Beam energy scan in a UrQMD+hydro hybrid model

J. Auvinen
(in collaboration with H. Petersen)

Frankfurt Institute for Advanced Studies
Germany

Transport meeting
April 25, 2013
Outline

Introduction

Hybrid model

Results

Summary
First order phase transition with critical point?

QGP volume and lifetime decreases with decreasing $\sqrt{s_{NN}} \Rightarrow$ completely vanishes at some point?

Some interesting findings:

- Non-monotonic $\sqrt{s_{NN}}$ dependence of net-proton v_1
- Difference in particle and antiparticle v_2 at lower energies
- R_{CP} suppression turns to enhancement between $\sqrt{s_{NN}} = 39$ and 27 GeV

v_1 and v_2 figures from L. Kumar [STAR Collaboration], arXiv:1211.1350 [nucl-ex].

R_{CP} from Hot Quarks 2012 talk by S. Horvat.
Charged hadron v_2 shows weak collision energy dependence.

Beam energy scan

Differential v_2 almost identical for all $\sqrt{s_{NN}}$.

v_3 more sensitive to beam energy?

Hybrid model
Transport + hydrodynamics hybrid model

Initial State from UrQMD1 string/hadronic cascade

- Start the hydrodynamical evolution when nuclei have passed through each other: \(t_{\text{start}} = \max\left\{ \frac{2R_{\text{nuclei}}}{\sqrt{\gamma_{\text{CM}}^2 - 1}}, 0.5 \text{ fm} \right\} \).
- Energy-, momentum- and baryon number densities (3D Gaussians) are mapped onto the hydro grid.
- Event-by-event fluctuations are taken into account (width of Gaussians \(\sigma = 1.0 \text{ fm} \)).
- Spectators are propagated separately in the cascade.

Hydro starting times

Hydrodynamical evolution

- **(3+1)D ideal** hydrodynamics using SHASTA2
- **Equation of state**3:
 - **Chiral model** coupled to Polyakov loop to include the deconfinement phase transition
 - Qualitative agreement with lattice QCD data at $\mu_B = 0$
 - Applicable also at finite baryon densities
 - Has the same degrees of freedom as UrQMD in hadronic phase

Hydro duration in computational frame

Duration of hydrodynamical phase

Average hydro duration [fm/c]

0 5 10 15 20 25

\(\sqrt{s_{NN}} \) [GeV]

10 100

b_0_3.4

b_8.2_9.4

b_11.5_13.3
Freeze-out Procedure

- Transition from hydro to transport (“particlization”) when energy density ϵ is smaller than critical value $x\epsilon_0$, where $\epsilon_0 = 146$ MeV/fm3 represents the nuclear ground state and $x \geq 1$.

- Particle distributions are generated according to the Cooper-Frye formula.

- Rescatterings and final decays calculated via hadronic cascade (UrQMD)

\[4\] In this study $x = 2$, corresponding to temperature $T \approx 154$ MeV.
Transport + hydrodynamics hybrid model

Cornelius hypersurface finding algorithm

A method for finding the elements of 3D particlization hypersurface in 4D space for the Cooper-Frye procedure, without holes or double counting.

Fig. 9. Reduction of a four dimensional problem into a series of three dimensional problems.
Results
Particle multiplicity

Charged pion multiplicity as a function of $\sqrt{s_{NN}}$.
Particle multiplicity

Kaons, total multiplicity

Midrapidity multiplicity

Charged kaon multiplicity as a function of $\sqrt{s_{NN}}$.

J. Auvinen (FIAS, Frankfurt) Hybrid model energy scan April 25, 2013 17 / 34
(0-7)% centrality.

Left: π^-, K^+, K^- at $\sqrt{s_{NN}} \approx 9$ GeV.
Right: π^-, K^+, K^- at $\sqrt{s_{NN}} \approx 12$ GeV.

Particle m_T spectra

(0-7)% centrality.

Left: π^-, K^+, K^- at $\sqrt{s_{NN}} \approx 17$ GeV.
Right: π^-, K^+, p at $\sqrt{s_{NN}} = 200$ GeV.

Initial spatial asymmetry: eccentricity $\epsilon_2 = \frac{\sqrt{\langle r^2 \cos(2\phi) \rangle^2 + \langle r^2 \sin(2\phi) \rangle^2}}{\langle r^2 \rangle}.$

Final momentum anisotropy: $v_2\{EP\} = \frac{v_2\{\text{observed}\}}{R_2} = \frac{\langle \cos[2(\phi_i-\psi_2)] \rangle}{\langle \cos[2(\psi_2-\psi_2^{\text{true}})] \rangle}$.
Elliptic flow

Rising slope in 0-5% centrality not reproduced; rough agreement at midcentrality.

