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Introduction

The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Non-equilibrium

» Non-equilibrium thermodynamics is a branch of
thermodynamics that deals with physical systems that are not
in thermodynamic equilibrium.  wikipedia)

» Equilibrium thermodynamics ignores the time-courses of
physical processes, in contrast non-equilibrium
thermodynamics attempts to describe their time-courses in
continuous detail. (wikipedia]

» Thermalisation is the process of physical systems reaching
thermal equilibrium through mutual interaction. (wikipedia]
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Introduction

The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

BUU-equation

Relativistic evolution equation of a bosonic (including quantum
statistics by Bose enhancement) system in non-equilibrium

3 3 3
Eil (pfﬁi“ + m@(Zfo> h= QLEl / 2(;7T§§E2 2(;]7TF))§E3 2(;7:));5; Wazerse
x {BR(L+A)(1+5) - AR(L+A)(1+4) )
=:C[2 + 2].
Wiseyza = (2w)4M5(4)(P1 + Py — P3 — Py).
Equilibrium f.q? Detailed balance!
Cl2 2] = 0.
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Introduction

The Boltzmann-Uhlen-Uehlenbeck equation
Our system
About Bose-Einstein condensation

Assumptions

» isotropic system f(t,7, p) — f(t,7,p)
» homogeneous system f(t,7, p) — f(t,p)
» vanishing external forces K* =0
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Introduction

The Boltzmann-Uhlen-Uehlenbeck equation
Our system

About Bose-Einstein condensation

Detailed balance is satisfied by the Bose-Einstein distribution
1
exp (E'—;“) 1

The ground state can become macroscopically large foq(Ep) > 1.
Two cases are considered.

ﬁeq(Ei) =
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Introduction

The Boltzmann-Uhlen-Uehlenbeck equation
Our system

About Bose-Einstein condensation

Decreasing the temperature

1
1 Ty & Esmea
exp(%")—l

— The occupation number of the ground state f(Ep) becomes
macroscopically large

“ A

f(Ei) =

Picture: http://www.erbium.at/FF/wp-content/uploads/2016/01/FirstErbiumBEC-1250x350.jpg
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Introduction

The Boltzmann-Uhlen-Uehlenbeck equation
Our system

About Bose-Einstein condensation

Increasing the particle density

1 m
f(B)=————"To0 for Eg=m>p.

— The occupation number of the ground state f(Ey) becomes
macroscopic large
Can be applied to a very early stage of heavy ion collision:

f(p)

f(p) ~1/as for p < Qs fo~1/e

~o0(1-g)

Q, ~1Gev P
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion

Intermediate summary

Determining the equilibrium state

f(p)

Q, p
ﬁp init = o2

9] dp )
= _— Efini =
€tot /O o2 p t

e’} d f 3
ntot:/ P 2f OQS
0

0 2 2 4 m
— E 2 log ———
1672 {Qs o.(m”+2Q5) + m" log Q.+ EQS}

EQs = \/m
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Relaxation and Equilibrium m for overpopulated systems
rium for underpopulated systems

Equation of motion
Intermediate summary

Decom pose f(t, p) [Semikoz, Tchakev, arxiv.org/abs/hep-ph/9507306]

f(t, B) = foar(t, B > 0) + nc(t)(27)363)(B)

Red known — Blue unknown — fixing

>

>

>

Niot = Npart,eq + Nceq Particle (density) conservation

€tot = €parteq T €c.eq €Nergy (density) conservation

1
Npart,eq = f 27r2p E_
ex <T7)—1
e
oo dp E
€parteq = |

27r2 P E— 1
exp( = ) -

=m and €. = ncm

Solve for Teq and nc eq
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Relaxation and Equili Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Numerical solution for the equilibrium values
> Qs = 1GeV

T,,[GeV]

0.45
0.30
0.15
0.00
-0.15
-0.30
—-0.45
—-0.60

0010
» The blue shaded area suggest a negative
condensate density which is not physical

