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Problem 1: Color SU(3)

We consider color states for quarks |c〉 (c ∈ {r, g , b} and anti-quarks |c〉 (c ∈ {r , g , b}). They transform
under the fundamental 3-representation and its conjugate complex 3∗-representation respectively, i.e., for any
Û ∈ SU(3)

�

�c ′
�

=
∑

c
|c〉Uc c ′ ,
�

�c̄ ′
�

=
3
∑

c=1
|c̄〉U ∗c c ′ . (1)

Hadrons must be color singlets, i.e., they must be states that do not change under color-SU(3) transformations.
Show that...

(a) ...for a meson, i.e., a bound state of a quark and an antiquark, the color state
�

�

�ψc ,meson
�

=
∑

c1,c2

Cc1c2
|c̄1, c2〉 (2)

is determined by Cc1c2
= δc1c2

.

Solution: using (1) the transformation of the meson-color state is
�

�

�ψ′c ,meson
�

=
∑

c1,c2, j ,k

Cc1c2

�

�

� j̄ , k̄
¶

U ∗j c1
Ukc2

. (3)

Now with Ĉ = (Cc1c2
) we can write

∑

c1,c2

U ∗j c1
Cc1c2

Ukc2
=
∑

c1,c2

(Û †)∗j c1
Cc1c2

Ukc2
= (Û †Ĉ Û ) j k

!= δ j k . (4)

This means that
Û †Ĉ = Û−1 = Û † (5)

multiplying this by Û from the left gives

Ĉ = 1 ⇒ C j k = δ j k . (6)

(b) ...for a baryon, i.e., a bound state of three quarks, the color state is the totally antisymmetric state
�

�

�ψc ,baryon

¶

=
∑

c1,c2,c3

εc1c2c3
|c1, c2, c2〉 , (7)

where ε j k l is the usual totally antisymmetric Levi-Civita symbol with εr g b = 1.

Solution: The given baryon-color state transforms as
�

�

�ψ′c ,baryon

¶

=
∑

c1,c2,c3

∑

j ,k ,l

εc1c2c3
| j , k , l 〉Uj c1

Ukc2
Ul c3

. (8)

Now
∑

c1,c2,c3

εc1c2c3
| j , k , l 〉Uj c1

Ukc2
Ul c3
= det Ûε j k l , (9)



i.e.
�

�

�ψ′c ,baryon

¶

=
�

�

�ψc ,baryon

¶

, as it must be.

Note: The representation theory of SU(3) shows that this is the only color-neutral combination for
three-quark states.

(c) Consider the three antisymmetrized “di-quark”color state
�

�

�ψc1

¶

=
∑

c2,c3

εc1c2c3
|c2, c3〉 . (10)

Show that it transforms under the conjugate-complex 3∗ representation of the color SU(3).

Hint: Note that det Û = 1, which implies that
∑

j ,k ,l

ε j k l Uj j ′Ukk ′Ul l ′ =
∑

j ,k ,l

ε j k l Uj ′ j Uk ′k Ul ′ l = det Ûε j ′k ′ l ′ . (11)

Solution: The di-quark color states transform as
�

�

�ψ′c1

¶

=
∑

c2,c3

∑

j ,k

εc1c2c3
| j , k〉Uj c2

Ukc3
. (12)

Now we
Ũc1 j k =
∑

c2,c3

εc1c2c3
Uj c2

Ukc3
. (13)

From this we have
∑

c1

Ui c1
Ũc1 j k = (Û

ˆ̃Uk )i j =
∑

c1,c2,c3

εc1c2c3
Ui c1

Uj c2
Ukc3

= det Ûεi j k = εi j k . (14)

Thus, because of Û † = Û−1

Ũc1 j k =
∑

i

(Û †)c1i (Û
ˆ̃Uk )i j =
∑

i

U ∗i c1
εi j k (15)

and finally, using this in (12) applying (13)
�

�

�ψ′c1

¶

=
∑

j ,k

Ũc1 j k | j , k〉=
∑

i , j ,k

εi j k | j , k〉U ∗i c1
=
∑

i

|ψi 〉U
∗

i c1
, (16)

i.e., according to (1) the antisymmetrized di-quark state indeed transforms unter the 3∗-representation
of SU(3).

Problem 2: Some isospin gymnastics

In this exercise we want to investigate the representation theory of SU(2) (in the physical interpreataion as
“isospin”), using Schwinger’s harmonic-oscillator approach, corresponding to a two-flavor-quark model (de-
scribing the two lightest u- and d-Quarks).
A symmetric harmonic oscillator in 2 dimensions can be described by the Hamiltonian

H =ωN, N =N1+N2, N f = a†
f
a f , f ∈ {1,2}. (17)

where the a f obey the commutation relations of bosonic annihilation operators of a field mode, which is the
connection with QFT:

�

a f ,ag

�

= 0,
�

a f ,a†
g

�

= δ f g1. (18)



For the energy-eigenvalue problem we can choose the flavor-number operators N f as a complete set of com-
patible observables, and from the quantum mechanics of harmonic oscillators we know that the correspond-
ing complete orthonormal set of energy eigenstates can be constructed from the “vacuum” |Ω〉= |N1 = 0,N2 = 0〉,
defined by

a f |Ω〉= 0 (19)

for all f and

|N1,N2〉=
2
∏

j=1

1
Æ

N j !

