![]() |
\begin{equation*} \begin{split} & m \frac{\dd^2 \vec{r}}{\dd t^2}=\vec{F}, \\ & \frac{\partial L}{\partial q_k}-\frac{\dd}{\dd t} \frac{\partial L}{\partial \dot{q}_k}=0. \end{split} \end{equation*} |
![]() |
Hendrik
van Hees
E-Mail:
hees@itp.uni-frankfurt.de
Di 09:15-10:45h PHYS 01.114
Do 11:15-12:45h PHYS 02.114
Erste
Vorlesung: Di 22.04.
1.
Woche (21.04.-25.04.): Kinematik (Vektorrechnung etc), Dynamik und
Newtonsche Axiome, freier Fall etc. (Skript 2.1-2.3)
2. Woche (28.04.-02.05.): Erhaltungssätze für abgeschlossene Systeme
(Skript 2.3+2.4)
3. Woche: (05.05.-09.05.): Newtonsches
Gravitationsgesetz und Kepler-Problem (Skript 2.8)
4. Woche: (12.05.-16.05.): Der
harmonische Oszillator (Skript 2.5-2.7)
5. Woche: (19.05.-23.05.): Beschleunigte Bezugssysteme (Skript 2.9)
6. Woche: (26.05.-30.05.): Variationsrechnung und
Euler-Lagrange-Gleichungen (Skript 3.1+3.2)
7. Woche: (02.06.-06.06.): Fundamentallemma der Variationsrechnung;
Hamiltonsches Prinzip (Skript 3.3+3.4)
8. Woche: (09.06.-13.06.): Noether-Theorem (Skript 3.5)
9. Woche: (16.06.-20.06.): Hamiltonsche
Formulierung der Mechanik (Skript 3.7)
10. Woche: (23.06.-27.06.): Kanonische Transformationen und
Poisson-Klammern (Skript 3.8+3.9)
11. Woche: (30.06.-04.07.): Noether-Theorem
in Hamiltonscher Formulierung (Skript 3.10)
12. Woche: (07.07.-11.07.): Kinematik
des starren Körpers (Skript 4.2)
13. Woche: (14.07.-18.01.): Freier
Kreisel (Skript 4.3.1-4.3.3)
14. Woche: (21.07.-25.07.): Schwerer
symmetrischer Kreisel (Skript 4.3.4-4.3.5)
Das Manuskript im Wesentlichen
fertiggestellt. Tippfehler u.ä. werden selbstverständlich korrigiert,
sobald sie mir bekannt werden. Hier finden Sie jedenfalls immer die
aktuelle Version:
Manuskript
(Version vom 18.12.2024)
Präsentation: Herleitung der Eulerschen Kreiselgleichung für den freien Kreisel [pdf]
Tutorin:
Tim Neidig
E-Mail: neidig@itp.uni-frankfurt.de
Do 14:15-15:45h PHYS 01.114
Erster
Termin: Do 08.05.
Kapitel 2
Kapitel 3
Kurzer Review der Vorlesung [pdf]
Die Deutsche Physikalische Gesellschaft bietet einen kostenlosen Online-Mathematik-Brückenkurs an, mit dem man die Kenntnisse in Schulmathematik durch aktives Üben auffrischen kann: OMB+
Basisgrößen der Mechanik (interaktive Übersicht über mechanische Größen und ihre Einheiten von Julius Schaaf)
Frames
of Reference (Youtube) (Lehrfilm von der "Physics Study Group" von
1960 (englisch))
Verschiedene Filme
mit Demonstrationsexperimenten zur Mechanik, insbesondere zur Bewegung
starrer Körper/Kreisel finden sich im online-Begleitmaterial des
Experimentalphysiklehrbuchs von R.
W. Pohl (zugänglich im Netz der Goethe-Uni). Direkter Link zu den
Movies mit Demo-Experimenten [zip]
Im folgenden finden Sie eine Auswahl von Links zu E-Books des Springer Verlags, die im Netz der GU frei zugänglich sind. Man kann auch außerhalb des Netzes der GU mittels VPN oder SOCKS-Proxy (z.B. via ssh) zugreifen. I.a. sind die Lehrbücher im pdf-Format vorhanden, manchmal auch im epub-Format. Erfahrungsgemäß sind wegen der Formeln nur die pdf-Versionen wirklich gut lesbar (sowohl online als auch ausgedruckt).
Zum
Selbersuchen von Physik-E-Books bei Springer:
Springer
Links oder im Katalog der Uni-Bibliothek Neues
Suchportal der Uni-Bibliothek
M. Bartelmann, et al., Theoretische Physik 1 - Mechanik, Springer-Verlag, Berlin, Heidelberg (2018).
K. Hefft, Mathematischer Vorkurs zum Studium der Physik, 2. Aufl., Springer Spektrum Berlin (2018)
H. van Hees, Skript zu "Mathematische Methoden für das Lehramt L3" [pdf]
Homepage von Prof. H.-J. Lüdde mit vielen Links zu Manuskripten, E-Learning-Material etc. zu den Vorlesungen Theoretische Physik für das Lehramt L3 I-III