» Condition peq = m does not apply
(underpopulated case)
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

massless case m =0

Equilibrium state is given analytically

Heq = O) €ceq = 0

Qs 1 ™ T —=Q
etot,eq = ﬁ = Teq = €part,eq — Teq — 61527;

foQ3 3 Q3

Ntot,eq = 67257 Npart,eq = (15f) \/>(7Tg
_ @3 3 Q3¢(3)
Nceq = 672 (15f) 2\[7_(5

Nceq = 0 — fy =~ 0.154 (the critical case)
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

Equilibrium for underpopulated systems

Solve for Teq and fieq:

Mot = n —/Oodppzf (seq: Tea)
tot — t, - eq; e
(o] part,eq 0 27T2 eqHeq; leq

o) dp
2
€tot = €part,eq = 5P Efeq(pieq, Teq)
o part,eq 0 27T2p eq\Heq; feq
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems

Equation of motion
Intermediate summary

F(t, B) — £(t, B) = foare(t, B > 0) + nc(1)(2m)363)(B)
=:fc

> Set of 2 coupled first order differential equation.
Evolution equation for the BEC

Ofer 1 / &¢p &I Em
ot 2E; ) 2(2m)3E 2(27)3E;5 2(27)3E,

><(27r)4|M12;34|254(P1 + Py — P3— Py)
x{fe1fafy — f1h(l+f+ )} = Cllc+ 1+ 2]
Following a integration over p;
onc / d*pr
ot (2r)3

Cllc+1 2]
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems

Equation of motion
Intermediate summary

Evolution equation for the higher modes

h_ L[ e
ot B 2E1 2(27T)3E2 2(27T)3E3 2(27T)3E4

2| Mi2es3al? 4
X(27T) 7][ (S (P1+P2—P3—P4)

‘ {{fgmflﬂ)(@ﬂ)—ﬂfa(fg+1)(ﬁ+1)}

+{feofsfa — fepfi(1+ 34 f2)}
{1+ + H)fesfs — fezhha}

{1+ A + B)fcafs — feafifo}

=C2 2] +C[1+1c+ 2]
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems

Equation of motion
Intermediate summary

» 9 dimensional Integrals are not practical for our numerical
approach

2
> M o s = (P1 + P»)? — integrate out every angular
dependencies and also the internal momenta p;

one g 2 [o° oo
onc 7/ dpz/ dps p2p3
0 0

ot :nc64ﬂ'3 miExE3

X [=1—€(p2 — p3s — Pa) + €(p2 + p3 — Pa) + €(p2 — p3 + Pa)]
x (mg + mj +2mE>) 0(53)[fsfa — H(1+ f + fa)]

%:C[2<—>2]+C[1+1c<—>2]
ot —— N——

fR+XR+ 3><fR+’ xne
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Relaxation and Equilibrium Equilibrium for overpopulated systems
Equilibrium for underpopulated systems
Equation of motion
Intermediate summary

What we have so far

A given initial state with the A final determined state:
mass of the particles m:
P EoM 1 3:(3) (=
fue(p) = (1— =) M £ (p) = +he,eq(27)°0
(o) =0 (1- &) = (o) o (F) w2nP3(5)
Teq

v

2 first order coupled integro-differential equations
2

— 7|M12;j34| xs= (P + P2)2

corresponds to oot = const.

Inclusion of massles condensate particles is possible in
|Mi2es34]?
v

v

v

contrast to
Analytic solution? Researched field - (ariv:1507.07834)
Numerical evaluation!

