εpart,eq =
∫
0

∞ dp
2π2 p2 E

exp
(

E−µeq
Teq

)
−1

I µeq = m and εc = ncm
Solve for Teq and nc,eq
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Numerical solution for the equilibrium values
I Qs = 1GeV

f
0
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I The blue shaded area suggest a negative
condensate density which is not physical

I Condition µeq = m does not apply
(underpopulated case)
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0.48
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

massless case m = 0

Equilibrium state is given analytically

µeq = 0, εc,eq = 0

εtot,eq =
f0Q4

s
8π2

!
=
π2T 4

eq
30 = εpart,eq −→ Teq = 4

√
f015Qs

2π

ntot,eq =
f0Q3

s
6π2 , npart,eq = (15f0)

3
4
Q3

s ζ(3)
2
√

2π5

nc,eq =
f0Q3

s
6π2 − (15f0)

3
4
Q3

s ζ(3)
2
√

2π5

nc,eq = 0 −→ f0 ≈ 0.154 (the critical case)

12 / 44



Introduction
Relaxation and Equilibrium

Numerical methods
Results

Conclusion and Outlook
Backup

Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Equilibrium for underpopulated systems

Solve for Teq and µeq:

ntot = npart,eq =

∫ ∞
0

dp
2π2 p2feq(µeq,Teq)

εtot = εpart,eq =

∫ ∞
0

dp
2π2 p2Efeq(µeq,Teq)
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

f (t, ~p)→ f (t, ~p) = fpart(t, ~p > 0) + nc(t)(2π)3δ(3)(~p)︸ ︷︷ ︸
=:fc

I Set of 2 coupled first order differential equation.
Evolution equation for the BEC
∂fc,1
∂t =

1
2E1

∫ d3 ~p2
2(2π)3E2

d3 ~p3
2(2π)3E3

d3 ~p4
2(2π)3E4

×(2π)4 |M12↔34|2

ν
δ4(P1 + P2 − P3 − P4)

×{fc,1f3f4 − fc,1f2(1 + f3 + f4)} =: C[1c + 1↔ 2]
Following a integration over ~p1

∂nc
∂t =

∫ d3~p1
(2π)3C[1c + 1↔ 2]
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Evolution equation for the higher modes

∂f1
∂t =

1
2E1

∫ d3 ~p2
2(2π)3E2

d3 ~p3
2(2π)3E3

d3 ~p4
2(2π)3E4

× (2π)4 |M12↔34|2

ν
δ4(P1 + P2 − P3 − P4)

×
[
{f3f4 (f1 + 1) (f2 + 1)− f1f2 (f3 + 1) (f4 + 1)}

+ {fc,2f3f4 − fc,2f1(1 + f3 + f4)}
+ {(1 + f1 + f2)fc,3f4 − fc,3f1f2}

+ {(1 + f1 + f2)fc,4f3 − fc,4f1f2}
]

:= C[2↔ 2] + C[1 + 1c↔ 2]
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

I 9 dimensional Integrals are not practical for our numerical
approach

I |M12↔34|2
ν ∝ s = (P1 + P2)

2 → integrate out every angular
dependencies and also the internal momenta p̃4

∂nc
∂t =nc

9λ2

64π3

∫
0

∞
dp2

∫
0

∞
dp3

p2p3
m1E2E3

× [−1− ε(p2 − p3 − p̃4) + ε(p2 + p3 − p̃4) + ε(p2 − p3 + p̃4)]

×
(
m2

1 + m2
2 + 2m1E2

)
θ(p̃2

4)[f3f4 − f2(1 + f3 + f4)]

∂f1
∂t = C[2↔ 2]︸ ︷︷ ︸∫

R+×R+

+ C[1 + 1c↔ 2]︸ ︷︷ ︸
3×
∫
R+ , ∝nc
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Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

What we have so far
A given initial state with the

mass of the particles m:
A final determined state:

finit(p) = f0θ

(
1− p

Qs

)
EoM−→ feq(p) =

1

exp
(√

p2+m2−µeq
Teq

)
− 1

+nc,eq(2π)3δ(3)(~p)

