Aufgabe 1 [10 Punkte]: Beispiel zum Gaußschen Integralsatz

Es sei \(V \) der Kreiszylinder parallel zur \(x_2 \)-Achse eines kartesischen Koordinatensystems mit Radius 2 und \(x_3 \in [0, 3] \). Verifizieren Sie dann den Gaußschen Integralsatz

\[
\iiint_V \mathbf{F}(\mathbf{x}) \cdot d\mathbf{V} = \iiint_{\partial V} \mathbf{F}(\mathbf{x}) \cdot d\mathbf{S}
\]

(1)

für das Vektorfeld, das in kartesischen Koordinaten durch

\[
\mathbf{V}(\mathbf{x}) = \begin{pmatrix} 4x_1 \\ -2x_2 \\ x_3^2 \end{pmatrix}
\]

(2)

geneben ist, indem Sie das Volumen- und das Flächenintegral konkret ausrechnen.

Hinweis: Es empfiehlt sich, für die Berechnung des Volumen- und des Flächenintegrals Zylinderkoordinaten \((R, \varphi, z)\) gemäß

\[
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} R \cos \varphi \\ R \sin \varphi \\ z \end{pmatrix}
\]

(3)
einzuführen und das Volumenelement \(d^3x \) und die Flächenelemente \(d^2S \) für die drei Randflächen (Kreisscheiben für „Boden und Deckel“ des Zylinders und die Mantelfläche) zu berechnen.

Linke Seite:

Divergenz:

\[
\begin{align*}
\text{div } \mathbf{V}(\mathbf{x}) &= \nabla \cdot \mathbf{V}(\mathbf{x}) = \partial_1 V_1 + \partial_2 V_2 + \partial_3 V_3 \\
&= 4x_2 - 4x_2 + 2x_3 \\
&= 2x_3
\end{align*}
\]

(4)

Volumenelement:

\[
\begin{align*}
d^3\mathbf{x} &= dR \, d\varphi \, dz \, (\partial_1 \mathbf{x} \times \partial_2 \mathbf{x} \times \partial_3 \mathbf{x}) \\
&= dR \, d\varphi \, dz \cdot R
\end{align*}
\]

(5)

Zylko in (i) einsetzen:

\[
\begin{align*}
\mathbf{V} &= 4 - 4 R \sin \varphi + 2z \\
\int_{V} \nabla \cdot \mathbf{V}(\mathbf{x}) \, d^3\mathbf{x} &= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} R \, (4R - 4R \sin \varphi + 2z) \, dR \, d\varphi \, dz
\end{align*}
\]

(6)

\[
\begin{align*}
&= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} R \, (4R - 4R \sin \varphi + 2z) \, dR \, d\varphi \, dz \\
&= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} R \, \left[4R^2 - 4R^2 \sin \varphi \cdot z + 2z^2 \right] \, dR \, d\varphi \, dz \\
&= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} R \, (21 - 12R \sin \varphi \cdot z + 2z^2) \, dR \, d\varphi \, dz \\
&= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} R \, (21 - 12R \sin \varphi \cdot z) \, dR \, d\varphi \, dz \\
&= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} R \, (21R + 12R \cos \varphi) \, dR \, d\varphi \, dz
\end{align*}
\]
\[= \int_0^R r \cdot (4R + 12R - 12R) \, dr = \int_0^R 42 \pi \cdot r \, dr \]
\[= 42 \pi \int_0^R r \, dr = 42 \pi \cdot \left[\frac{1}{2} r^2 \right]_0^R = 84 \pi \] (iv)

Rechten Seih:

\[\int_0^\varphi V(x) \, df \]

\[u: (x_1, x_2) = \left(\frac{R \cos y}{0} \sin y \right) \quad o: (x_1, x_2) = \left(\frac{R \cos y}{R \sin y} \right) \quad y \in [0, \varphi] \]

\[M: (x_1, x_2) = \left(\frac{2 \cos y}{2 \sin y} \right) \quad y \in [0, 2\pi] \]

für \(f_0 \) in \(-e_2\) und \(f_0 \) in \(+e_3\) Rechtssinn

Bestimmung \(d^2 f \):

\[u: \quad d^2 f_u = -dRdy \cdot R \cdot e_2 \]

\[\int_u V \cdot d^2 f_u = -\int_u V \cdot e_2 \, dRdy = -\int_u R \cdot \left(\frac{4R \cos y}{-2 R^2 \sin^2 y} \right) \cdot \left(\frac{\partial}{\partial y} \right) \, dRdy \]

\[= \int_u R \cdot z^2 \, dRdy = \int_0^\varphi dRdy = 0 \] (vii)

\[o: \quad d^2 f_0 = +dRdy \cdot R \cdot e_2 \]

(analog zu \(d^2 f_u \))

\[\int_0^\varphi V \cdot d^2 f_0 = \int_0^\varphi V \cdot e_3 \, dRdy = \int_0^\varphi \int_0^{2\pi} R \cdot z^2 \, d\varphi dR = \int_0^{2\pi} \frac{9}{2} \, d\varphi \int_0^R R \, dR = \frac{36}{2} \pi \] (vii)
\[d^2 f_n = d \psi \, d z \Rightarrow d \psi \times d z = d \psi \, d z \begin{pmatrix} -\frac{\sin \psi}{2 \cos \psi} \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \]

\[= 2 \, d \psi \, d z \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} \]

\[\int_V d^2 f_n = 2 \int_0^{2\pi} \int_0^3 \left(\cos \psi \right) \cdot \left(\frac{8 \cdot \cos^2 \psi}{2^2} \right) \, d \psi \, d \varphi \]

\[= 2 \int_0^{2\pi} \int_0^3 \left(8 \cos^2 \psi - 8 \sin^3 \psi \right) \, d \psi \, d \varphi \]

\[= 2 \int_0^{2\pi} \left[8 \cdot \frac{3}{2} \left(\cos^2 \psi - \sin^3 \psi \right) \right]_0^3 \, d \psi \]

\[= 48 \int_0^{2\pi} \cos^2 \psi - \sin^3 \psi \, d \psi = 48 \pi \quad \text{(viii)} \]

Links (iv) \hspace{2cm} Rechts (vii) + (viii) \hspace{2cm} 84 \pi = 0 \pi + 36 \pi + 48 \pi

\[\Rightarrow \text{Ganz JGS gilt} \]

\[\square \]