Chiral magnetic effect and Berry phase

Shi Pu
ITP, Frankfurt University
2015.06

Ref:

- J.H. Gao, Z.T. Liang, SP, Q. Wang, X.N. Wang, PRL 109 (2012)
 232301
- J.W. Chen, SP, Q. Wang, X.N. Wang, PRL 110 (2013) 262301

Outline

Berry phase

Quantum kinetic theory

Summary

Chiral Magnetic Effect (CME)

Chiral Vortical Effect (CVE)

Chiral anmaly

$$\partial_{\mu} j_5^{\mu} = \partial_{\mu} (j_R^{\mu} - j_L^{\mu}) = \frac{Q^2}{2\pi^2} (E \cdot B)$$

Review the talk @ Palaver

 We have obtained the chiral magnetic and vortical effects, and chiral anomaly by quantum kinetic theory.

 Today, we will give you another interpretation from Berry phase.

Foucault pendulum

Foucault's Pendulum in the Panthéon, Paris

Foucault pendulum

Copy from Wikipedia:

- The animation describes the motion of a Foucault Pendulum at a latitude of 30°N.
- The plane of oscillation rotates by an angle of −180° during one day, so after two days the plane returns to its original orientation.

Foucault pendulum

 In our frame (out of the earth), the pendulum goes back to its initial position every day, but with a different phase factor.

Foucault pendulum in momentum space?

- Image that we have an "earth" in momentum space.
- Considering the Foucault pendulum again in momentum space.
- When it goes back to its initial "position" in momentum space.
- Will it also give us an additional phase factor?

A fermion in momentum space?

- Particles are also waves.
- We replace the pendulum by a fermion.
- After some time, it goes back to its initial state.
 - Will it give us an additional phase factor in momentum space?

Action of a single particle

$$S = \int dt \left[(\mathbf{p} + e\mathbf{A}) \cdot \dot{\mathbf{x}} - |\mathbf{p}| - A^0 \right]$$
 momentum gauge field x: coordinate

A natural question:

Why cannot we have a term proportional to $|\dot{\mathbf{p}}|$?

Action of a single particle

$$S = \int dt \left[(\mathbf{p} + e\mathbf{A}) \cdot \dot{\mathbf{x}} - |\mathbf{p}| - A^0 \right]$$
 momentum gauge field x: coordinate

The gauge field A is coupled to $\dot{\mathbf{x}}$.

Why cannot we have a "gauge field" coupled to $|\dot{\mathbf{p}}|$?

Two questions:

 Will the fermion have a phase factor in momentum space?

 Why cannot we have a gauge field in momentum space?

Berry phase – gauge fields in momentum space?

 In quantum mechanics, phase factor is related to gauge field.

 A phase factor in momentum space = an effective gauge field in momentum space.

The new phase factor is called Berry phase.

Adiabatic processes

 Assuming the system is in an adiabatic evolution, and Hamiltonian is a function of parameters R(t).

$$H = H(R(t)).$$

 Then the evolution of the system is along a path C in parameter R space.

At each certain time, the system is at its eigenstate.

$$H(R)|n(R)>=E_n(R)|n(R)>$$
.

Additional phase factor

The wave function is given by,

$$|\psi_n(t)>=\left[e^{i\gamma_n}\exp\left[-i\int_{t_0}^t dt' E_n(R(t'))\right]\right] n(R(t))>,$$
 additional phase factor Normal evolution factor Eigenstate

which allows an additional phase factor.

Solving phase factor

Inserting the wavefunction into Schroding Eq,

$$i\partial_t |\psi_n(t)> = H(R)|\psi_n(t)>,$$

we get the phase factor, $e^{i\gamma_n}$

$$\gamma_n = i \int_{t_0}^t dt' < n(R) |\partial_{t'}| n(R) > \equiv \int_C d\mathbf{R} \cdot \mathbf{a}_R,$$

$$\mathbf{a}_R = i < n(R) | \frac{\partial}{\partial \mathbf{R}} | n(R) >,$$

Gauge Transform

• Actually, we can still add another phase factor $\exp(i\xi(R))$ to the wave function, then,

$$\mathbf{a}_R \to \mathbf{a}_R - \frac{\partial}{\partial \mathbf{R}} \xi(R),$$

$$\gamma_n \to \gamma_n - \xi[R(t_0)] + \xi[R(t)].$$

 By choosing suitable values, the total phase factor can be "gauged" away!

