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1. Baker-Campbell-Hausdorff-Formel

We want to prove some formulae concerning operator exponential functions.

(a) We start with

exp(A)B exp(−A) =
∞
∑

n=0

1
n!
[A, B]n , [A, B]0 = B, [A, B] j+1 =

�

A, [A, B] j

�

(1)

Hint: calculate the Taylor expansion of

F(z) = exp(zA)B exp(−zA) (2)

around z = 0 end then set z = 1.

Solution: We have

F(0) = B, F′(z) = exp(zA) [A, B]exp(−zA) ⇒ F′(0) = [A, B] . (3)

For the higher derivatives from this scheme it follows

F( j )(z) = exp(zA) [A, B] j exp(−zA), (4)

which be proven easily by induction. From this we get

F(z) =
∞
∑

j=0

1
j !
[A, B] j z j , (5)

and (1) follows from this by simply setting z = 1.

(b) Next, we consider the Baker-Campbell-Hausdorff formula Assume that A and B are operators, for
which

[A, [A, B]] = [[A, B], B] = 0 (6)

holds. Then
exp(A+B) = expA exp B exp

�

−1
2
[A, B]
�

. (7)

Hint: First define
F(z) = exp[z(A+B)]. (8)

and then apply (1) to F(z)AF−1(z) and use the result to manipulate F ′(z) in such a way that you can
integrate the resulting differential equation for F(z), using the initial condition F(0) = 1 (and making
use of the commutation relations (6)).

Solution: Using (1) yields

F(z)AF−1(z) =A+ z [A+B,A] =A− z [A, B] ⇒ F(z)A=AF(z)− z [A, B]F(x). (9)

because all the higher commutators vanish due to (6). Taking the derivative of (8) wrt. z leads to

F′(z) = exp[z(A+B)](A+B) = F(z)(A+B). (10)



With (9) we get
F′(z) =AF(z)+F(z)B− z [A, B]F(x). (11)

Since by assumption (6) [A, B] commutes with both A and B, this equation can be integrated in a naive
way,

F(z) = exp(zA)exp(zB)exp
�

− z2

2
[A, B]
�

, (12)

where we also have used the inital condition F(0) = 1. For z = 1 we finally get (7).

2. Various two-point-correlation functions of free KG fields

In the following let Φ(x) be a free self-adjoint Klein"=Gordon"=field operator (representing strictly neutral
scalar particles). Its mode decomposition reads

Φ(x) =Φ(+)(x)+Φ(−)(x) with

Φ(+)(x) =
∫

R3
d3 p⃗

√

√

√

1
(2π)32Ep

a( p⃗) exp(−i p · x)
�

�

�

p0=Ep

=
∫

R3
d4 p

√

√

√

2Ep

(2π)3
Θ(p0)a( p⃗)exp(−i p · x), Φ(−)(x) =Φ(+)†(x).

(13)

The on-shell energy is defined as Ep = +
Æ

p⃗2+m2 > 0 and the annihilation and creation operators fulfill
the bosonic commutator relations

�

a( p⃗),a(q⃗)
�

= 0,
�

a( p⃗),a†(q⃗)
�

= δ (3)( p⃗ − q⃗). (14)

Further we use the Fourier transform of the Heaviside unit-step function

Θ(t ) =











1 for t > 0,
1/2 for t = 0,
0 for t < 0,

(15)

which can be calculated as follows:

Θ̃(p0) =
∫

R
dtΘ(t )exp(+i p0 t ) = lim

ε→0+

∫

R
dtΘ(t )exp[it (p0+ iε)] =

i
p0+ i0+

. (16)

Then

Θ(t ) =
∫

R

d p0

2π
exp(−i p0 t )Θ̃(p0). (17)

This can be proven by making use of the theorem of residues using the closed time contours as indicated in
the following figure:
Further we use

