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Relativistic heavy-ion collisions 
• in very high energy collisions 

 

 

 

 

• Two nuclei pass through each other. 

• Large, but almost same numbers of 
particles and antiparticles are produced. 
(high temperature, low net baryon 
density) 

• in low energy collisions 

 

 

 
• Two nuclei stop and are compressed. 

• Small numbers of particles and 
antiparticles are produced and many 
particles from colliding nuclei remain in 
the middle. (low temperature, high net 
baryon density) 

2 



Beam energy scan at RHIC 

• To find the QCD phase 
diagram, the Beam Energy 
Scan (BES) program has been 
recently carried out at several 
low collision energies by the 
STAR Collaboration 

• One of most interesting 
results is different elliptic 
flows of particles and 
antiparticles. 

• As collision energy lowers, 
the difference between 
particle elliptic flow and that 
of antiparticles becomes large. 
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Partonic mean-fields 
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• QCD Phase boundary is highly nonperturbative region 
→ pQCD is not available 

• Lattice QCD is available in small baryon chemical 
potential region (μ/T≪ 1) 

• So we use Nambu-Jona-Lasinio (NJL) model as 
effective Lagrangian for strong interaction 
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Nambu-Jona-Lasinio (NJL) model 

• 𝐿 = 𝜓 𝑖𝜕 −𝑀 𝜓 

      +
𝐺

2
 (𝜓 𝜆𝑎𝜓)2 + (𝜓 𝑖𝛾5𝜆

𝑎𝜓)2

𝑎

 

    +𝐾[𝑑𝑒𝑡𝑓 𝜓 (1 + 𝛾5)𝜓 + 𝑑𝑒𝑡𝑓{𝜓 1 − 𝛾5 𝜓}] 

 

 

𝑈(𝑁𝑓)𝑅 × 𝑈(𝑁𝑓)𝐿  

symmetric interaction 
 

‘t Hooft interaction 
breaking 𝑈𝐴 1  symmetry 

‘t Hooft interaction 

for SU(2)  𝜀𝑖𝑗𝑖,𝑗 𝑢 Γ𝜓𝑖 𝑑 Γ𝜓𝑗  

for SU(3)  𝜀𝑖𝑗𝑘𝑖,𝑗,𝑘 𝑢 Γ𝜓𝑖 𝑑 Γ𝜓𝑗 (𝑠 Γ𝜓𝑘) 
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Mean-field interactions 

• Symmetric interaction 
     (𝜓 Γ𝜓)2 → 𝜓 Γ𝜓  𝜓 Γ𝜓 

 

• ‘t Hooft interaction 

for SU(2)  

 𝜀𝑖𝑗
𝑖,𝑗

𝑢 Γ𝜓𝑖 𝑑 Γ𝜓𝑗 → 𝑢 Γ𝑢 𝑑 Γ𝑑 +⋯ 

for SU(3)  

 𝜀𝑖𝑗𝑘𝑖,𝑗,𝑘 𝑢 Γ𝜓𝑖 𝑑 Γ𝜓𝑗 (𝑠 Γ𝜓𝑘) → 𝑢 Γ𝑢 𝑠 Γ𝑠 𝑑Γ𝑑 +⋯ 

d 
d 

d 
u 

d 
u 

s 
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Chiral phase transition 
𝜓 𝜓 ≃0 

“Scalar mean field” generates quark mass 

temperature, 
nuclear density 

300~400 
MeV 

(anti-)quark mass 

𝑀𝑑 = 𝑚𝑑 − 2𝐺 𝑑 𝑑 − 2𝐾 𝑢 𝑢 𝑠 𝑠  

𝑀𝑠 = 𝑚𝑠 − 2𝐺 𝑠 𝑠 − 2𝐾 𝑢 𝑢 𝑑 𝑑  

𝑞 𝑖𝑞𝑖 = −2𝑁𝑐 
𝑑3𝑘

(2𝜋)3
𝑀𝑖
𝐸𝑖
1 − 𝑓𝑖 𝑘 − 𝑓 𝑖(𝑘)

Λ
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“Scalar mean field” acts attractive force both to 
quarks and to antiquarks in heavy-ion collisions 

temperature, 
nuclear density 

(anti-)quark 
gains mass & 
loses kinetic energy 
= attractive force 

(anti-) quark 
mass 
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Scalar mean-field reduces elliptic flow (v2) 

• The attractive force from 
the scalar mean field 
decreases pressure 
gradient for both quarks 
and antiquarks.  

