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Exercise Sheet 7 – Solutions

Poincaré transformations of the quantized Dirac field

In this exercise we consider the quantized Dirac field and the unitary representation of the Poincré group
induced by the field-operator algebra. For the following one needs the generally valid equations for commu-
tators of operator products involving anticommutators:

[AB,C] =A{B,C}− {A,C}B. (1)

which one proves by just writing out the corresponding operator products explicitly.
We use the simplified Lagrangian

L = Ψ(i /∂ −m)Ψ. (2)

From Noether’s theorem, applied to space-time translations and boosts (see Lecture 5) one finds the expres-
sions for the corresponding conserved quantities, which are total energy, momentum (forming together the
four-vector operator P), angular momentum, J⃗, and the “boost operators”, K⃗, (whose conservation says that
the “center of energy” moves with constant velocity), written down as normal-ordered operator expressions
of the quantized theory:

Pν =
∫

R3
d3 x⃗ :Θµν :=
∫

R3
d3 x⃗ : Ψ†(x)i∂νΨ :

J⃗ =
∫

R3
d3 x⃗ : Ψ†
h

x⃗ × (−i∇⃗)+ ˆ⃗sD
i

Ψ :

K⃗=
∫

R3
d3 x⃗ : Ψ†
�

−x⃗i∂t − it∇⃗− γ 0 ˆ⃗
kD

�

Ψ :

(3)

The colons indicate normal ordering1, and the field operators obey the Dirac equation,

(i /∂ −m)Ψ = 0, Ψ(i
←−
/∂ +m) = 0. (4)

The canonical equal-time anticommutator relations read

{Ψa(t , x⃗),Ψ b (t , y⃗)}= 0,
¦

Ψ†
a(t , x⃗),Ψ b (t , y⃗)
©

= δabδ
(3)(x⃗ − y⃗), (5)

and a, b ∈ {1,2,3,4} are labeling the Dirac-spinor components.

(a) Show that Pν , J⃗, and K⃗ are all self-adjoint operators.

Hint: You need to do integration by parts wrt. to the integral over x⃗. For the time derivatives use the
Dirac-equation to express it in terms of spatial derivatives, ∇⃗!

Solution: We start with P0 = P0 =H:

H† =
∫

R3
d3 x⃗(−i) : [∂tΨ

†(x)]Ψ(x) : (6)

1Note that when calculating commutators, you don’t need to worry about normal ordering, because normal ordering of bilinear
operator products only leads to additive (usually diverging) c-number contributions. In this problem you don’t need to explicitly
consider the mode decomposition of the dirac field in annihilation and creation operators!



To get the time derivative to the field operator Ψ we follow the hint:

−i∂tΨ
† =−iψ̄γ 0←−∂t =ψ(iγ⃗ ·

←−
∇⃗ +m) (7)

Using this in (6) we obtain

H† =
∫

R3
d3 x⃗ : Ψ(m+ i

←−−
γ⃗ · ∇⃗)Ψ :=
∫

R3
d3 x⃗ : Ψ(m− iγ⃗ · ∇⃗)Ψ :=

∫

R3
d3 x⃗ : Ψ(x)iγ 0∂tΨ(x) :

=
∫

R3
d3 x⃗ : Ψ†(x)i∂tΨ(x) :=H.

(8)

For the momentum it’s just integration by parts without any other tricks:

P⃗
†
=
∫

R3
d3 x⃗ : (i∇⃗Ψ†)Ψ =

∫

R3
d3 x⃗Ψ†(−i∇⃗)Ψ = P⃗. (9)

For J⃗ we have

J⃗
†
=
∫

R3
d3 x⃗ : Ψ(x)†
�←−−−−−−

x⃗ × (+i∇⃗)+ s⃗†
D

�

Ψ(x) :

=
∫

R3
d3 x⃗ :
�

(−i∇⃗)Ψ†× x⃗Ψ +Ψ†s⃗DΨ
�

:

=
∫

R3
d3 x⃗ :
�

Ψ†(+i∇⃗)× (x⃗Ψ)+Ψ†s⃗DΨ
�

:

=
∫

R3
d3 x⃗ : Ψ†
h

(−ix⃗ ×∇⃗)+ ˆ⃗sD
i

Ψ :

