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Exercise Sheet 9
1. Baker-Campbell-Hausdor{f-Formel
We want to prove some formulae concerning operator exponential functions.

(@) We start with

exp(A)B exp(—A) = Zi [A,Bl,=B, [AB], =[A[AB]] (1)

—=n!

Hint: calculate the Taylor expansion of

F(z) =exp(zA)Bexp(—zA) )
around z =0 end then set z = 1.
Solution: We have
F(0)=B, F/(z)=exp(zA)[A,B]exp(—zA) = F'(0)=[A,B]. ?3)

For the higher derivatives from this scheme it follows
FU)(2) = exp(zA)[A, B]; exp(—zA), @)

which be proven easily by induction. From this we get
21
F(z)=> L[AB],2 ®)
j=0
and (1) follows from this by simply setting z = 1.

(b) Next, we consider the Baker-Campbell-Hausdorff formula Assume that A and B are operators, for

which
[A,[A,B]]=[[A,B},B] =0 ©
holds. Then 1
exp(A+B)=expA expB exp <_E [A, B]> . @)
Hint: First define
F(z)=exp[z(A+B)]. ®)

and then apply (1) to F(z)AF~!(z) and use the result to manipulate F/(z) in such a way that you can
integrate the resulting dlfferentlal equation for F(z), using the initial condition F(0) = 1 (and making
use of the commutation relations (6)).

Solution: Using (1) yields
F(z) AF ' (z)=A+z[A+B,A]=A—2[A,B] = F(2)A =AF(z)—z[A,B]F(x). )
because all the higher commutators vanish due to (6). Taking the derivative of (8) wrt. z leads to

F/(z) = exp[2(A + B)](A+B) = F(z)(A + B). (10)



With (9) we get

F/(z) = AF(z) +F(z)B—z[A,B]F(x). (11)
Since by assumption (6) [A, B] commutes with both A and B, this equation can be integrated in a naive
way,
2
F(z) = exp(zA) exp(zB) exp <—% (A, B]> , (12)

where we also have used the inital condition F(0) = 1. For z = 1 we finally get 7).

2. Various two-point-correlation functions of free KG fields

In the following let ®(x) be a free self-adjoint Klein"=Gordon"=field operator (representing strictly neutral
scalar particles). Its mode decomposition reads

®(x) =9M(x)+8(x) with

#)= | d By L a(p)expl—ip )|

(2m)2E, = ~lpe=E, (13)
$orl 252 0003 exp(—i ) = S
= | a0\ GO Bent-ipx). #0080

The on-shell energy is defined as £, = ++/ 2+ m? > 0 and the annihilation and creation operators fulfill

the bosonic commutator relations
[a().a(@)]=0, [a(3)a"(§)]=8D(F—9) (14)
Further we use the Fourier transform of the Heaviside unit-step function

1 for t>0,
O(t)=<1/2 for t=0, (15)
0 for t<0,

which can be calculated as follows:

_ 0N 1t . 0 . . 1
= JR dtO(t)exp(+ip“t) = fli,rélJr JR dtO(t)exp[it(p” +1€)]= o (16)
Then 40
0(1)= |5 ep=ip’08(p") 17)

This can be proven by making use of the theorem of residues using the closed time contours as indicated in
the following figure:

Further we use

f dp®exp(—ip®t) =278 (t f deexp(ip®t) = (27)8(p°), (18)
R
and the convolution theorem:
c(t) ::f dt’a(t—1t)) f b(t—ta(t)) < &p°) =a(p°)b(p). (19)
R
Further we define for functions f(x)
. d'p & :
fo)=[ dxwentrizp) o fw=[ L fpetisp) @)



Now evaluate A(p) for the following invariant two-point vacuum correlation functions, using the convention

d'p .
Alxyx,) EA(x; —x,) = fw ( zn_)4 A(p)exp[—ip - (x, —x,)] 21)

(a) The Wightman function
A (x5 x,) = (Q|@(x ) )B(x,)| ), (22)

Solution: Because a(p)|2) =0 and (Q|af(5) =0, we have (with gi = g; =m?)
Ay, 2,) = (][ 9(,) + 8 ) [8)x) + 8 (xy)]] 2) = (2] (x, )8 ()| 2)

3> - -
fn@d fRs (27’5 2E2E2< [a(P1)a(p,)| Q)expliCp, x,— p, - x1)]

&7 f 3(3) N
ij . (h 2E12E2 (b1 — p2)expli(p, - x,—p - x,)] )

2 ﬂ)32E explip - (x,—x)]

~270(p°)8 (p* —m*)exp[—ip - (x;—x,)]

).
y

&7 P1
d4p
2m)

This means that 3
iAL(p)=270(p°)8 (p* —m?) (24)

Note: For the other Wightman function,

A (x),x,) = (Q®(x,)®(x)|2) = iA _(p)1= A E):Zn@(—po)é‘(pz—mz). (25)

(b) the commutator function (Pauli-Jordan-Schwinger function)

1A(x,x,) = <Q |[<I>(£1)’<I>(Ez):|| Q> (26)

Use the Lorentz invariance of this function to prove from the equal-time commutation relations of the
fields that A(x,,x,) =0, if (x, —x,)? < O (microcausality condition).

