Statistical analysis of transport+hydrodynamics hybrid model in 62.4 GeV Au+Au collisions

Jussi Auvinen (Duke U.)

in collaboration with Iu. Karpenko, J. Bernhard and S. A. Bass

Transport meeting Frankfurt am Main July 1, 2015

Outline

Introduction

Statistical analysis

Hybrid model results

Summary

RHIC beam energy scan

Reaching from $\sqrt{s_{NN}} = 200$ GeV down to FAIR energies $\sqrt{s_{NN}} \approx 5 \text{ GeV}.$

QGP volume and lifetime decreases with decreasing $\sqrt{s_{NN}} \Rightarrow \text{signals (jet)}$ quenching, strong collective flow, etc.) should turn off at some point

Picture taken from G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).

Transport + hydrodynamics hybrid model

I. A. Karpenko et al. PRC91, 064901 (2015), arXiv:1502.01978

Image source: S. A. Bass

- Initial State from UrQMD¹ hadron+strings cascade
- Start the hydrodynamical evolution when nuclei have passed through each other: $\tau_0 \geq \frac{2R_{\text{nucleus}}}{\sqrt{\gamma_{CM}^2-1}}$
- Particle properties (energy, baryon number) to densities: 3D Gaussians with "smearing" parameters R_{trans} , R_{long} ($\equiv \sqrt{2}\sigma$)
- 3+1D viscous hydrodynamics² with viscosity parameter η/s
- Transition from hydro back to transport ("particlization") when energy density $\epsilon < \epsilon_C$

¹S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), M. Bleicher et al., J. Phys. G 25, 1859 (1999).

²Iu. Karpenko *et al.*, Comput.Phys.Commun. 185, 3016 (2014).

Model parameters (input):
$$\vec{x} = (x_1, ..., x_n)$$

$$(\tau_0, R_{\mathsf{trans}}, R_{\mathsf{long}}, \eta/s, \epsilon_C)$$

$$\Downarrow$$
Model output $\vec{y} = (y_1, ..., y_m) \Leftrightarrow \mathsf{Experimental} \ \mathsf{values} \ \vec{y}^{\mathsf{exp}}$

$$(N_{\mathsf{ch}}, \langle p_T \rangle, v_2, ...)$$

Goal: Find the "true" values of the input parameters, for which $\vec{x}^* \Rightarrow \vec{y}^{\text{exp}}$. What is the level of uncertainty associated with the proposed values?

Introduction

Bayesian analysis

Bayes' theorem:

Given a set $X = \{\vec{x}_k\}_{k=1}^N$ of points in parameter space and a corresponding set $Y = {\{\vec{y_k}\}_{k=1}^N}$ of points in observable space,

$$\boxed{P(\vec{x}^*|X,Y,\vec{y}^{\text{exp}}) \propto P(X,Y,\vec{y}^{\text{exp}}|\vec{x}^*)P(\vec{x}^*)}$$

- $P(\vec{x}^*|X,Y,\vec{y}^{\text{exp}})$ is the *posterior* probability distribution of \vec{x}^* for given $(X, Y, \vec{y}^{\text{exp}})$
- $P(\vec{x}^*)$ is the prior probability distribution (simplest case: ranges of parameter values)
- $P(X, Y, \vec{y}^{\text{exp}} | \vec{x}^*)$ is the *likelihood* of $(X, Y, \vec{y}^{\text{exp}})$ for given \vec{x}^* (to be determined with statistical analysis)

$$P(X,Y,\vec{y}^{\,\mathrm{exp}}|\vec{x}^*) \propto \exp\left(-\tfrac{1}{2}(\vec{y}^*-\vec{y}^{\,\mathrm{exp}})^T\Sigma^{-1}(\vec{y}^*-\vec{y}^{\,\mathrm{exp}})\right),$$

where

- \vec{y}^* is model output for the input parameter point \vec{x}^*
- Σ is the covariance matrix. In this study $\Sigma = \text{diag}(\sigma^2)$, with $\sigma \approx 0.05$ as a global estimate of relative uncertainty associated with comparing \vec{y}^* to \vec{y}^{exp}
- ⇒ Need a way to predict model output for arbitrary input parameter point
- ⇒ Model emulation using Gaussian processes