�

a†
f

�N j
|Ω〉 . (20)

It is now clear that the harmonic oscillator has SU(2) as a symmetry group, i.e., the Hamiltonian is invariant
under the transformation

a′f =
2
∑

g=1
Uf g ag (21)

with Û ∈ SU(2), which implies that

a′†
f
=

2
∑

g=1
a†

g U ∗f g =
2
∑

g=1
a†

g (Û †)g f . (22)

We want to show that the familiar irreducible spin represenations with s ∈ {0,1/2, . . .} can be constructed by
the action of creation and annihilation operators on the complete set of orthonormal eigenfunctions |N1,N2〉
with fixed total number N =N1+N2. Obviously the three operators

s+ = a†
1a2, s− = a†

2a1 = s†
−, s3 =

1
2
(N1−N2) (23)

leave the eigenspaces of N with eigenvalues N ∈ {0,1,2, . . .} invariant.
Show that the three operators

s1 =
1
2
(s++ s−), s2 =

1
2i
(s+− s−), s3 (24)

fulfill the commutation relations of angular-momentum components
�

s j , sk

�

= iε j k l sl . (25)

Calculate s⃗2 and show that the operation of this isospin algebra on the eigenspace of N with eigenvalue N real-
ize the known irreducible representations of the su(2) algebra with s =N/2, where s(s+1) are the eigenvalues
of s⃗2.
Solution: We start by calculating the commutators of s± and s3:

�

s+, s+
�

=
�

a†
1a2,a†

1a2

�

= 0, (26)

because a1 and a†
2 commute. For the same reason we also have

�

s−, s−
�

= 0. (27)

Further, using the general formulae

[AB,C] =A [B,C]+ [A,C]B, [A, BC] = B [A,C]+ [A, B]C. (28)



�

s+, s−
�

=
�

a†
1a2,a1a†

2

�

= a†
1

�

a2,a1a†
2

�

+
�

a†
1,a1a†

2

�

a2 = a†
1a1

�

a2,a†
2

�

+
�

a†
1,a1

�

a†
2a2 =N1−N2 = 2s3, (29)

�

s+, s3
�

=
1
2

�

a†
1a2,a1

†a1− a2
†a2

�

=−s+, (30)
�

s−, s3
�

=−
�

s3, s+
�† =+s−. (31)

Then with (24) one indeed finds the commutator relations (25), i.e., that ˆ⃗s indeed fulfill the angular-momentum
algebra, as it should be for spin components.
Then

s⃗2 =
1
4
(s++ s−)

2− 1
4
(s+− s−)

2+ s2
3

=
1
4
(s2
++ s2

−+ s+s−+ s−s+)−
1
4
(s2
++ s2

−− s+s−− s−s+)+ s2
3

=
1
2
(s−s++ s+s−)+ s2

3.

(32)

Now

s−s+ = a1a†
2a†

1a2 = a1a†
1N2 = (
�

a1,a†
1

�

+N1)N2 = (N1+ 1)N2,

s+s− = a†
1a2a1a†

2 =N1(N2+ 1).
(33)

Plugging this into (32) we get

s⃗2 =N1N2+
1
2
(N1+N2)+

1
4
(N2

1+N2
2− 2N1N2) =

1
4

N2+
1
2

N =
N
2

�

N
2
+ 1
�

. (34)

This implies that |N1,N2〉 with N1 +N2 are simultaneous eigen vectors of s⃗2 with eigenvalue s(s + 1) with
s = N/2 and of s3 with eigen values (N1 −N2)/2. Since the maximal possible values of N1 and N2 in the
subspace with N1+N2 =N are both N the eigenvalues of s3 at given s =N/2 are ms ∈ {s , s − 1, . . . ,−s} and
one can start from the eigenvector with ms =−s , i.e., |0,N 〉 ans use s− to get all the other eigenvectors of this
subspace,

|0,N 〉 , |1,N − 1〉 , |2,N − 2〉 , . . . , |N , 0〉 . (35)

This implies that these representations of the angular-momentum Lie algebra su(2) are irreducible.
All this is of course also well known from the usual treatment of the angular-momentum eigenvalue problem
using only the commutation relations (25) [Hee15].
Remark on the conjugate complex fundamental representation

The anti-particle operators by definition transform with Û ∗ with generators − t̂ ∗. Show however that this
realizes a representation which is unitarily equivalent to the representation with s = 1/2.

Hint: Use the known Pauli matrices and show that − ˆ⃗σ∗ = σ̂2
ˆ⃗σσ̂2.

Solution: The Pauli matrices are

σ̂1 =
�

0 1
1 0

�

, σ̂2 =
�

0 −i
i 0

�

, σ̂3 =
�

1 0
0 1

�

. (36)

They fulfill the anti-commutator relations
¦

σ̂ j , σ̂k

©

= 2δ j k1. (37)

From that it follows σ2
2 = 1= σ2σ

†
2, i.e., σ2 is both a self-adjoint and unitary matrix, and the equations

−σ̂∗1 =−σ̂1 =−σ̂
2
2 σ̂1 =+σ̂2σ̂1σ̂2,

−σ̂∗2 = σ̂2 = σ̂
3
3 ,

−σ̂∗3 =−σ̂3 =−σ̂
2
2 σ̂3 = σ̂2σ̂3σ̂

(38)



show indeed the complex-conjugate of the fundamental representation of SU(2) is unitarily equivalent to the
fundamental representation.
This is also clear without this explicit calculation since we already know that there is only one 2-dimensional
representation of SU(2).
Note: With the same technique one can also treat the representation theory of the SU(N ) group for any
N ∈N. For N ≥ 3 there are two inequivalent fundamental representations with two distinct kinds of SU(N )-
spinors, the one kind transforming with Û ∈ SU(N ) and the other with Û ∗, i.e., the conjugate complex
representation, i.e., for more than 2 flavors the flavor-symmetry operations and the corresponding non-zero
hypercharges are different for quarks and antiquarks (for u- and d-quarks all hypercharges are 0).
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