A loop: Gauge invariant, Berry phase

 However, Berry ('84) has pointed out, if we consider a loop in R-space, i.e. the system goes back to its initial state, then, the phase factor cannot be removed.

In 3 dimensional case, using the Stokes's theorem,

$$\gamma = \int d\mathbf{S} \cdot \mathbf{\Omega}_R.$$
 $\mathbf{\Omega}_R = \nabla_R imes \mathbf{a}_R,$ Berry curvature

Berry phase VS gauge theory

Let's set R to be momentum p from now on.

Gauge theory	Berry "things"
local at x space	at p space
gauge field \overrightarrow{A}	Berry connection $\overrightarrow{a_p}$
magnetic field	Berry curvature
$\overrightarrow{B} = abla imes \overrightarrow{A}$	$\overrightarrow{\Omega_p} = abla_p imes \overrightarrow{a_p}$
Aharonov–Bohm phase	Berry phase
$\int_{V} d\overrightarrow{x} \cdot \overrightarrow{A} = \iint_{S} d\overrightarrow{S} \cdot \overrightarrow{B}$	$\int_V d\overrightarrow{p} \cdot \overrightarrow{a_p} = \iint_S d\overrightarrow{S_p} \cdot \overrightarrow{\Omega_p}$
Dirac monopole	Berry monople
(magnetic charge)	
$\int d^3x \nabla \cdot \overrightarrow{B} = const.$	$\int d^3p \nabla_p \cdot \Omega_p = const.$

An example: massless fermions

 Choosing helicity basis, we can get, for right handed fermions,

Berry connection:

(gauge field)

Berry curvature:

(magnetic field)

Berry magnetic monopole:

(magnetic monopole)

$$\mathbf{a}_p = -\frac{1}{2|\mathbf{p}|} \mathbf{e}_\phi \cot \frac{\theta}{2}.$$

$$\mathbf{\Omega}_p = \frac{\mathbf{p}}{2|\mathbf{p}|^3}.$$

$$\nabla_p \cdot \mathbf{\Omega}_p = 2\pi \delta^3(\mathbf{p}).$$

Path integration of a massless fermion

Consider a right/left-handed massless fermion,

$$H = i\gamma \cdot \partial \to \gamma \cdot p = \begin{pmatrix} \sigma \cdot p & 0 \\ 0 & -\sigma \cdot p \end{pmatrix}$$

$$< f | \exp [-iH(t_f - t_i)] | i > = \int DxDp... < p_{i+1} | \exp [-iH\Delta t] | p_i >$$

Path integration of a massless fermion

$$< f | \exp [-iH(t_f - t_i)] | i > = \int Dx Dp... < p_{i+1} | \exp [-iH\Delta t] | p_i >$$

$$< p_{i+1} | \exp[-iH\Delta t] | p_i > = e^{-iE_i\Delta t} < p_{i+1} | p_i >$$

$$= e^{-iE_i\Delta t} < p_i + \Delta p_i | p_i >$$

$$= e^{-iE_i\Delta t} \left[1 + \langle p_i | \partial_p | p_i \rangle \Delta p_i \right]$$

$$= \exp\left[-iE_i\Delta t - ia_p\Delta p\right] + O(\Delta t^2),$$

$$a_p \equiv i < p_i |\partial_p| p_i >$$

Action with Berry connection

- Without external fields, Berry phase is still a phase factor, which cannot modify the evolution of the system.
- In the present of electromagnetic fields, the action of a single massless fermion becomes,