∫

R
d p0 exp(−i p0 t ) = 2πδ(t ),

∫

R
dt exp(i p0 t ) = (2π)δ(p0), (18)

and the convolution theorem:

c(t ) :=
∫

R
dt ′a(t − t ′)b (t ′) =

∫

R
b (t − t ′)a(t ′) ⇔ c̃(p0) = ã(p0)b̃ (p0). (19)

Further we define for functions f (x)

f̃ (p) =
∫

R4
d4x f (x)exp(+ix · p) ⇔ f (x) =

∫

R4

d4 p
(2π)4

f̃ (p)exp(−ix · p). (20)



Now evaluate ∆̃(p) for the following invariant two-point vacuum correlation functions, using the convention

∆(x1, x2)≡∆(x1− x2) =
∫

R4

d4 p

(2π)4
∆̃(p)exp[−i p · (x1− x2)]. (21)

(a) The Wightman function
i∆+(x1, x2) =



Ω
�

�Φ(x1)Φ(x2)
�

�Ω
�

, (22)

Solution: Because a( p⃗) |Ω〉= 0 and 〈Ω|a†( p⃗) = 0, we have (with p2
1
= p2

2
= m2)

i∆+(x1, x2) =
¬

Ω
�

�

�[Φ(+)(x1)+Φ
(−)(x1)][Φ

(+)(x2)+Φ
(−)(x2)]
�

�

�Ω
¶

=
¬

Ω
�

�

�Φ(+)(x1)Φ
(−)(x2)
�

�

�Ω
¶

=
∫

R3
d3 p⃗1

∫

R3
d3 p⃗2

1

(2π)3
p

2E12E2




Ω
�

�a( p⃗1)a( p⃗2)
�

�Ω
�

exp[i(p
2
· x2− p

1
· x1)]

=
∫

R3
d3 p⃗1

∫

R3
d3 p⃗2

1

(2π)3
p

2E12E2

δ (3)( p⃗1− p⃗2)exp[i(p
2
· x2− p

1
· x1)]

=
∫

R3
d3 p⃗1

1
(2π)32E1

exp[i p
1
· (x2− x1)]

=
∫

R4

d4 p

(2π)4
2πΘ(p0)δ(p2−m2)exp[−i p

1
· (x1− x2)]

(23)

This means that
i∆̃+(p) = 2πΘ(p0)δ(p2−m2) (24)

Note: For the other Wightman function,

i∆−(x1, x2) =



Ω
�

�Φ(x2)Φ(x1)
�

�Ω
� ⇒ i∆̃−(p)1= i∆̃+(−p) = 2πΘ(−p0)δ(p2−m2). (25)

(b) the commutator function (Pauli-Jordan-Schwinger function)

i∆(x1, x2) =



Ω
�

�

�

Φ(x1),Φ(x2)
��

�Ω
�

(26)

Use the Lorentz invariance of this function to prove from the equal-time commutation relations of the
fields that∆(x1, x2) = 0, if (x1− x2)

2 < 0 (microcausality condition).

Solution: From the definition of the Wightman functions, we have

i∆(x1, x2) = i[∆+(x1, x2)−∆−(x1, x2)] = 2πσ(p0)δ(p2−m2), (27)

where the sign function is defined as

σ(p0) =











1 for p0 > 0,
0 for p0 = 0,
−1 for p0 < 0.

(28)

To investigate the microcausality condition we Fourier transform back to the space-time domain. Set-



ting x1− x2 = x we get

i∆(x) =
∫

R4

d4 p

(2π)4
2πσ(p0)δ(p2−m2)exp(−i p · x)

=
∫

R3

d3 p⃗
(2π)3

1
2Ep

�

exp(−it Ep + i p⃗ · x⃗)− exp(+it Ep + i p⃗ · x⃗)
�

=
∫

R3

d3 p⃗
(2π)3

exp(i p⃗ · x⃗)
2Ep

�

exp(−it Ep )− exp(+it Ep )
�

=−i
∫

R3

d3 p⃗
(2π)3

exp(i p⃗ · x⃗)
Ep

sin(Ep t ).