(10)

and finally for K⃗

K⃗
†
=
∫

R3
d3 x⃗ : Ψ†
�←−−−−−−−
−ix⃗∂t − it∇⃗+ i

2
ˆ⃗γ †γ 0
�

Ψ :

=
∫

R3
d3 x⃗ : Ψ†
�

[
←−−−−−−−
−ix⃗∂t − it∇⃗+ γ 0 i

2
ˆ⃗γ †
�

Ψ :
(11)

The only complicated term is the one involving the time derivative acting to the left onΨ†, we use again
the Dirac equation for Ψ (4):

−i
∫

R3
d3 x⃗ :
h

Ψ†←−∂t x⃗Ψ
i

:=−i
∫

R3
d3 x⃗ :
h

Ψγ 0←−∂t x⃗Ψ
i

:

=
∫

R3
d3 x⃗ :
�

Ψ(i ˆ⃗γ
←−
∇⃗ +m)x⃗Ψ
�

:

= i
∫

R3
d3 x⃗ : Ψ
�

γ 0 x⃗∂t − γ⃗
�

Ψ :

= i
∫

R3
d3 x⃗ : Ψ†γ 0 �γ 0 x⃗∂t − γ⃗

�

Ψ :

= i
∫

R3
d3 x⃗ : Ψ† �x⃗∂t − γ

0γ⃗
�

Ψ :

(12)

Using this in (11) and also perform the simple integration by parts on the term with the left-acting ∇⃗,

we indeed find K⃗
†
= K. So despite the fact that the generator of boosts in the Dirac representation

of the Lorentz group is not self-adjoint then canonical field-theory formalism guarantees a self-adjoint
realization of the entire Poincaré-Lie-algebra, i.e., a unitary representation of this group on the Fock
space of the quantum field theory.



(b) The sign conventions for the translation and Lorentz-transformation operators are as follows

Utransl(a) = exp(ia ·P) = exp(ia0P0− ia⃗ · P⃗),

Uboost(η, n⃗) = exp(+iηn⃗ · K⃗),

Urot(ϕ, n⃗) = exp(−iϕn⃗ · J⃗).

(13)

The corresponding transformations for the field operators are as for the corresponding classical fields,
i.e.,

U†
transl
(a)Ψ(x)Utransl(a) = Ψ(x − a),

U†
boost
(η, n⃗)Ψ(x)Uboost(η, n⃗) = exp(+iηn⃗ ·

ˆ⃗
kD)Ψ
�

Λ̂−1
B (η, n⃗)x
�

,

U†
rot(ϕ, n⃗)Ψ(x)Urot(D) = exp(−iϕn⃗ · ˆ⃗sD)Ψ

�

Λ̂−1
R (ϕ, n⃗)x
�

(14)

with

Λ̂−1
B (η, n⃗) =
�

coshη − sinhηn⃗T

− sinhηn⃗ (coshη− 1)n⃗n⃗T+13

�

(15)

Expand the both sides of these equations for “infinitesimal” δa, δη, and δϕ to first order in these
quantities.

Solution: Expanding the exponential functions of the translation operators to first order in δa yields

U†
transl
(δa)Ψ(x)Utransl(δa) = Ψ(x)− iδaµ

�

Pµ,Ψ(x)
�

. (16)

The right-hand side gives

Ψ(x −δa) = Ψ(x)−δaµ∂µΨ(x) ⇒ −i
�

Pµ,Ψ(x)
�

=−∂µΨ(x). (17)

In the same way one gets for the boosts and rotations

−i
�

K⃗,Ψ(x)
�

= (−x⃗∂t − t∇⃗+ i
ˆ⃗
kD)Ψ(x),

+i
�

J⃗,Ψ(x)
�

= (−x⃗ ×∇⃗− iˆ⃗sD)Ψ(x).
(18)

(c) Show that the commutators of the unitary generators (3) resulting from this expansion on the lefthand
of the equations (14) side match with what you get on the right-hand side of these equations, i.e., that
the self-adjoint operators (3) really are the generators for the corresponding Poincaré transformations.