I 2 first order coupled integro-differential equations
I → |M12↔34|2

ν ∝ s = (P1 + P2)
2

corresponds to σtot = const.
I Inclusion of massles condensate particles is possible in

contrast to |M12↔34|2
ν ∝ const. [arXiv:1510.04552]

I Analytic solution? Researched field - [arxiv:1507.07834]

I Numerical evaluation!
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Cash-Karp RK45-scheme
Applying on the Boltzmann-equation

f Euler
i+1 = f Euler

i + ki

f RK4
i+1 = f RK4

i +
2825

27648ki ,1 +
18575
48384ki ,3 +

13525
55296ki ,4 −

277
14336ki ,5 +

1
4ki ,6

f RK5
i+1 = f RK5

i +
37

378ki ,1 +
250
621ki ,3 +

125
594ki ,4 −

1
5ki ,6

[Transactions on Mathematical Software 16: 201-222, 1990. doi:10.1145/79505.79507]

I two approximations of order 4 and 5
I no additional computation time for the second approximation
I compare the approximations
I Cash-Karp method involves hnew = shold

s =

∣∣∣∣∣ εtol
f RK5
i+1 − f RK4

i+1

∣∣∣∣∣
1
5
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Cash-Karp RK45-scheme
Applying on the Boltzmann-equation

Applying on the Boltzmann-equation

I fpart(p) is given on a Grid G := {p0, p1, ..., pi , ..., pN} with
p0 < p1 < ... < pi < ... < pN (N > 100)

I then solve the Boltzmann equation independently for every
Grid point (external momenta pi ) by applying the RKCK45
scheme.

I to evaluate the collision integrals we apply quadrature
methods (trapezoidal, Simpson)
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Cash-Karp RK45-scheme
Applying on the Boltzmann-equation

Condensation onset
onset:= Starting time of condensation

I the condensation process ṅc ∝ nc happens only for nc 6= 0
I BEC is a phenomena which arises due to fluctuations and are

not included in this approach
I two Possibilities to include condensation are:

1. initialising with a finite but negligibly small condensate
seed nc � ntot

2. inserting a small condensate seed nc � ntot when the
distribution function reaches a certain point

I extraction of 2 parameters (µeff,Teff) by fitting the Bose
distribution to fpart and then inserting the seed when the
condition µeff = m is given
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Before The result:

I Transport code BAMPS [Greiner arXiv:hep-ph/0406278]

(= Boltzmann Approach to Multi-Parton Scatterings)
I Test particle Ansatz
I Box calculatation

Our code: smooth lines
BAMPS: shaky lines
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Underpopulated massless case
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Underpopulated massless case
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underpopulated case: f0 =0.05, m=0MeV
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underpopulated case: f0 =0.05, m=0MeV

T[GeV],eff. temperature

Teq=0.2584[GeV]

µ[GeV],eff. chemical potential

µeq=-0.2047[GeV]

I No condensation since µeff < m
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Critical massless case
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Critical massless case
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critical case: f0 =0.154, m=0MeV
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underpopulated case: f0 =0.05, m=0MeV

T[GeV],eff. temperature

Teq=0.276[GeV]

µ[GeV],eff. chemical potential

µeq=0.0[GeV]

I No condensation since µeff converges to the mass (0GeV)
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Clip
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Thermalisation time
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critical case: f0 =0.154, m=0MeV
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I focus f (t = 2.0[fm/c], p)XXXXX
I Increasing the total particle density leads to a faster

thermalisation-consistent
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Overpopulated massless case
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overpopulated case: f0 =0.4, m=0MeV
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Overpopulated massless case
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overpopulated case f0 =0.4, m=0MeV 
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I Maybe just a minor bug? A time-shift?
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Condensate evolution
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overpopulated case: f0 =0.4, m=0MeV
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overpopulated case: f0 =0.4, m=0MeV

T[GeV],eff. temperature

Teq=0.352[GeV]

