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Exercise Sheet 10 – Solutions

Cross Section for e++ e−→ µ++µ−
In this exercise we want to calculate the invariant matrix element for the unpolarized cross section for the
annihilation of an electron-positron pair to a muon-antimuon pair in leading order QED perturbation theory.
One has to evaluate just one tree-level diagram (at order q2 = e2):
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The vertex for electrons/positrons and muons/antimuons are the same. In the fermion propagators and
uσ (p) and vσ (p) the only difference is the mass, i.e., one has to set m = me or m = mµ, corresponding to the
involved particle.

(a) Evaluate iM f i for definite spins σ1, σ2 for the electron and positron in the incoming and σ ′1 and σ ′2 for
the muon and antimuon in the outgoing state.

Solution: It’s a diagram of 2nd order. So we have a factor 1/2! from the expansion of the exponential
T exp(−i
∫

d4xHI), but we also have two different vertices (one for electrons/positrons the other for
muons/antimuons and photons). So there’s another factor

�2
1

�
from squaring the sum of the two con-

tributions toHI. So there’s no overall combinatoric factor since also to connect the external lines and
the two vertices with the photon-propagator line there’s only one possibility.

Thus we finally get
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with the Mandelstam variable s = (p1 + p2)
2 = (p ′1 + p ′2)

2. We note that we can omit the i0+ in the
denominator, because for kinematical reasons, s ≥ 4m2

µ, which we shall discuss below.

(b) Evaluate |M f i |2. To that end show that
�

uσ ( p⃗)γ
µvσ ′( p⃗

′)
�∗
= vσ ′( p⃗

′)γµuσ ( p⃗). (2)

Solution: To take the complex conjugate we can as well as take the adjoint of the matrix-vector-product
expression:
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(3)

where we have used the standard rules for the γ -matrices (see Lect. 7). Using this forM f i , we find
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ρu(µ, p⃗ ′1,σ ′1)
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(4)

(c) To get the “unpolarized cross section” we have to average over the initial spins and sum over the final
spins, i.e., to calculate

|M f i |2 =
1

2 · 2
∑
σ1,σ2

∑
σ ′1,σ ′2

|M f i |2. (5)

Hint: The spin-sum formulae are (see presentation/notes to Lect. 7)∑
σ

uσ ( p⃗)uσ ( p⃗) = /p +m,
∑
σ

vσ ( p⃗)vσ ( p⃗) = /p −m. (6)

The final result is that you get two traces (one for the electron and one for the muon piece). These can
be calculated by using the following trace formulae for Dirac-γ matrices:

tr(γµ1γµ2 · · ·γµ2 j+1) = 0 for j ∈ {0,1,2, . . .}, (7)
tr(γµ1γµ2) = 4ηµ1µ2 , (8)
tr(γµ1γµ2γµ3γµ4) = 4(ηµ1µ2ηµ3µ4 −ηµ1µ3ηµ2µ4 +ηµ1µ4ηµ2µ3). (9)



For proofs see [Hee11].

Solution: We evaluate the sum over σ1 and σ2, using (6)
∑
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∑
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To also evaluate the sum over σ2 we note that for an arbitrary 4× 4 matrix Γ , using the index calculus
for the Dirac indices (Einstein summation convention implied) and then use again (6):
∑
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v(e, p⃗2,σ2)Γ̂ v(e, p⃗2,σ2) =
∑
σ2
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So we get
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Multiplying out the matrices and then using (7-9) one finds

tr[γ ν (/p1+me)γ
σ (/p1−me)] = 4[pν1 pσ2 + pσ1 pν2 − (p1

· p
2
+m2

e )g
νσ]. (13)

The result can be used also for the sums over the muonic spins. Plugging everything in (5) we get, after
some simple but tedious algebra, the “unpolarized matrix element”,

|M f i |2 =
8q4

s2

�
p ′

1
· p

1
p ′

2
· p

2
+ p ′

1
· p

2
p ′

2
p

1
+m2

e p ′
1
· p ′

2
+m2

µ p
1
· p

2
+ 2m2

e m2
µ

�
. (14)

(d) Finally express everything in terms of the invariant Mandelstam variables s and t . The three Mandel-
stam variables are defined by
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(15)

Note that the four-momenta are on-shell, i.e., p2
1
= p2

2
= m2

e and p ′2
1
= p ′2

2
= m2

µ.

Solution: With the on-shell conditions we find
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e + p

1
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2
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1
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2
), (16)
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Taking the sum of these expressions and using the four-momentum conservation, p
1
+ p

2
= p ′

1
+ p ′

2
,

leads to the relation
s + t + u = 2(m2

e +m2
µ). (19)

Using the Mandelstam variables to express the products of four-momentum vectors in (14) yields, again
after some simple but tedious algebra,
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Eliminating u with help of (19) finally gives
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For the especially motivated: Extra work
Calculate the invariant differential and total cross section in the center-momentum frame, where p⃗1 =− p⃗2 =
p⃗ and p⃗ ′1 =− p⃗ ′2 = p⃗ ′.
Solution: We first consider the cross section for an arbitrary 2→ 2 collision with particles with masses m1 and
m2 in the initial and m′1 and m′2 in the final state. First we consider the kinematics in the center-momentum
frame, where

p
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�
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�
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The time arguments are the on-shell energies of the particles, i.e., E1 =
Æ

m2
1 + p⃗2, etc.