(29)

For t = 0 this obviously vanishes.

The initial form of this equation shows that the commutator function is invariant under proper or-
thochronous Lorentz transformations. Particularly because of the δ distribution we ensure that the
four-momentum is on shell p2 = m2 > 0, i.e., time like. So the sign of p0 does not change under any
orthochronous Lorentz transformation. Thus for Λ̂ ∈ SO(1,3)↑ indeed we find

i∆(Λ̂x) =
∫

R4

d4 p

(2π)4
2πσ(p0)δ(p2−m2)exp(−i p · Λ̂x). (30)

Substitution of p =Λp ′ and using d4 p = d4 p ′, because detΛ= 1, we get

i∆(Λ̂x) =
∫

R4

d4 p

(2π)4
2πσ(p0)δ(p ′2−m2)exp(−iΛ̂p ′ · Λ̂x),

=
∫

R4

d4 p

(2π)4
2πσ(p0)δ(p ′2−m2)exp(−i p ′ · x) = i∆(x).

(31)

If now x2 < 0 (space-like vector) we can always find a boost such that (Λ̂Bx)0 = 0, because with the
boost velocity v⃗ = vn⃗ and γ = 1/

p
1− v2

Λ̂B

�

t
x⃗

�

= Λ̂Bγ

�

t − vn⃗ · x⃗
x⃗ − vn⃗

�

(32)

Since |t |< |x⃗|, because by assumption x2 < 0, we can set n⃗ = x⃗/|x⃗| and thus n⃗ · x⃗ = |x⃗|, and then

v =
t
|x⃗| , |v |< 1. (33)

So indeed (Λ̂Bx)0 = 0 and thus
∆(x) =∆(Λ̂Bx) = 0. (34)

This means the field operators commmute if their arguments are space-like separated.

(c) the retarded propagator

iDret(x1, x2) =



Ω
�

�Θ(t1− t2)
�

Φ(x1),Φ(x2)
��

�Ω
�

(35)

Solution: Since
iDret(x1, x2)≡ iDret(x1− x2) = iΘ(t1− t2)∆(x1− x2), (36)



we can use the convolution theorem (19) for the p0-t Fourier transform (with q⃗ = p⃗):

iD̃ret(p) =
∫

R
dq0Θ̃(p0− q0)i∆̃(q0) =

∫

R

dq0

2π
i

p0− q0+ i0+
σ(q0)2πδ(q2−m2)

=
∫

R

dq0

2Ep

i
p0− q0+ i0+
�

δ(q0− Ep )−δ(q0+ Ep )
�

=
i

2Ep

�

1
p0− Ep + i0+

− 1
p0+ Ep + i0+

�

=
i

[(p0+ i0+)2− E2
p]
=

i
(p0)2− E2

p + iσ(p0)0+
=

i
p2−m2+ iσ(p0)0+

.

(37)

(d) the Feynman propagator
iDF(x1, x2) =



Ω
�

�T Φ(x1)Φ(x2)
�

�Ω
�

(38)

with the time-ordering operator defined as

T Φ(x1)Φ(x2) =Θ(t1− t2)Φ(x1)Φ(x2)+Θ(t2− t1)Φ(x2)Φ(x1). (39)

Solution: With the convolution theorem wrt. the p0-t Fourier transform we find in the same notation
as for retarded Green’s function,

iD̃F(p) =
∫

R

dq0

2π

�

i
p0− q0+ i0+

i∆̃+(q)+
i

q0− p2+ i0+
i∆̃−(q)
�

=
∫

R

dq0

2π

�

2πiΘ(q0)
p0− q0+ i0+

+
2πiΘ(−q0)

q0− p0+ i0+

�

δ(q2−m2)

=
1

2Ep

�

i
p0− Ep + i0+

+
i

−Ep − p0+ i0+

�

=
i

2Ep

�

1
p0− Ep + i0+

− 1
p0+ Ep − i0+

�

=
i

(p0)2− (Ep − i0)2
=

i
p2−m2+ i0+

.