Assumption: Set Y_a of values of observable y_a , corresponding to set X of points in parameter space, has a multivariate normal distribution:

$$Y_a \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where $\boldsymbol{\mu} = \mu(X) = \{\mu(x_1), ..., \mu(x_N)\}$ is the mean and

$$\Sigma = \sigma(X, X) = \begin{pmatrix} \sigma(\vec{x}_1, \vec{x}_1) & \cdots & \sigma(\vec{x}_1, \vec{x}_N) \\ \vdots & \ddots & \vdots \\ \sigma(\vec{x}_N, \vec{x}_1) & \cdots & \sigma(\vec{x}_N, \vec{x}_N) \end{pmatrix}$$

is the covariance matrix with covariance function $\sigma(\vec{x}, \vec{x}')$ (model-dependent choice; constant, linear, exponential, periodic, ...).

Choice: Squared-exponential covariance function with a noise term

$$\sigma(\vec{x}, \vec{x}') = \theta_0 \exp\left(-\sum_{i=1}^n \frac{(x_i - x_i')^2}{2\theta_i^2}\right) + \theta_{\mathsf{noise}} \delta_{\vec{x}\vec{x}'}$$

The hyperparameters $\vec{\theta} = (\theta_0, \theta_1, ... \theta_n, \theta_{\text{noise}})$ are not known a priori and must be estimated from the given data

⇒ emulator training: Maximise the marginal likelihood (aka "evidence")

$$\log P(Y|X,\vec{\theta}) = \underbrace{-\frac{1}{2}Y^T \mathbf{\Sigma}^{-1}(X,\vec{\theta}) Y}_{\text{data fit}} \underbrace{-\frac{1}{2}\log|\mathbf{\Sigma}(X,\vec{\theta})|}_{\text{complexity penalty}} \underbrace{-\frac{N}{2}\log(2\pi)}_{\text{normalization}}$$

1-D example

Hybrid model results

After training: $\theta_x^2 = 0.135, \theta_n = 0.027$

Principal component analysis

m observables $\Rightarrow m$ Gaussian processes

Number of emulators can be reduced with principal component analysis:

- Construct orthogonal linear combinations of observables (= principal components) by performing an eigenvalue decomposition on the covariance matrix
- Eigenvalue λ_i represents the variance explained by principal component p_i
- Select the number of principal components which together explain desired fraction of total variance; often only a few PCs are needed to explain 99% of the variance

Principal component analysis

N simulation points, m observables $\Rightarrow N \times m$ data matrix Y

- Center the data by subtracting the mean of each observable from all points
- Eigenvalue decomposition: $Y^TY = U\Lambda U^T$; $U(m \times m)$ eigenvector matrix, $\Lambda = \text{diag}(\lambda_1...\lambda_m)$ eigenvalue matrix, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_m$ \Rightarrow (N x m) observable matrix in principal component space: $Z = \sqrt{N}YU$
- Fraction of variance explained by principal component q: $V(q) = \frac{\lambda_q}{\sum\limits_{}^{} \lambda_i}$
- $V(q) \approx 0$ starting from some $i < q < m \Rightarrow$ Reduced-dimension transformation $Z_q = \sqrt{N}YU_q$ with minimal loss of precision

Markov Chain Monte Carlo

The posterior distribution p(x|y) is sampled with Markov Chain Monte Carlo (MCMC) method

- Random walk in parameter space, where each step is accepted or rejected based on a relative likelihood
- Converges to posterior distribution as number of steps $N \to \infty$
- Common example: Metropolis-Hastings algorithm
 - Given position x(t), sample proposal position x' from a transition distribution Q(x'; x(t)) (should be symmetric; typically Gaussian)
 - Accept the proposal with probability $\frac{p(x'|y)}{p(x(t)|u)} \frac{Q(x(t);x')}{Q(x';x(t))}$
- Acceptance fraction of steps measures the quality of random walk; should be 0.2-0.5³
- Autocorrelation time = Number of steps between independent samples "Burn-in" takes a few autocorrelations. gathering enough samples $\sim \mathcal{O}(10)$ autocorrelations

³D. Foreman-Mackey et al., Publ. Astron. Soc. Pacific 125, 306 (2013), arXiv:1202.3665

Analysis procedure

Verify normal distribution of observables (apply a transformation if necessary)

Scale with experimental values \Rightarrow Unitless quantities of the order $(\mathcal{O}(1))$ Center the data by subtracting the mean

Principal component analysis ⇒ Determine required number of Gaussian processes

Train the emulator(s)