The next step is to express the energies and P = | p⃗| and P ′ = | p⃗ ′| in terms of the Mandelstam variable s :
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2 + 2 p

1
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p
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p
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(23)

Solving for E1:

E1 =
s +m2

1 −m2
2

2
p

s
. (24)

To get E2 we only need to interchange the labels 1↔ 2:

E2 =
s +m2

2 −m2
1

2
p

s
. (25)

For the initial-state center-momentum momentum we get from this

P 2 = E2
1 −m2

1 =
s2− 2s(m2

1 +m2
2)+ (m

2
1 −m2)

2

4s
=
[s − (m1+m2)

2][s − (m1+m2)
2]

4s
. (26)

The same relations, of course, hold in the final state. We only have to put primes on the masses, energies,
and center-momentum momentum. Thus (26) implies that the scattering process can only happen for

p
s ≥

max(m1 + m2, m′1 + m′2), i.e., in our case only for
p

s ≥ 2mµ. This is understandable since in the center-
momentum frame the least energy one has to use to produce the muon-antimuon pair at rest is 2mµ.

As shown in Lect. 9 the invariant differential cross section for two particles in the final state is given by

dσ =
|M f i |2

4I
(2π)4δ (4)(p

1
+ p

2
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1
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2
)

d3 p⃗ ′1
(2π)32E ′1

d3 p⃗ ′2
(2π)32E ′2

. (27)

The invariant “current”, I , is, after expressing it in terms of s and P in the center-momentum frame, given by

I =
Ç
(p

1
· p

2
)2−m2

1 m2
2 =

p
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2
=
p

s P. (28)

The next aim is to integrate out the four-momentum conserving δ distribution in (27). As before, in this
formula we consider energy-momentum conservation and on-shell conditions for the four-momenta to be
satisfied. Then we only have to take the integrals over the momenta of the particles in the final state together
with the δ distribution. First we take the integral over p⃗ ′2, which together with the δ distribution ensures
simply three-momentum conservation. The p⃗ ′1 integral we express in spherical coordinates with d3 p⃗ ′1 =
P ′2dP ′d2Ω:

δ (4)(p
1
+ p

2
− p ′

1
− p ′

2
)d3 p⃗ ′1d3 p⃗ ′2 = δ(E1+ E2︸ ︷︷ ︸p

s

−E ′1− E ′2)P
′2dP ′d2Ω (29)



Now we have
E ′21 = m′21 + P ′2 = E ′22 ⇒ P ′dP ′ = E ′1dE1 = E ′2dE ′2. (30)

From this we get

d(E ′1+ E ′2) =
E ′1+ E ′2

E ′1E ′2
P ′dP ′ =

p
s

E ′1E ′2
P ′dP ′ ⇒ P ′2 =

E ′1E ′2p
s

P ′d(E ′1+ E ′2). (31)

Using this and (28) in (27) we finally get the differential cross section,

dσ

d2Ω
=
|M f i |2
64π2 s

P ′

P
. (32)

Note that P ′ and P can be expressed in terms of s , using (26) and the corresponding equation for P ′ (where
one just has to use m′1 and m′2 instead of m1 and m2).
Further we can relate the Mandelstam variable t to the scattering angle ϑ between the electron and the muon
in our process e++ e−→ µ++µ− by

t = (p
1
− p ′

1
) = m2

e +m2
µ− (s − 2P P ′ cosϑ), (33)

where we used that, because of m1 = m2 = me and m′1 = m′2 = mµ, E1 = E2 = E ′1 = E ′2 = E =
p

s/2 and
E ′1 = E ′2 = E ′. Plugging this in (21), after another tedious algebra, we find, setting q2 = e2 = 4πα with the
Fine-Structure Constant, α= /137.035999177(21) [N+24]

|M f i |2 =
16π2α2

s2
[s(s + 4m2

e + 4me2)+ 16P 2P ′2 cos2ϑ] (34)

For the total cross section we integrate this over the angles, i.e., over the entire unit sphere S
∫

S
d2Ω|M f i |2 =

64π3α2

3s2
[3s(s + 4m2

e + 4m2
µ)+ 16P 2P ′2]. (35)

In the ultrarelativistic limit,
p

s ≫ 2mµ everything simplifies, because then we can set me = mµ = 0 and thus
P = P ′ =

p
s/2 in the above formulae, yielding

|M f i |2 = 16π2α2(1+ cos2ϑ),
∫

S
d2Ω|M f i |2 =

256π3α2

3
. (36)

Using this in (32) and the corresponding integrated form, we find

dσ

d2Ω
∼=

s≫4m2
µ

α2

4s
(1+ cos2ϑ), σ ∼=

s≫4m2
µ

4πα2

3s
. (37)

A comparison with data from the JADE collaboration (DESY) (including also higher-order QED corrections)
can be found in [B+85].

Merry Christmas and a Happy New Year!
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