(40)

(e) finally prove that∆+ and∆ fulfill the free Klein"=Gordon equation,

(□1+m2)∆+(x1, x2) = (□1+m2)∆(x1, x2) = 0 (41)

and that Dret as DF are Green’s functions of the Klein"=Gordon operator, i.e.,

(□1+m2)Dret(x1, x2) = (□1+m2)DF(x1, x2) =−δ (4)(x1− x2). (42)

Solution: (41) follows immediately from the fact that

(□1+m2)Φ(x1) = 0. (43)

Further
□1Dret(x1, x2) =□1Θ(t1− t2)∆(x1, x2). (44)

Now we can use
∂t1
Θ(t1− t2) = δ(t1− t2), (45)



from which

∂t1
Θ(t1− t2)∆(x1, x2) = δ(t1− t2)∆(x1, x2)+Θ(t1− t2)∂t1

∆(x1, x2) =Θ(t1− t2)∂t1
∆(x1, x2). (46)

In the last step we have used that∆(x1, x2) = 0 for t1 = t2. Taking another time derivative we get

∂ 2
t1
Θ(t1− t2)∆(x1, x2) = δ(t1− t2)∂t1

∆(x1, x2)+Θ(t1− t2)∂
2

t1
∆(x1, x2). (47)

Now
δ(t1− t2)∂t1

∆(x1, x2) =−iδ(t1− t2)
¬

Ω
�

�

�

�

∂t1
Φ(x1),Φ(x2)
�
�

�

�Ω
¶

=−δ (4)(x1− x2). (48)

In the last step we have made use of the equal-time canonical commutation equation between Φ and
Π= ∂tΦ, i.e.,

[Π(t1, x⃗1),Φ(t1, x⃗2)] =−iδ (3)(x⃗1− x⃗2). (49)

So finally we have

(□1+m2)Dret(x1, x2) = (∂
2

t1
−∆1+m2)Dret(x1, x2)

=−δ (4)(x1− x2)+Θ(t1− t2)(∂
2

t1
−∆1+m2)∆(x1, x2)

=−δ (4)(x1− x2)+Θ(t1− t2)(□1+m2)∆(x1, x2) =−δ (4)(x1− x2).

(50)

For the Feynman Green’s function we have

DF(x1, x2) =Θ(t1− t2)∆+(x1, x2)+Θ(t2− t2)∆−(x1)
=Θ(t1− t2)[∆(x1, x2)+∆−(x1, x2)+Θ(t2− t2)[∆−(x1)]
=Θ(t1− t2)∆(x1, x2)+∆−(x1, x2) = Dret(x1, x2)+∆−(x1, x2).

(51)

Since∆− satisfies the free Klein"=Gordon equation and because of (52) we have

(□1+m2)DF(x1, x2) =−δ (4)(x1− x2). (52)

Note: The explicit evaluation of the time-ordered Feynman propagator ∆̃F we see that it can be determined
in the space-time domain by adding an “infinitesimal negative imaginary part to m2”, i.e., we look for the
Green’s function D(x), which fulfills

(□+m2− i0+)D(x) =−δ (4)(x). (53)

Solving this with a Fourier ansatz,

D(x) =
∫

R4
d4 p

1
(2π)4

D̃(p)exp(−i p · x), (54)

leads to

(□+m2− i0+)D(x) =
∫

R4
d4 p

1
(2π)4

(−p2+m2− i0+)D̃(p)exp(−i p · x)
!=−δ (4)(x) =−
∫

R4
d4 p

1
(2π)4

exp(−i p · x),
(55)

from which
D̃(p) =

1
p2

0
−m2+ i0+

= D̃F(p). (56)