X CONSt. [arXiv:1510.04552]

v

v
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Numerical methods Cash-Karp RK45-scheme

Applying on the Boltzmann-equation

fl_iuller _ fI_Euler + ki

2825 18575 13525 277 1
f'_RK4 — f'.RK4 k; k; kia — ki —k;
L =T 768 i T 1838473 T 55206 4 T 14336 0 T 4706
37 250 125 1
ﬁRK5 _ f"RKS ki ; kf _ ki
L T I gggkin o ga K3 gy Kia — g Kis

[Transactions on Mathematical Software 16: 201-222, 1990. doi:10.1145/79505.79507]
» two approximations of order 4 and 5
» no additional computation time for the second approximation
» compare the approximations
» Cash-Karp method involves hpew = Shoid

1

€tol
RK5 RK4

i+1 i+1

S =
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Numerical methods Cash-Karp RK45-scheme
Applying on the Boltzmann-equation

Applying on the Boltzmann-equation

> foare(P) is given on a Grid G := {p° p!, ..., p', ..., pN'} with
PP <pl<..<p <. <pN(N>100)

> then solve the Boltzmann equation independently for every
Grid point (external momenta p’) by applying the RKCK45
scheme.

> to evaluate the collision integrals we apply quadrature
methods (trapezoidal, Simpson)
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Numerical methods Cash-Karp RK45-scheme
Applying on the Boltzmann-equation

Condensation onset

onset:= Starting time of condensation
» the condensation process n. o< n. happens only for n. # 0

» BEC is a phenomena which arises due to fluctuations and are
not included in this approach

» two Possibilities to include condensation are:

1. initialising with a finite but negligibly small condensate
seed ne < Nyot

2. inserting a small condensate seed n. < not when the
distribution function reaches a certain point
> extraction of 2 parameters (uef, Teff) by fitting the Bose
distribution to fparx and then inserting the seed when the
condition pefr = m is given
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Underpopulated/Critical /Overpopulated case
About the onset

Results A
Massive case

Before The result:

» Transport code BAMPS (Greiner arXiv:hep-ph/0406278]

(= Boltzmann Approach to Multi-Parton Scatterings)
» Test particle Ansatz
» Box calculatation

Our code: smooth lines
BAMPS: shaky lines
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Underpopulated/Critical/Overpopulated case

About the onset
Results

Massive case

Underpopulated massless case

underpopulated case: f,=0.05, m=0MeV . underpopulated case: f,=0.05, m=0MeV
10
-~ 0.0[fm/cl-initial — 0.4[fm/c]
zj — 0.01[fm/c] 1.0[fm/c]
107 P — 0.1[fm/c] 2.0[fm/c]
0.2[fm/c] — equilibrium

- - 0.0[fm/c]-initial — 0.4[fm/c]
102 || — 0.01ffm/c] 1.0(fm/c]
— 0.1[fm/c] 2.0[fm/c]
— 0.2[fm/c] — equilibrium
2 -1 1
10 p[GeV] 10 10 10
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Underpopulated/Critical/Overpopulated case
About the onset

Results A
Massive case

Underpopulated massless case

underpopulated case: f,=0.05, m=0Me! underpopulated case: f,=0.05, m=0Me'
d lated f,=0.05 OMeV 20 d lated f,=0.05 OMeV
10° —  T[GeV],eff. temperature
\ o T,,=0.2584[GeV]
10°
15 — ulGeV],eff. chemical potential
102 -- 1,=-0.2047[GeV]
103 S 10
_ [
e, o
=10 Iy
=05
10°
10° 0.0
107 || — 0.0[fm/c]-initial -- equilibrium{ W L ____
— 10.0[fm/c]
10° - - 5 -0.5
10 p [g)ev] 10 0 5 10 15 20

t [fm/c]

» No condensation since e < m
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Results

Critical massless case

102 critical case: f,=0.154, m=0MeV critical case: f,=0.154, m=0MeV
--  0.0[fm/c]-initial  — 0.5[fm/c]
10* — 0.01[fm/c] 1.0[fm/c]
S — 0.1[fm/c] 2.0[fm/c]
102 0.2[fm/c] equilibrium
10°
e
“10
5
-~ 0.0[fm/c]-initial — 0.5[fm/c] 10
— 0.01[fm/c] 1.0[fm/c] .
102 | — 0.1[fm/c] 2.0[fm/c] 10
— 0.2[fm/c] — equilibrium
10”7
10° 107 10 10
p [GeV] p [GeV]