Equation of motion

$$\sqrt{\gamma}\dot{\mathbf{x}} = \frac{\mathbf{p}}{|\mathbf{p}|} + Q\mathbf{E} \times \mathbf{\Omega}_p + Q\mathbf{B} \left(\frac{\mathbf{p}}{|\mathbf{p}|} \cdot \mathbf{\Omega}_p \right),$$

$$\sqrt{\gamma}\dot{\mathbf{p}} = Q\mathbf{E} + Q\frac{\mathbf{p}}{|\mathbf{p}|} \times \mathbf{B} + Q^2\mathbf{\Omega}_p \left(\mathbf{E} \cdot \mathbf{B} \right),$$

$$\sqrt{\gamma} = 1 + Q\mathbf{B} \cdot \mathbf{\Omega}_p.$$

Berry curvature

The invariant volume of phase space becomes

$$dV = \sqrt{\gamma} dx dp$$

Liouville's theorem

From df/dt=0, we can get a kinetic theory,

$$\partial_t f + \dot{\mathbf{x}} \cdot \nabla_x f + \dot{\mathbf{p}} \cdot \nabla_p f = 0,$$

with f the distribution function for right/left handed fermions,

$$\sqrt{\gamma}\dot{\mathbf{x}} = \frac{\mathbf{p}}{|\mathbf{p}|} + Q\mathbf{E} \times \mathbf{\Omega}_p + Q\mathbf{B} \left(\frac{\mathbf{p}}{|\mathbf{p}|} \cdot \mathbf{\Omega}_p \right),$$

$$\sqrt{\gamma}\dot{\mathbf{p}} = Q\mathbf{E} + Q\frac{\mathbf{p}}{|\mathbf{p}|} \times \mathbf{B} + Q^2\mathbf{\Omega}_p \left(\mathbf{E} \cdot \mathbf{B} \right),$$

Anomalous current

 Integrating over d^3p, we get the divergence of a chiral current

$$\partial_t n_5 +
abla \cdot \mathbf{j}_5 = rac{Q^2}{2\pi^2} \left(\mathbf{E} \cdot \mathbf{B}
ight)$$
 . chiral anomaly

and, chiral magnetic effects,

$$\mathbf{j} = \frac{Q}{2\pi^2} \mu_5 \mathbf{B}. \qquad \mathbf{j}_5 = \frac{Q}{2\pi^2} \mu \mathbf{B}.$$

Stephanov&Yin(PRL13), Yamamoto&Son(PRL,PRD13)

What can we learn?

- Berry phase gives an effective gauge field in momentum space.
- Berry curvature (magnetic field of such gauge field) will couple to external fields and modify the equation of motion for single fermions.
- The kinetic theory will also be modified and give the chiral magnetic effects and chiral anomaly.

You might say,

"mmm... sounds interesting, but useless ..." or,

"We are working on a relativistic theory. Who cares a XXX phase factor in quantum mechanics!"

Or, "Can you get it from Dirac equations or other relativistic theory?"

Motivation of our work

 We want to understand (or obtain) the contributions of Berry phase from a quantum kinetic theory.

Wigner function for fermions

 Wigner function: a quantum distribution function, ensemble average, normal ordering

Vasak, Gyulassy and Elze ('86,'87,'89)

$$W(x,p) = <: \int \frac{d^4y}{(2\pi)^4} e^{-ipy} \overline{\psi}(x + \frac{1}{2}y) \otimes \mathcal{P}U(x,y) \psi(x - \frac{1}{2}y) :>$$

Gauge link

$$\overline{\psi}(x+rac{1}{2}y)$$
 \mathbf{X} $\psi(x-rac{1}{2}y)$

Macroscopic quantities

Charge current

$$j^{\mu}(x) \equiv \langle \overline{\psi}(x)\gamma^{\mu}\psi(x) \rangle = \int d^4p \operatorname{Tr} (\gamma^{\mu}W),$$

Axial (chiral) current

$$j_5^{\mu}(x) \equiv \langle \overline{\psi}(x)\gamma^5\gamma^{\mu}\psi(x) \rangle = \int d^4p \operatorname{Tr} (\gamma^5\gamma^{\mu}W),$$

Master equation from Dirac Eq.