Solution: From the definition of the Wightman functions, we have

iA(&pﬁz) = i[A+(§17ﬁz) - A—(Epﬁz)] = 2770_(]70)8(172 - m2)7 27)

where the sign function is defined as

1 for p°>0,
o(p®)=4{0 for p°=0, (28)
—1 for p°<o.

To investigate the microcausality condition we Fourier transform back to the space-time domain. Set-



ting x, —x, = X we get

d*p
80 = | S 52m0(p%)0(p" —mexp(—ip-

d3,5 1 . o . o
= fRa 2n)p E [CXP(—ltEP +1p- X)—CXP(—HtEp +ip - x)]

_ f &P exp(ip - %)
p(2mp 2E,

(29)

[exp(—itEp) — exp(—i—itEp)]

([ &P exp(ip )
=— E. t).
1JR3 Gy E, sin(E, )

For t = 0 this obviously vanishes.

The initial form of this equation shows that the commutator function is invariant under proper or-
thochronous Lorentz transformations. Particularly because of the & distribution we ensure that the
four-momentum is on shell p? = m? > 0, i.e., time like. So the sign of »° does not change under any

orthochronous Lorentz transformation. Thus for A € SO(1,3)! indeed we find

\ d*p \
IA(Ax)= fw (zn_)427r0( p°)3(p* —m*)exp(—ip - Ax). (30)

Substitution of p = Ap’ and using d*p = d*p’, because det A = 1, we get

o d'p o P
1A(A§):f 210 (p°)3(p"" —m”)exp(—idp" - Ax),
R4 (27‘[,') (31)

_f T8 o8 myespcip’ 11—
 Jwe (2m) rOPICE PobEmEE

If now x? < O (space-like vector) we can always find a boost such that (IAXBE)O = 0, because with the

boost velocity ¥ = vz and y = 1/+/1— 22
A t A t—v;l);é
Al L )=A N N 32
B<x> B}/< 2 on > (32)

Since |¢| < |X|, because by assumption x2 < 0, we can set 7 = X /|X| and thus 7 - ¥ = |%|, and then

t
v=—, |v|]<L (33)
1]

So indeed (/A\Bg)o = 0 and thus

A

Ax) = A(Agx) =0. (34)
This means the field operators commmute if their arguments are space-like separated.
(c) the retarded propagator
Doy, 1) = (2[0(t; — 1) [B(x), B(x,)]| 2) (35)

Solution: Since
1D, (%1, %,) S1D, (% — x,) =10(t; — £5) A(x; — x,), (36)



we can use the convolution theorem (19) for the p°-¢ Fourier transform (with § = p):

dg° i

i NS (a? — m?
" n po_q0+io+0(q 273 (q° —m”)

D) = f 44°8(p° — XA (¢%) =
[ dq° i

- - 0__ _ 0
B RzEppo—q°+io+[3(q E,) =3 +E,)]

37
L P 1 >
C2E,\pO—E,+i0t  pO4+E, +i0t
_ 1 . 1 . 1
TGP OBl (R Bl ie(p0r | ot io (07
(d) the Feynman propagator
iDp(x,x,) = (27 ®(x,)®(x,)| ) (38)
with the time-ordering operator defined as

T B(x,)®(x,) = O(t; — 1)B(x)®(x,) + O(2; — 1) B(x,)®(x ). (39)

Solution: With the convolution theorem wrt. the p°-¢ Fourier transform we find in the same notation
as for retarded Green’s function,

- dq° 1 . 1 X
D = — | ———iIA —T
iDe(p) fR L [po_qO+io+1 Qe (g)]
:f d;qo 2710(4°) + 2710(—4°) 5(gt—m?)
R 21 | pO—q0+i0+ | gO— pO+i0+

1 1 1
= — + -
2E, |:p0—Ep 1ot | —E,—p° +1o+} (40)
1 [ 1 1 ]
2E, | p°—E,+i0t  pO+E, —i0F
B 1 _ 1
(PPP—(E,—f  promitior
(e) finally prove that A and A fulfill the free Klein"=Gordon equation,
@+ M)A, (xy,x) = (O + m*)A(xy,x,) =0 (41)
and that D, as Dy are Green’s functions of the Klein"=Gordon operator, i.e.,
(T4 +m*)D, (2, x,) = (@ + m*)Dg(x,,x,) = =W (x; — x,). (42)
Solution: follows immediately from the fact that
(O, +m*)®(x;) =0. (43)
Further
01 Drer(245%5) = 0,0(8; — 1) Ax, x5)- (44)

Now we can use

atlg(tl — 1) =38(t— 1), (45)



from which
9, 0(t; — 1) A(x ), x,) = (t; — 1) A(x}, 2,) +O(t; — 15)F, Alxy, x,) =O(t; — 1,)0, Alxy,x,).  (46)
In the last step we have used that A(x,,x,) =0 for t; = t,. Taking another time derivative we get
5’5®(t1 — 5)A(x),x,) = 8ty — 1), Alxy, x,) +0O(t; — tz)azfA(Epﬁz)- 47)