To see the behavior as a function in time, it is sufficient to only do the Fourier transformation with respect to
p0, and this we can calculate using the theorem of residues, using the following two contours in the complex
p0-plane, letting the radii of the semicircles → ∞, in which limit they do not contribute to the integral,
because the integrand is exponentially damped along them, i.e., we indeed calculate the Fourier integral along
the entire real axis:



−Ep + i0+

−Ep − i0+

Im p0

Ct<0

Re p0

Ct>0

Taking into account that the integration along Ct>0 is clockwise and that along Ct<0 counter-clockwise
around the corresponding poles, the result is

i∆(M)F (t , p⃗) =
∫

R

d p0

2π
exp(−i p · x) i

p2−m2+ i0+

=
1

2Ep
[Θ(t )exp[−i(Ep − i0+)t ]+Θ(−t )exp[−i(−Ep + i0+)t ]−−−→

t→±∞ 0.
(57)

This means that the Feynman Green’s function is the solution for the Klein-Gordon equation with an external
source J , which vanishes in the infinite past and future t →±∞.
With this one can drastically shorten the derivation for the generating functional Z0[J ], derived in Lect. 9
using the interaction picture with HI =−J (x)Φ(x).
We start with the Lagrangian

L = 1
2
(∂µΦ)(∂

µΦ)− m2− i0+

2
Φ2+ JΦ. (58)

In the quantized theory the variation principle leads to the uniquely solvable equation for the field operator,

(−□−m2+ i0+)Φ=−J , (59)

where J is a c-number external source, i.e.,

Φ(x) =−
∫

R4
d4x ′DF(x − x ′)J (x)+Φ0(x) = ϕ(x)+Φ0(x). (60)

Here Φ0(x) is the operatorvalued solution of the free Klein-Gordon equation.
Now we can rewrite the Lagrangian by expanding Φ around ϕ0. Since ϕ0(x)→ 0 by choosing the boundary
conditions leading to the use of the Feynman propagator, we can as well consider the action functional and
expand it around the c -number solution, ϕ, i.e., Φ= ϕ+Φ′:

S[Φ] =
∫

R4
d4xL = S[ϕ]+

∫

R4
d4x
δS[ϕ]
δϕ(x)

Φ′(x)+
∫

R4
d4x
∫

R4
d4y

1
2
δ2S[ϕ]

δϕ(x)δϕ(y)
Φ′(x)Φ′(y). (61)



Now the 2nd term vanishes, because ϕ solves the Lagrange equations of motion, i.e., makes S stationary. The
first term reads

S[ϕ] =
∫

R4
d4x
�

1
2

�

(∂µϕ)(∂
µϕ)− m2

2
ϕ2
�

+ Jϕ
�

=
∫

R4
d4xϕ
�

1
2

�

−□ϕ− m2

2
ϕ

�

+ J
�

=
1
2

∫

R4
d4xϕJ =−1

2

∫

R4
d4x
∫

R4
d4yJ (x)DF(x − y)J (y).

(62)

The last term in (62) is found from

δ2S[ϕ]
δϕ(x)δϕ(y)

=−2(□+m2)δ (4)(x − y), (63)

i.e.,
∫

R4
d4y

1
2
δ2S[ϕ]

δϕ(x)δϕ(y)
Φ′(x)Φ′(y) =−1

2

∫

R4
d4xΦ′(x)(□+m2)Φ′(x)

=
∫

R4
d4x

1
2

�

(∂µΦ
′(x))(∂ µΦ′(x))−m2Φ′2(x)

�

.

(64)

This is the Lagrangian of a free Klein-Gordon field. Together we finally get

Z0[J ] = Z0[0]exp
�

− i
2

∫

R4
d4x
∫

R4
d4yJ (x)DF(x − y)J (y)

�

. (65)

Since we need this generating funtional anyway only up to a constant factor, because we finally use it to
calculate the time-ordered n-Point Green’s functions from it, which includes the renormalization factor
〈Ω |S 〉Ω= Z[0], which finally cancels any constant factor in Z0[J ].