• Massless, constant external electromagnetic fields $F_{ext}^{\mu\nu}$, turn off all internal interactions

$$[\gamma^{\mu}p_{\mu} + \frac{1}{2}i \ \gamma^{\mu} (\partial_{\mu}^{x} - QF_{\mu\nu}^{ext}\partial_{\mu}^{p})]W = 0,$$

 First order differential equation, solve it order by order

Solve the Master equation

- Gradient expansion to Wigner function W and its master equation,
 - expand all quantities at the power of derivatives $O(\partial_x^1), O(\partial_x^2),$
 - external fields are weak $F^{\mu\nu} \sim \partial_x^{\mu} A^{\nu} \sim O(\partial^1)$,

Leading order

- 0th order, non-interacting ideal gas
 - classical Fermi-Dirac distribution

- input
 - finite temperature T,
 - chemical potential $\mu = \mu_R + \mu_L$,
 - chiral chemical potential $\mu_5 = \mu_R \mu_L$

1st order, Chiral anomaly

 Remarkable, we obtain the chiral anomaly by Wigner function!

Energy momentum conservation

$$\partial_{\mu}T^{\mu\nu} = QF^{\nu\rho}j_{\rho},$$

$$\partial_{\mu}j^{\mu} = 0,$$

Triangle anomaly

$$\partial_{\mu}j_{5}^{\mu} = -\frac{Q^{2}}{16\pi^{2}} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}$$

$$\propto E \cdot B$$

Chiral magnetic and vortical effect

$$j^{\mu}=\xi_B B^{\mu}+\xi\omega^{\mu}, rac{ ext{Consistent with}}{ ext{other approaches!}}$$
 $j^{\mu}_5=\xi_{5B}B^{\mu}+\xi_5\omega^{\mu},$
 $\xi=rac{1}{\pi^2}\mu\mu_5,$
 $\xi_B=rac{Q}{2\pi^2}\mu_5,$
 $\xi_5=rac{1}{6}T^2+rac{1}{2\pi^2}\left(\mu^2+\mu_5^2
ight),$
 $\xi_{B5}=rac{Q}{2\pi^2}\mu.$
 $Q: ext{charge}$
 $T: ext{temperature}$
 $Chemical ext{potential}$
 $\mu=\mu_R+\mu_S$
 $\mu_S=\mu_S-\mu_S$

Q: charge T: temperature

Chemical potentials

$$\mu = \mu_R + \mu_L,$$

$$\mu_5 = \mu_R - \mu_L,$$

4D kinetic equation for massless fermions

 By using the solutions of Wigner function, we rewrite our master equations in a proper way,

$$\left[rac{dx^\mu}{d au}\partial_\mu^x+rac{dp^\mu}{d au}\partial_\mu^p
ight]f_{R/L}=0,$$
 f: distribution function

Effective velocity
$$\frac{dx^{\sigma}}{d\tau} = p^{\sigma} \pm Q \left[(u \cdot b) B^{\sigma} - (b \cdot B) u^{\sigma} + \epsilon^{\sigma \alpha \beta \gamma} u_{\alpha} b_{\beta} E_{\gamma} \right]$$

$$\pm \left[\frac{1}{2} \omega^{\sigma} + \omega^{\sigma} (p \cdot u) (b \cdot u) - u^{\sigma} (p \cdot \omega) (b \cdot u) \right],$$

$$\frac{dp^{\sigma}}{d\tau} = -Q p_{\rho} F^{\rho \sigma} \mp Q^{2} (E \cdot B) b^{\sigma}$$

$$\pm Q \frac{1}{2} (\omega \cdot E) u^{\sigma} \mp Q (p \cdot \omega) b_{\eta} F^{\sigma \eta} \; .$$

3D chiral kinetic equations

Integrating over dp^0,

$$\frac{dt}{d\tau}\partial_t f_{R/L} + \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} = 0,$$

$$\frac{dt}{d\tau} = 1 \pm Q\mathbf{\Omega} \cdot \mathbf{B} \pm 4|\mathbf{p}|(\mathbf{\Omega} \cdot \boldsymbol{\omega}),$$

$$\frac{d\mathbf{x}}{d\tau} = \hat{\mathbf{p}} \pm Q(\hat{\mathbf{p}} \cdot \mathbf{\Omega})\mathbf{B} \pm Q(\mathbf{E} \times \mathbf{\Omega}).$$

(1)Berry phase is embedding in quantum kinetic theory.

(2)Consistent with other approaches.

