H. van Hees

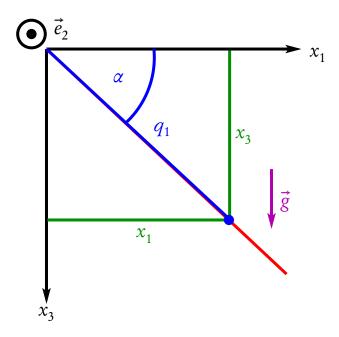
Übungen zur Theoretischen Physik 1 für das Lehramt L3 - Blatt 8

Aufgabe 1 (10 Punkte): Schiefe Ebene

Wir betrachten ein Punktteilchen der Masse m, das sich auf der Ebene (s. Skizze)

$$\underline{x} = \begin{pmatrix} q_1 \cos \alpha \\ q_2 \\ q_1 \sin \alpha \end{pmatrix}, \quad q_1, q_2 \in \mathbb{R}$$
 (1)

bewegt. Die konstant angenommene Schwerebeschleunigung weise in positive x_3 -Richtung: $g = (0,0,g)^T$.



Stellen Sie mit Hilfe der Lagrangefunktion die Bewegungsgleichungen für die generalisierten Koordinaten (q_1, q_2) auf und lösen sie diese. Gehen Sie dazu wie folgt vor:

- (a) (2 Punkte) Berechnen Sie die kinetische Energie $T=m\dot{\underline{x}}^2/2$ als Funktion von (q_1,q_2) und (\dot{q}_1,\dot{q}_2) .
- (b) (2 Punkte) Berechnen Sie das Potential V der Kraft $\underline{F}=m\,\mathrm{g}$ als Funktion der (q_1,q_2) .
- (c) (3 Punkte) Stellen Sie die Bewegungsgleichungen mit Hilfe der Euler-Lagrange-Gleichungen

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_k} = \frac{\partial L}{\partial q_k} \tag{2}$$

mit L = T - V auf.

(d) (3 Punkte) Lösen Sie die Bewegungsgleichungen für eine beliebige Anfangsbedingung $q_k(0) = q_{0k}$, $\dot{q}_k(0) = \dot{q}_{0k}$.

Aufgabe 2 (10 Punkte): Kugelpendel

Wir verwenden das kartesische Koordinatensystem der vorigen Aufgabe weiter. Ein Punktteilchen der Masse m sei an einem im Ursprung befestigten masselosen Faden der Länge R befestigt. Es ist klar, dass sich das Teilchen dadurch nur auf einer Kugelschale mit Radius R bewegen kann, sodass sich Kugelkoordinaten zur Parametrisierung des Ortsvektors am besten eignen:

$$\underline{x} = \begin{pmatrix} R\sin\theta\cos\varphi \\ R\sin\theta\sin\varphi \\ R\cos\theta \end{pmatrix}. \tag{3}$$

Gesucht sind die Bewegungsgleichungen für die generalisierten Koordinaten (ϑ, φ) . Gehen Sie dazu wieder wie folgt vor

- (a) (3 Punkte) Berechnen Sie die kinetische Energie $T = m\dot{x}^2/2$ als Funktion von (ϑ, φ) und $(\dot{\vartheta}, \dot{\varphi})$.
- (b) (3 Punkte) Berechnen Sie das Potential der Schwerkraft $\underline{F} = m\underline{g}$ als Funktion von (ϑ, φ) .

 Hinweis: Sie können teilweise das entsprechende Resultat der vorigen Aufgabe wiederverwenden.
- (c) (3 Punkte) Stellen Sie durch Auswertung der Euler-Lagrange-Gleichungen (2) (mit $q_1 = \vartheta$ und $q_2 = \varphi$) die Bewegungsgleichungen für ϑ und φ auf.
- (d) (1 Punkt) Was fällt Ihnen im Zusammenhang mit der Variablen φ auf?