24 /44



Results

Critical massless case

critical case: f,=0.154, m=0MeV

— 0.0[fm/c]-initial — «l/p
10.0[fm/c] -~ equilibrium
107 10! 10°
p [GeV]

Underpopulated/Critical/Overpopulated case
About the onset

Massi

ive case

20 underpopulated case: f,=0.05, m=0MeV

15 — ulGeV],eff. chemical potential
-- 1,=0.0[GeV]
S‘ 1.0}
v
S
= 0.5

— T[GeV],eff. temperature
T,=0.276[GeV]

o.o-ﬁ
0

5 10 15 20
t [fm/c]

» No condensation since pf converges to the mass (0GeV)
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Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Results

26 /44



Underpopulated/Critical/Overpopulated case
About the onset
Massive case

Results

Thermalisation time

§ underpopulated case: f,=0.05, m=0MeV critical case: f,=0.154, m=0MeV
10
-- 0.0[fm/c]-initial — 0.4[fm/c] - 0.0[fm/c]-initial — 0.5[fm/c]
j — 0.01[fm/c] — 1.0[fm/c] 107 0.01[fm/c] — 1.0[fm/c]
107 N — 0.1[fm/c] 2.0[fm/c] 0.1[fm/c] 2.0[fm/c]
N — 0.2[fm/c] — equilibrium 102 0.2[fm/c] — equilibrium
107
C
T10*
10°
10°
107

10" 10"

» focus f(t = 2.0[fm/c], p)
> Increasing the total particle density leads to a faster

thermalisation-consistent
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Underpopulated/Critical/Overpopulated case
About the onset

Results A
Massive case

Overpopulated massless case

overpopulated case: f,=0.4, m=0MeV

10°
10
10°
107
107
o
“\:10'3
10
1051 — 0.001[fm/c]
— 0.1[fm/c]
10°H — 0.2[fm/c]
el lequlllbrlum . .
107 10° 10

107
p [GeV]
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Overpopulated massless case

f(p)

Results

overpopulated case f,=0.4, m=0MeV

0.3[fm/c]-our code
0.3[fm/c]-BAMPS
0.319[fm/c]-our code
0.4[fm/c]-our code
0.4[fm/c]-BAMPS
equilibrium

p [GeV]

Underpopulated/Cr
About the onset
Massive case

ical/Overpopulated case

overpopulated case f,=0.4, m=0MeV

S — 0.3[fm/c]-our code
10 0.3[fm/c]-BAMPS
—— 0.319[fm/c]-our code
B — 0.4[fm/c]-our code
10 0.4[fm/c]-BAMPS
equilibrium
__10*
o
=
10°
10°
107
10° 10

p [GeV]

» Maybe just a minor bug? A time-shift?

20 /44




Underpopulated/Critical/Overpopulated case
About the onset

Results A
Massive case

Condensate evolution

overpopulated case: f,=0.4, m=0MeV overpopulated case: f;=0.4, m=0MeV

25
— TI[GeV],eff. temperature
2.0 T,,=0.352[GeV]
L 15 — pulGeV],eff. chemical potential
-- 1y=0.0[GeV]
- . 1.0
0.6L| — ms-BAMPS — a=-our code N
° — qs-our code ==0.212-equilibrium 8 0.5]
£ -~ ge-our code-shifted T =0.788-equilibrium Sool--
0.4 - >
T-BAMPS =
-0.5
02 -1.0
-1.5
0. -2,
8.0 0.5 15 2.0 8.0 0.5 1.0 15 2.0

1.0
t[fm/c] t [fm/c]
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Underpopulated/Critical /Overpopulated case