(3) Vortical dependence is new!

$$\frac{d\mathbf{p}}{d\tau} = Q(\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \pm Q^{2}(\mathbf{E} \cdot \mathbf{B})\mathbf{\Omega}$$
$$\mp Q|\mathbf{p}|(\mathbf{E} \cdot \boldsymbol{\omega})\mathbf{\Omega} \pm 3Q(\mathbf{\Omega} \cdot \boldsymbol{\omega})(\mathbf{p} \cdot \mathbf{E})\hat{\mathbf{p}},$$

Embedded Berry phase

The chiral current is,

$$\partial_{\sigma} j_{R/L}^{\sigma} = \mp Q^2 (E \cdot B) \int d^4p \partial_{\sigma}^p [b^{\sigma} \delta(p^2)] f_{R/L}$$

$$b^{\mu} = -\frac{p^{\mu}}{p^2}, \qquad \int dp_0 \delta(p^2) b^{\sigma} = \left(0, \frac{1}{2}\Omega\right)$$

4D Berry monopole

Taking analytic continuation, we find

$$\int d^4p \partial_\mu \left[b^\mu \delta(p^2) \right] = 2\pi^2.$$

since, b^{μ} embedded the Berry curvature (Berry magnetic field), so the divergence of this quantity is an effective charge in momentum space. We called it Berry monopole.

Chiral anomaly

$$\partial_{\sigma} j_{R/L}^{\sigma} = \mp Q^2 (E \cdot B) \int d^4 p \partial_{\sigma}^p [b^{\sigma} \delta(p^2)] f_{R/L}$$

$$= \mp \frac{Q^2}{4\pi^2} (E \cdot B).$$

Then, the chiral anomaly is given by the Berry monopole.

Summary

 We have derived a 4D chiral kinetic theory from Wigner functions.

 Reducing to 3D, it is consistent with the approaches including Berry phase.

 We also find the chiral anomaly is given by a 4D Berry monopole.

Thank you!

Backup

Chirality of massless fermions

$$h = \frac{\sigma \cdot p}{|\mathbf{p}|} = \begin{cases} +1, & \text{right handed} \\ -1, & \text{left handed} \end{cases}$$

Chirality

Chiral Magnetic Effect

If Number of uL ≠ Number of uR A electric current will be observed.

Chiral Magnetic Effect (CME)

Chiral Vortical Effect (CVE)

Chiral Magnetic and Vortical Effect

Charge current
$$j^{\mu}$$
 = $\xi_B B^{\mu} + \xi_5 \omega^{\mu}$, j^{μ} = $\xi_{5B} B^{\mu} + \xi_5 \omega^{\mu}$,

Axial current

New Transport coefficients

$$j^{\mu} = \xi_B B^{\mu} + \xi \omega^{\mu},$$

 $j^{\mu}_5 = \xi_{5B} B^{\mu} + \xi_5 \omega^{\mu},$

- Strong coupling, AdS/CFT duality,
 (Erdmenger('09), Banerjee('11), Torabian('11), ...)
- Weakly coupling, Kubo formula (Fukushima('08), Kharzeev('11), Landsteiner('11), Hou('12), ...)

Anomalous fluid dynamics

- Those new terms are forbidden by the entropy principle of a normal fluid.
- Son and Suro wka ('09) pointed out these terms are crucial to cancel the production of negative entropy in an anomalous fluid.

$$\partial_{\mu}T^{\mu\nu}=QF^{
u
ho}j_{
ho},$$

$$\partial_{\mu}j^{\mu}=0, \qquad \partial_{\mu}j_{5}^{\mu}=-rac{Q^{2}}{2\pi^{2}}E_{
ho}B^{
ho},$$

Kinetic theory

 Kinetic theory: a microscopic dynamic theory for many-body system, to compute transport coefficients.