Calibrate on experimental data by running MCMC

Investigated parameter ranges

Hybrid model results

- Shear viscosity over entropy density η/s : 0.001 0.3
- Transport-to-hydro transition time τ_0 : 0.4 2.0 fm
- Transverse Gaussian smearing of particles R_{trans} : 0.5 2.1 fm
- Longitudinal Gaussian smearing of particles R_{long} : 0.5 2.1 fm
- Hydro-to-transport transition energy density ϵ_C : 0.15 0.75 GeV/fm³

Latin hypercube sampling used for sampling the simulation points; covers the parameter space in more robust way compared to pure random sampling

Investigated observables

• $N_{\rm ch}$ in $|\eta| < 0.5$ in (0-5)%, (10-20)% centrality

STAR, PRC79, 034909 (2009)

• $N_{\bar{p}}$ at y=0 in (0-15)%, (15-35)% centrality

PHOBOS, PRC75, 024910 (2007)

• $dN_{\rm ch}/d\eta$ at $\eta=1.1$ in (0-3)%, (20-25)% centrality

PHOBOS, PRC83, 024913 (2011)

• $\langle p_T \rangle$ for π^-, K^+ in (0-5)%, (20-30)% centrality

STAR, PRC79, 034909 (2009)

• dN/dp_T for π^-, K^+ at $p_T=0.3, 0.5$ GeV at y=0.8 in (0-15)%, (15-30)% centrality

PHOBOS, PRC75, 024910 (2007)

• $v_2\{\text{EP}\}$ in $|\eta| < 0.3$ in (10-40)% centrality

STAR, PRC86, 054908 (2012)

$$N_{\mathsf{ch}} + N_{\bar{p}}$$

$$N_{\mathsf{ch}} + N_{\bar{p}} + \langle p_T \rangle$$

Results preliminary

18 / 22

$$N_{\mathsf{ch}} + N_{\bar{p}} + \langle p_T \rangle + v_2$$

Results preliminary

$$N_{\rm ch} + N_{\bar{p}} + \langle p_T \rangle + \frac{dN}{dp_T}(\pi, K) + v_2$$

Summary

- Gaussian processes allow the emulation of complex models, making it possible to investigate multidimensional parameter spaces within reasonable computational effort
- Findings from the analysis of a transport+hydro+transport hybrid model:
 - $\langle p_T \rangle$ constrains hydro-to-transport switching energy density ϵ_C to $\approx 0.35 \text{ GeV/fm}^3$.
 - $\langle p_T \rangle$ and v_2 together constrain η/s to ≈ 0.1 .
 - dN/p_T does not seem to provide any strong additional constraints
 - Initial state parameters τ_0 , R_{trans} and R_{long} remain largely unconstrained by the investigated set of observables (Investigate HBT? More baryon-related observables?).

Literature

"Gaussian Processes for Machine Learning"
Carl Edward Rasmussen and Christopher K. I. Williams
The MIT Press, 2006. ISBN 0-262-18253-X
http://www.gaussianprocess.org/gpml/

- J. Novak, K. Novak, S. Pratt, J. Vredevoogd, C. Coleman-Smith and R. Wolpert, "Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion Collisions,"

 Phys. Rev. C 89, 034917 (2014)
 - Phys. Rev. C **89**, 034917 (2014) arXiv:1303.5769 [nucl-th]
- J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S. Huzurbazar, R. L. Wolpert and S. A. Bass,
 - "Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison,"
 - Phys. Rev. C **91**, 054910 (2015) arXiv:1502.00339 [nucl-th]

Extra slides

Box-Cox transformation

- Gaussian process assumes normally distributed data
- However, many times data is skewed; distribution peaks at values smaller or larger than mean

 \Rightarrow Try to fix the skew with Box-Cox transformation $y \to y^{(\lambda)}$:

$$y^{(\lambda)} = \begin{cases} (y^{\lambda} - 1)/\lambda &: \lambda \neq 0 \\ \log y &: \lambda = 0 \end{cases}$$

- Assumes y > 0; shift if necessary
- Normality not guaranteed: Apply normality tests on $y^{(\lambda)}$ (D'Agostino-Pearson, Shapiro-Wilk, Anderson-Darling...)

J. Auvinen (Duke University)

⁴G.E.P. Box and D.R. Cox, Journal of the Royal Statistical Society B, 26, 211 (1964)