About the onset
Results A
Massive case

» About the onset (onset:= Starting time of condensation)

overpopulated case: f,=0.4, m=0MeV overpopulated case: f,=0.4, m=0MeV
0.25] .
— equilibrium
— BAMPS
0.20 0.05 -~ our code-method 1
' - - our code-method 2
0.04 - - our code-method 3
0.15
S / ke
= / = 0.03 !
4 / e /
0.10 ! !
/ — equilibrium 0.02 ¥
! — BAMPS i
0.05 | - - our code-method 1 !
| 0.01] "
| - - our code-method 2 ',':
H - - our code-method 3 i
0.0 t 0.00 ~
8.0 1.0 1.5 2.0 0.2 0.3 0.4 0.5 0.6 0.7
t [fm/c] t [fm/c]

» method 1: Starting with condensate seed
» method 2: Inserting a seed when pief = 0

: Any time
31/44
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Underpopulated/Critical /Overpopulated case
About the onset
Massive case

Results
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Underpopulated/Critical /Overpopulated case
About the onset
Massive case

Results

Overpopulated massive m = 25MeV case

Before the onset After the onset
.\ overpopulated case f,=0.4, m=25MeV . overpopulated case f,=0.4, m=25MeV
10° =T 10
E 10°
2
10 10°
10
10°
10°
1
107 10
= ~10?
= 10* t=0.005(fm/c] =107
— t=0.110[fm/c] 10 || — equilibrium
1001 e ook 10° 0 ot
10° t=0.355[fm/c] 10°H —  t=0.500(fm/c]
t=0.380[fm/c] 107 H — .610[fm/c]
-~ t=0.410[fm/c] 10® t=0.765[fm/c]
oo P
— equilibrium 109 t=18.280[fm/c]
107 ° 107 o°

10"
p [GeV]
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Underpopulated/Critical /Overpopulated case
About the onset

Results A
Massive case

Overpopulated massive m = 25MeV case

overpopulated case: f,=0.4, m=25MeV

10 ,.over case: f,=0.4, m=25MeV
— T[GeV],eff. temperature
T,=0.345[GeV]
— ulGeV],eff. chemical potential
08 2.0 -- 1,=0.025[GeV]
1.5/
0.6 T
— --- =0.189-equilibrium s
g Mot Mot 3
e N [ apen e =1.0f
— = — ==0.811-equilibrium &
o ot
0.4
0.5]
0.2k _
0.0f
0.0 (
0 2 4 6 12 14 16 18 1 6

8 10 3 4
t[fm/c] t [fm/c]
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Conclusion and Outlook

Conclusion and Outlook

» All our simulations thermalize into equilibrium.

» The evolution of our system without condensate
fi =C[2 > 2] is in a good agreement with BAMPS.

» Overpopulated systems differs by a time shift later while
Equilibration is still given

» The different onset methods are equivalent.

> A new BAMPS run is going on to set the onset manually at a
earlier time.

» Further numerical tests have to include a comparison with the
analytic solution for a classical system in [arxiv:1507.07834:

» Adapting this scheme for longitudinal expanding (anisotropic)
systems (Bjorken coordinates).
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Conclusion and Outlook

Thank You!
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Backup

overpopulated case f,=0.4, m=0MeV

— 0.280[fm/c]

0.050[fm/c]  —
0.200[fm/c]  —

0.320[fm/c] —

0.330[fm/c]
0.3445[fm/c]
0.348[fm/c]

x1/p?

\\

10° 10"
p [GeV]

10°

Scaling behaviour
Details on the numerical schemes

A test

overpopulated case f,=0.4, m=0MeV

— 0.050[fm/c] — 0.330[fm/c]
0.200[fm/c] ~— 0.3445[fm/c]
— 0.280[fm/c] 0.348[fmyc]
10° 0.320(fm/c]  — &1/
_.10°
a
=
10
10°
10? 107
p [GeV]
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Scaling behaviour
Details on the numerical schemes
A test

Backup

Eulers method

df
— =C(t,f f(ty) = f
dt (7 )7 (0) 0
df
L :C(thf;)
dt t=t;

fe = fo + C(to, fo)(t — to)
fix1 = fi + C(ti, fi)(tiz1 — ti)