µ[GeV],eff. chemical potential

µeq=0.0[GeV]
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

I About the onset (onset:= Starting time of condensation)
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overpopulated case: f0 =0.4, m=0MeV

equilibrium

BAMPS

our code-method 1

our code-method 2

our code-method 3

I method 1: Starting with condensate seed
I method 2: Inserting a seed when µeff = 0
I method 3: Any time
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Clip
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Overpopulated massive m = 25MeV case

Before the onset
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Overpopulated massive m = 25MeV case
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Conclusion and Outlook

I All our simulations thermalize into equilibrium.
I The evolution of our system without condensate

ḟ1 = C[2↔ 2] is in a good agreement with BAMPS.
I Overpopulated systems differs by a time shift later while

Equilibration is still given
I The different onset methods are equivalent.

I A new BAMPS run is going on to set the onset manually at a
earlier time.

I Further numerical tests have to include a comparison with the
analytic solution for a classical system in [arxiv:1507.07834]:

I Adapting this scheme for longitudinal expanding (anisotropic)
systems (Bjorken coordinates).
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Thank You!
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Scaling behaviour
Details on the numerical schemes
A test
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Scaling behaviour
Details on the numerical schemes
A test

Eulers method

df
dt = C(t, f ) , f (t0) = f0

df
dt

∣∣∣∣
t=ti

= C(ti , fi)

ft = f0 + C(t0, f0)(t − t0)

fi+1 = fi + C(ti , fi)(ti+1 − ti)

Using a uniform step size h := ti+1 + ti = const. and substituting
ki = hC(ti , fi) one ends up ith:

f Euler
i+1 = fi + ki
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Scaling behaviour
Details on the numerical schemes
A test

Cash-Karp RK45 -scheme
starting point: 2 approximations whereby both approximations
need the evaluation of the following six values

ki,1 = hC(ti , fi)

ki,2 = hC
(
ti +

1
5h, fi +

1
5ki,1

)
ki,3 = hC

(
ti +

3
10h, fi +

3
40ki,1 +

9
40ki,2

)
ki,4 = hC

(
ti +

3
5h, fi +

3
10ki,1 −

9
10ki,2 +

6
5ki,3

)
ki,5 = hC

(
ti + h, fi −

11
54ki,1 +

5
2ki,2 −

70
27ki,3 +

35
27ki,4

)
ki,6 = hC

(
ti+

7
8h, fi+

1631
55296ki,1+

175
512ki,2+

575
13824ki,3+

44275
110592ki,4−

253
4096ki,5

)
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Scaling behaviour
Details on the numerical schemes
A test

illustration
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Euler:h=0.25

Euler:h=0.1

Euler:h=0.01

analytic solution

RKCK4/5:εtol =0.0005,h0 =0.025

Given an first order
ODE with the following
IVP

df
dt = cos2(t) + tan(t)f

f (0) = 2

and its analytic solution

f (t) = [sin(t)+2] cos(t)
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Scaling behaviour
Details on the numerical schemes
A test

illustration
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RKCK4/5:εtol =0.0005,h0 =0.025

Given an first order
ODE with the following
IVP

df
dt = cos2(t) + tan(t)f

f (0) = 2

and its analytic solution

f (t) = [sin(t)+2] cos(t)
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Scaling behaviour
Details on the numerical schemes
A test

illustration
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Given an first order
ODE with the following
IVP

df
dt = cos2(t) + tan(t)f

f (0) = 2

and its analytic solution

f (t) = [sin(t)+2] cos(t)
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Scaling behaviour
Details on the numerical schemes
A test

illustration
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Euler:h=0.25

Euler:h=0.1

Euler:h=0.01

analytic solution

RKCK4/5:εtol =0.000005,h0 =0.025

Given an first order
ODE with the following
IVP

df
dt = cos2(t) + tan(t)f

f (0) = 2

and its analytic solution

f (t) = [sin(t)+2] cos(t)
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Scaling behaviour
Details on the numerical schemes
A test

Overpopulated massless case f0 = 0.4

I our code initialised with a seed and in BAMPS the condensate
evolution is prohibited
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