Übungen zur Theoretischen Physik 3 für das Lehramt L3 - Blatt 8

Aufgabe 1 (10 Punkte): Geladenes Teilchen im homogenen Magnetfeld

Betrachten Sie ein geladenes Teilchen (Masse m, Ladung q, spin s=1/2) im homogenen Magnetfeld $\vec{B} = B\vec{e}_3 = \text{const.}$ Wie in der Vorlesung besprochen, ist dann der Hamilton-Operator durch

$$\mathbf{H} = \frac{1}{2m} [\vec{\mathbf{p}} - q\vec{A}(\vec{\mathbf{x}})]^2 - \frac{gqB}{2m} \cdot \mathbf{s}_3 \tag{1}$$

gegeben. Dabei ist \vec{A} ein Vektorpotential für das Magnetfeld, d.h. $\vec{B} = \vec{\nabla} \times \vec{A}$. Wir wollen das Energieeigenwertproblem lösen. Gehen Sie dazu wie folgt vor:

- (a) (3 Punkte) Zeigen Sie, dass $\vec{A}(\vec{x}) = -Bx_2\vec{e}_1$ ein Vektorpotential für das homogene Magnetfeld ist, also $\vec{\nabla} \times \vec{A} = \vec{B} = B\vec{e}_3$ gilt.
- (b) (3 Punkte) Zeigen Sie, dass mit diesem Vektorpotential **H**, **p**₁, **p**₃ und **s**₃ einen vollständigen Satz kompatibler Observabler bilden, indem Sie die Kommutativität dieser Operatoren untereinaner nachweisen.
- (c) (4 Punkte) Zeigen Sie, dass sich das Eigenwertproblem für die simultanen Eigenzustände $u_{E,p_1,p_3,\sigma_3}(\vec{x})$ bzgl. der Eigenwertgleichung für **H** (Eigenwert E) auf einen harmonischen Oszillator reduziert, dessen Energieeigenwerte und -zustände aus der Vorlesung bekannt sind und geben Sie die entsprechenden Energieeigenwerte an. Dabei darf das aus der Vorlesung bekannte Resultat für die Energieeigenwerte eines harmonischen Oszillators verwendet werden.

Hinweis: Es darf verwendet werden, dass die Eigenwerte der übrigen Observablen $p_1, p_3 \in \mathbb{R}$ und $\sigma_3 \in \{1/2, -1/2\}$ sind.