Using a uniform step size h := tj;1 + t; = const. and substituting
ki = hC(t;, f;) one ends up ith:
ﬁiuller — fl + ki

1
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Scaling behaviour
Details on the numerical schemes
A test

Backup

Cash-Karp RK45 -scheme

starting point: 2 approximations whereby both approximations
need the evaluation of the following six values

ki1 = hC(t;, f;)
k hClt; + 1h fi + 1k-
i,2 — i 5 s 1 5 i1
3 3 9
kiz = hC(E‘ + Ehy fi + Eki,l + 4Oki,z>
3 3 9 6
kia = hC(t; + =h, f; ki —k; k,
4 C<t+5 it gkin— phizts 3)

54 27 27
7 1631 175 575 K 44275 253 >

11 70 35
ki,5 = hc(tl + h7 f; kl 1+ 5 kl 2 — kl 3+ —= kl,4)

kio = hC\ti+gh fit gpogehint 51252 13824%3 T 110502 ~ 4006°

39/ 44




Scaling behaviour

Details on the numerical schemes
A test
Backup

illustration

Given an first order

ODE with the following
IVP

= cos?(t) + tan(t)f
dt
Euler:h=0.25
18| — Euler:h=0.1
— Euler:h=0.01
1.7

analytic solution

f(0)=2
and its analytic solution
RKCK4/5:6,) =0.0005,h, =0.025
0.2 0.4 0.6

t

0.8

f(t) = [sin(t)+2] cos(t)
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Scaling behaviour
Details on the numerical schemes
A test

Backup

illustration

. Given an first order
ODE with the following
2
VP
1
f 2
_° — = cos“(t) +tan(t)f
< dt
-1
Euler:h =0.25 f(o) =2
—2t| — Euler:h=0.1
— Euler:h=0.01 . . .
3| — analytic solution and its analytic solution

o ¢ RKCK4/5:€,,=0.0005,h, =0.025

80 05 1.0 15 2.0 2.5 f(t) = [Sin(t)+2] COS(t)

t
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Scaling behaviour
Details on the numerical schemes
A test

Backup

illustration

L Given an first order
ODE with the following
IVP

f
— = cos?(t) + tan(t)f

Zg dt

-2 Euler:h =0.25 f(o) =2
— Eulerth=0.1
— Euler:h=0.01 . : .

-3
— analytic solution and its analytic solution
o o RKCK4/5:e,,=0.0005,h, =0.025

4 s
14 16 18 20 22 24 f(t) = [sm(t)—{—2] COS(t)
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Scaling behaviour
Details on the numerical schemes
A test

Backup

illustration

L Given an first order
ODE with the following
IVP

f
i cos?(t) +tan(t)f

Euler:h=0.25
— Eulerth=0.1

_3l| — Euler:h=0.01
— analytic solution
o e RKCK4/5:€,=0.000005,h; =0.025

14 16 18 2.0 22 2.4 f(t) = [Sin(t)+2] COS(Z‘)

t

£(0) = 2

and its analytic solution
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Scaling behaviour
Details on the numerical schemes

A test

Backup

Overpopulated massless case f; = 0.4

» our code initialised with a seed and in BAMPS the condensate
evolution is prohibited

overpopulated case: f,=0.4, m=0MeV overpopulated case: f,=0.4, m=0MeV
107 —  0.000[fm/cl-initial 0.1[fm/c]
— 0.002[fm/c] 0.2[fm/c]
- — 0.01[fm/c] — equilibrium
—. 10° s | —  0.04[fm/c]
10

= . a
S0’ Si10?
4 ﬁ
10" —
— 0.000[fm/c]-initial 0.1[fm/c] 10?2
— 0.002[fm/c] 0.2[fm/c]
— 0.01[fm/c] — equilibrium
102t — 0.04[fm/c]
107 10" 10 10°
p [GeV] p [GeV]
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