   (→ v2 decreases) 

 

• Plumari, Baran, Di Tori, Ferini, 
and Greco, PLB 689, 18 (2010)  

 

Pressure 

r 
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(axial-) vector interactions 

• Fierz transformations  

 𝜓 Γ𝜓𝜓 Γ𝜓 (Hartree type) +  𝜓 Γ𝜓𝜓 Γ𝜓 (Fock type) 

 

• Put by hand considering symmetries 

𝐿𝑉 = − 
𝐺𝑉
2
(𝜓 𝛾𝜇𝜆

𝑎𝜓)2 +
𝐺𝐴
2
(𝜓 𝛾5𝛾𝜇𝜆

𝑎𝜓)2

𝑎

 

       → −
𝑔𝑉
2
(𝜓 𝛾𝜇𝜓)

2 → −𝑔𝑉 𝜓 𝛾𝜇𝜓 𝜓 𝛾
𝜇𝜓 

 
Isoscalar vector Int. Mean-field Approx. 

Canonical momentum 𝑝𝜇 = 𝑝𝜇
∗ ± 𝑔𝑉𝜌𝜇 

                                    Mechanical momentum 
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Time-evolution of partonic matter 
(relativistic Vlasov equation) 

𝜕

𝜕𝑡
𝑓 + 𝑣 ∙ 𝛻𝑥𝑓 − 𝛻𝑥𝐻 ∙ 𝛻𝑝𝑓 = 𝐶 

C : collision term (𝜎𝑞𝑞 = 2 mb) 

H : Hamiltonian of a (anti)quark in mean-fields 

𝐻 = 𝑀∗2 + 𝑝∗2 ± 𝑔𝑉𝜌
0 

𝑑𝑥𝑖
𝑑𝑡
=
𝜕𝐻

𝜕𝑝𝑖
=
𝑝𝑖
∗

𝐸∗
= 𝑣𝑖 

𝑑𝑝𝑖
𝑑𝑡
= −
𝜕𝐻

𝜕𝑥𝑖
= −
𝑀∗

𝐸∗
𝜕𝑀∗

𝜕𝑥𝑖
 

          ±𝑔𝑉 𝑣𝑗
𝜕𝜌𝑗

𝜕𝑥𝑖
−
𝜕𝜌0

𝜕𝑥𝑖
 

 contributes to Lorentz force 
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(time-component) vector interactions 

quark quark 

antiquark antiquark 

quark antiquark 

repulsive 

repulsive 

attractive 
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in baryon-rich nuclear matter 

• More quarks than 
antiquarks 

• Quarks feel repulsive 
force but antiquarks 
attractive force. 

quark 

antiquark 
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Pressure distributions change 

without vector interactions 

• For (anti-)quark 

with vector interactions 

• For quark, pressure gradient 
increases (v2 increases) 

 

 

 
 

• For antiquark, pressure gradient 
decreases (v2 decreases) 

Pressure 

r 

Pressure 

r 

Pressure 
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baryon-rich initial conditions  
for Au+Au collisions @ 7.7 GeV, b=8 fm 

from AMPT (a multiphase transport model) 
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Integrated v2 of quarks and antiquarks 
as functions of time 
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V2 of quarks and antiquarks as functions of pT 
when energy density of central cells equals 0.8 GeV/fm3 
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AMPT hadronization 

• Spatial coalescence. 

• Quark and antiquark are converted into 
hadron whose invariant mass is closest 
to that of quark and antiquark.  

• Same for (anti)baryon. 
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Hadronic mean-fields 
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Nucleon & antinucleon potentials 

• From relativistic mean-
field model, 

 

 

• Σ𝑠 =  
𝑑3𝑝

(2𝜋)3
𝑚

𝐸
𝜌𝐵 + 𝜌𝐵  

• Σ𝑣
0 =  

𝑑3𝑝

(2𝜋)3
𝑝0

𝐸
𝜌𝐵 − 𝜌𝐵  

+(-) for nucleon(antinucleon) 
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Kaon & antikaon potentials 

• From the chiral effective 
Lagrangian, 

   (PRL79,5214, NPA625,372) 
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Pion potentials 

• From pion self-energy 
with pion-nucleon s-
wave interaction, 

   (PLB512,283) 

𝑇𝜋𝑁
± : isospin  even odd  π𝑁 𝑠 wave scattering T matrix 

  Π𝑟𝑒𝑙
− = Π𝑟𝑒𝑙

+ : relativistic correction 
  Π𝑐𝑜𝑟
− = −Π𝑐𝑜𝑟

+ : two-loop correction 
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Elliptic flows of 𝑝/𝑝  and 𝐾+/𝐾− 

At hadronization At freeze-out 
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The differences of integrated v2 between 
𝑝/𝑝  and 𝐾+/𝐾− 
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Vector interaction &  
QCD phase diagram 
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Vector coupling strength and chiral phase diagram 
Phys. Lett. B719 (2013) 131-135, N. M. Bratovic, T. Hatsuda, W. Weise 
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Isothermal lines in the NJL model 
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summary 
• We studied the effect of partonic and hadronic mean-fields 

on the elliptic flows of particles and antiparticles which were 
recently measured by STAR Collaboration. 

• We found that not small vector interaction in partonic phase 
is required to explain large difference between particle and 
antiparticle elliptic flows from the Beam Energy Scan 
program.  

• It implies that QCD phase transition is crossover even at 
large baryon chemical potential. 
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