Now
81— )8, Alxy,x,) =—id (6 — 1) (0| 3, 8(x)), 8(x,) || 2) =—0W(x, —x,).  (49)

In the last step we have made use of the equal-time canonical commutation equation between ® and

I=0J9,ie.,
[M(z, %)), ®(t;,%,)] = _ié\(s)(’?l —X,). (49)
So finally we have
O+ mz)Dret(&s&z) = (3; —A+ mz)Dret(ﬁl’ﬁz)
= —8(4)(£1 —x,)+0O(t;— tz)(atf —A+ mz)A(ﬁpﬁz) (50)

=—3W(x; —x,) +0(t; — )@ + M) A(x ), x,) = —8D(x; —x,)-
For the Feynman Green’s function we have
Dr(x,25) = 0(t; = 1) A1 (x, x,) +O(, = 1) A_(x,)
=0(t; = 1)[Alxp 25) + A_(x4, %)) +O0(1 = 1) A_(x)] (1)
=0(t; = 1) A(x ), 25) + A (21, %)) = Dy, 2,) + A (2, 5,)-
Since A_ satisfies the free Klein"=Gordon equation and because of (52) we have

0y +m*)Dp(x;,2,) = =8z, —x,). (52)
Note: The explicit evaluation of the time-ordered Feynman propagator Ay, we see that it can be determined

in the space-time domain by adding an “infinitesimal negative imaginary part to 72", i.e., we look for the
Green’s function D(x), which fulfills

@+ m?—i0H)D(x) =—8W(x). (53)
Solving this with a Fourier ansatz,
D(x) = - d4£(2ﬂ)4l~)(£) eXP(_iE'E)’ (54)
leads to
: 1 e .
(O+ m? —i0")D(x) = fR d*p an (—p*+m*—i0")D(p)exp(—ip - x)
“ (55)
L oW =— | dp— exp(—ip-x)
- R4 2(27'[)4 P £ =7
from which )

To see the behavior as a function in time, it is sufficient to only do the Fourier transformation with respect to
%, and this we can calculate using the theorem of residues, using the following two contours in the complex
pO-plane, letting the radii of the semicircles — oo, in which limit they do not contribute to the integral,
because the integrand is exponentially damped along them, i.e., we indeed calculate the Fourier integral along
the entire real axis:



>Repo

Taking into account that the integration along 6,-, is clockwise and that along 6, _, counter-clockwise
around the corresponding poles, the result is
O .
AM),, > d p 1
: £ )
_ . . + . . +
= E[@(t)exp[—l(Ei7 —i07)t ]+ ©(—t)exp[—i(—E, +i07)t] =0

This means that the Feynman Green’s function is the solution for the Klein-Gordon equation with an external
source J, which vanishes in the infinite past and future ¢t — +oo0.

With this one can drastically shorten the derivation for the generating functional Z,[/]], derived in Lect. 9
using the interaction picture with H; = —J(x)®(x).
We start with the Lagrangian

1 2__ 0t
= ~(8,8)(d"d)— 2 371 5. (58)
2k 2
In the quantized theory the variation principle leads to the uniquely solvable equation for the field operator,

(—O—m?+i0hH)d =—], (59)

where ] is a c-number external source, i.e.,
8(1) = | D=0+ ()= L)+ 8ol (60)
R4

Here ®,(x) is the operatorvalued solution of the free Klein-Gordon equation.

Now we can rewrite the Lagrangian by expanding ® around ¢,. Since ¢y(x) — 0 by choosing the boundary
conditions leading to the use of the Feynman propagator, we can as well consider the action functional and
expand it around the c-number solution, ¢, i.e., ® = ¢ + @

S[@]=| d'xZ=S[e]+ J d4_85 9” f d*x f d*y 1_5%[p] — T2 @ (x)®(y).  (61)
R4 R4 x R4 R* _23§9 3?(3’) -



Now the 2nd term vanishes, because ¢ solves the Lagrange equations of motion, i.e., makes § stationary. The
first term reads

Slel= JN d4£[% <(3H90)(9”¢)— m72¢2> +J¢]

2
:f d4§go[%<—|:|go—m7g0> +]} (62)
R4
:% d*xo] 2—% f d*x | d'yJ(x)Dr(x—y)(p).
R4 R4 R4

The last term in 1s found from

) YA N
Sp(x)Se(y) A0+ m7)o =) ©
d* EM{V}CQ' :—l d*x®’(x m?)®' (x
Jo i mmp P =3 [ S wE e "

:JR4 a3 (.8 N0 % () — 87 (x)]

This is the Lagrangian of a free Klein-Gordon field. Together we finally get

2= zl0esp| 5 [ d'x [ dypia—pro)] ©

R4

Since we need this generating funtional anyway only up to a constant factor, because we finally use it to
calculate the time-ordered n-Point Green’s functions from it, which includes the renormalization factor
(2] S) Q2 = Z[0], which finally cancels any constant factor in Z,[]].