No contribution from hadronic rescattering in most central collisions. Pre-equilibrium dynamics become more important at lower energies.
Hydro contribution on v_2

Hydro contribution to v_2 negligible at $\sqrt{s_{NN}} = 5$ GeV; roughly 60% at highest energies.
$v_2(p_T)$ overestimated at higher p_T.

J. Auvinen (FIAS, Frankfurt)
Effect of hydro ending condition on elliptic flow

\[\sqrt{s_{NN}} = 11.5 \text{ GeV}, \ b = 8.2 - 9.4 \text{ fm} \]

Revision of hydro-to-cascade transition condition could fix \(v_2(p_T) \).
Elliptic flow

No clear energy dependence on differential flow.

J. Auvinen (FIAS, Frankfurt)
Triangular flow

\[\epsilon_3 = \frac{\sqrt{\langle r^3 \cos(3\phi) \rangle^2 + \langle r^3 \sin(3\phi) \rangle^2}}{\langle r^3 \rangle} \]

\[v_3\{\text{EP} \} = \frac{\langle \cos[3(\phi_i - \psi_3)] \rangle}{\langle \cos[3(\psi_3 - \psi_3^{\text{true}})] \rangle} \]

FIG. 3: Distribution of nucleons on the transverse plane for a \(\sqrt{s_{NN}} = 200 \) GeV Au+Au collision event with \(\epsilon_3 = 0.53 \) from Glauber Monte Carlo. The nucleons in the two nuclei are shown in gray and black. Wounded nucleons (participants) are indicated as solid circles, while spectators are dotted circles.

Midcentral v_3 rises from ≈ 0 to $\approx 0.015 - 0.02$.
Preliminary data displays quite different behavior, however.

Y. Pandit [STAR Collaboration], QM2012 talk.
Increase at lower values of $\sqrt{s_{NN}}$; no change after 19.6 GeV.
\[v_3(p_T) \]

Charged hadron \(v_3(p_T) \)

\begin{align*}
|y| < 1.0 & \\
b = 6.7 - 8.2 \text{ fm}
\end{align*}

Comparison with preliminary STAR data.

Collision geometry

ϵ_2 more sensitive than ϵ_3 to changes on b and $\sqrt{s_{NN}}$.
Scaled flow coefficients

v_2 response to ϵ_2 remains roughly the same in both centrality classes and all energies.

Energy dependence of v_3 persists through scaling.
Summary

- **Multiplicities**: Pion production in reasonable agreement with data, kaons overproduced.

- **Elliptic flow**: Integrated v_2 similar to the STAR data, $v_2(p_T)$ overshoots the data (particlization at higher energy density?).

- **Triangular flow**: $v_3 \approx 0$ at $\sqrt{s_{NN}} = 5$ GeV, then rises until reaches value 0.015 - 0.02 at $\sqrt{s_{NN}} = 19.6$ GeV. Qualitative disagreement with preliminary STAR data, which has flat v_3 at low $\sqrt{s_{NN}}$ and begins increasing at 27 GeV.
Extra slides
\(\delta v_2 \) visibly energy-dependent on midcentral collisions; equal to \(v_3 \) in magnitude in central collisions.
Eccentricity probability distributions

- Eccentricity $b=0-3.4$ fm
- Eccentricity $b=8.2-9.4$ fm
- Eccentricity $b=11.5-13.3$ fm

$E_{\text{cm}} = 5$ GeV
$E_{\text{cm}} = 7.7$ GeV
$E_{\text{cm}} = 11.5$ GeV
$E_{\text{cm}} = 15$ GeV
$E_{\text{cm}} = 19.6$ GeV
$E_{\text{cm}} = 27$ GeV
$E_{\text{cm}} = 39$ GeV
$E_{\text{cm}} = 62.4$ GeV
$E_{\text{cm}} = 200$ GeV
Triangularity probability distributions

![Triangularity b=0-3.4 fm](image1)

![Triangularity b=8.2-9.4 fm](image2)

![Triangularity b=11.5-13.3 fm](image3)
(Square root of) variances of $\langle \epsilon_2 \rangle$ and $\langle \epsilon_3 \rangle$

Both eccentricity and triangularity have variances of same size.
Relative variances of $\langle \epsilon_2 \rangle$ and $\langle \epsilon_3 \rangle$

Triangularity has larger relative variance than eccentricity; remains practically same from most central to midcentral collisions.
Relative variance of $\langle \epsilon_2 \rangle$ and v_2 fluctuations

$$\frac{\delta v_2}{v_2} \approx \frac{\delta \epsilon_2}{\epsilon_2} \text{ in midcentrality.}$$
Energy-momentum tensor anisotropy

\[\epsilon_p = \frac{\langle T_{xx} - T_{yy} \rangle}{\langle T_{xx} + T_{yy} \rangle} \]

\[\sqrt{s_{NN}} = 19.6 \text{ GeV}, b = 2 \text{ fm} \]

\[\sqrt{s_{NN}} = 19.6 \text{ GeV}, b = 7 \text{ fm} \]