• distribution function, e.g. Fermi-Dirac distribution f(x,p) $p + \Delta p$

$$x$$
 $x+\Delta$

Local Polarization Effect

Spin local polarization effect Axial current

$$j_5^{\mu} \equiv j_R^{\mu} - j_L^{\mu} = \xi_5 \omega^{\mu},$$

$$\xi_5 = \frac{1}{6}T^2 + \frac{1}{2\pi^2}(\mu^2 + \mu_5^2),$$

Can be observed in both high/low energy collisions

3-dimensional Chiral kinetic equation

Integral over p0

$$\frac{dt}{d\tau}\partial_t f_{R/L} + \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} = 0,$$

$$\begin{array}{ll} \displaystyle \frac{dt}{d\tau} \ = \ 1 \pm Q \boldsymbol{\Omega} \cdot \mathbf{B} \pm 4 |\mathbf{p}| (\boldsymbol{\Omega} \cdot \boldsymbol{\omega}), \\ \\ \text{velocity} & \displaystyle \frac{d\mathbf{x}}{d\tau} \ = \ \hat{\mathbf{p}} \pm Q (\hat{\mathbf{p}} \cdot \boldsymbol{\Omega}) \mathbf{B} \pm Q (\mathbf{E} \times \boldsymbol{\Omega}) \pm \frac{1}{|\mathbf{p}|} \boldsymbol{\omega}, \\ \\ \text{force} & \displaystyle \frac{d\mathbf{p}}{d\tau} \ = \ Q (\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \pm Q^2 (\mathbf{E} \cdot \mathbf{B}) \boldsymbol{\Omega} \\ & \quad \mp Q |\mathbf{p}| (\mathbf{E} \cdot \boldsymbol{\omega}) \boldsymbol{\Omega} \pm 3 Q (\boldsymbol{\Omega} \cdot \boldsymbol{\omega}) (\mathbf{p} \cdot \mathbf{E}) \hat{\mathbf{p}}, \end{array}$$

Talk @ Transport Meeting June 24

- What are those new terms in Boltzmann Eq. ?
 - They are related to a topologic phase factor, called Berry phase.
- Are these related to chiral anomaly?
 - Chiral anomaly is given by an effective monopole in momentum space.
- Are you serious?
 - All of these can be obtained by path integral of a single massless fermion.

Summary

 We obtain the chiral magnetic and vortical effect, chiral anomaly by Wigner function.

 We derive the chiral kinetic equation (modified Boltzmann equation).

Thank you!

3-dimensional Chiral kinetic equation

Integral over p0

$$\begin{split} \frac{dt}{d\tau}\partial_t f_{R/L} + \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} &= 0, \\ \frac{dt}{d\tau} &= 1 \pm Q \mathbf{\Omega} \cdot \mathbf{B} & \text{it is as the same as} \\ \frac{d\mathbf{x}}{d\tau} &= \hat{\mathbf{p}} \pm Q (\hat{\mathbf{p}} \cdot \mathbf{\Omega}) \mathbf{B} \pm Q (\mathbf{E} \times \mathbf{\Omega}) & \text{approaches.} \\ \frac{d\mathbf{p}}{d\tau} &= Q (\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \pm Q^2 (\mathbf{E} \cdot \mathbf{B}) \mathbf{\Omega} \end{split}$$

3-dimensional Chiral kinetic equation

Integral over p0

$$\frac{dt}{d\tau}\partial_t f_{R/L} + \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} = 0,$$

$$rac{dt}{d au} \; = \; 1 \pm Q oldsymbol{\Omega} \cdot {f B} \pm 4 |{f p}| (oldsymbol{\Omega} \cdot oldsymbol{\omega}),$$

ω dependence is new!

$$\frac{d\mathbf{x}}{d\tau} = \hat{\mathbf{p}} \pm Q(\hat{\mathbf{p}} \cdot \mathbf{\Omega}) \mathbf{B} \pm Q(\mathbf{E} \times \mathbf{\Omega}) \pm \frac{1}{|\mathbf{p}|} \boldsymbol{\omega}$$

$$\frac{d\mathbf{p}}{d\tau} = Q(\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \pm Q^{2}(\mathbf{E} \cdot \mathbf{B})\mathbf{\Omega}$$
$$\mp Q|\mathbf{p}|(\mathbf{E} \cdot \boldsymbol{\omega})\mathbf{\Omega} \pm 3Q(\mathbf{\Omega} \cdot \boldsymbol{\omega})(\mathbf{p} \cdot \mathbf{E})\hat{\mathbf{p}},$$