Hint: For this purpose use the equal-time anticommutator relations for the Dirac field. For anticom-
mutators involving time derivatives of field operators use the Dirac equation to express the time deriva-
tives in terms of spatial derivatives, ∇⃗.

Solution: It suffices to show the method for Pµ. In the following we have to introduce an integration
variable y⃗ to evaluate Pµ as given by (3). We assume that in the four-vectors x und y the time-arguments
are the same, i.e., tx = ty = t . Then we can use the equal-time commutation relations, using (1). We
can also omit the normal-ordering symbol when evaluating the commutator, because they subtract only
(diverging) c-number contributions which commute with any operator:

[Pν ,Ψa(x)] =
∫

R3
d3 y⃗
�

Ψ†
b
(y)i∂µΨ b (y),Ψa(x)

�

=
∫

R3
d3 y⃗(−i)
¦

Ψ†
b
(y),Ψa(x)
©

∂µψb (y)

=−i
∫

R3
d3 y⃗δ (3)(x⃗ − y⃗)δab∂µΨ b (y) =−i∂µΨa(x),

(19)



which indeed agrees with (16).

In a completely analogous way one also verifies (18).

Additional remarks

Poincaré-transformation properties of field operators

The Eqs. (a.6) show that U†Ψ(x)U for translations, boosts, and rotations realize these transformations as
unitary representations on Fock space in such a way that the field operators transform as their unquantized
(“classical”) counter parts, where for translations

x ′ = x + a, Ψ ′(x ′) = Ψ(x) = Ψ(x ′− a), (20)

for boosts

x ′ = B̂(η, n⃗)x =
�

coshηt + sinhηn⃗ · x⃗
sinhηn⃗ t + x⃗ +(coshη− 1)n⃗(n⃗ · x⃗)

�

,

Ψ ′(x ′) =DB ,D(η, n⃗)Ψ(x) =DB ,D(η, n⃗)Ψ
�

B̂−1(η, n⃗)x ′
�

,
(21)

and rotations

x ′ = R̂(ϕ, n⃗)x =
�

t
(n⃗ · x⃗)n⃗+(n⃗× x⃗)× n⃗ cosϕ+ n⃗× x⃗ sinϕ

�

,

Ψ ′(x ′) =DB ,D(η, n⃗)Ψ(x) =DB ,D(η, n⃗)Ψ
�

B̂−1(η, n⃗)x ′
�

.
(22)

So (14) describes the transformation from ψ(x) to ψ′(x ′), writing again x instead of x ′.
Since any translation in Minkowski spacetime as well as proper orthochronous Lorentz transformations
can be built from these transformations, together these build a unitary representation of the proper or-
thochronous Poincaré group, which is the part of the symmetry group of four-dimensional Minkowski
space as an affine point space, where the “points” are physically to be interpreted as “events”. This group is
called ISO(1,3)↑, i.e., the translations and Lorentz transformations as “isometries” since all the transforma-
tions describe the parallel transport of vectors

−→
AB as well as “pseudo-rotations” of such vectors around their

initial point, A.
All this is in complete analogy to the usual three-dimensional Euclidean affine point space, defining the Eu-
clidean space in the usual geometric sense. There the isometries are also the translations as well as rotations
of vectors like

−→
AB .

Physical meaning of the field operators

The physical meaning of the field operators Ψ(x) and Ψ†(x) are a bit less intuitive than in non-relativistic field
theory, where they are simply the annihilation and creation operators for position-spin eigenstate |x⃗, s〉.
In our relativistic theory we have to take superpositions of both positive-frequency and negative-frequency
eigenmodes in order to realize the “local Poincaré-transformation” behavior as discussed above, and in order to
have a Hamiltonian, whose spectrum is positive semidefinite (or at least bounded from below), guaranteeing
the existence of a ground state of lowest energy and thus the stability of the many-particle system, in the mode
decomposition we have use annihilation operators together with the positive-frequency modes and creation
operators together with the negative-frequence modes.
This means that when applying a Ψ(x) to a Fock state with total charge Q, we create a state, which carries
a charge Q − q , which is realized as a superposition of annihilating a “particle” (carrying charge +q) and



creating an “anti-particle” (carrying a charge −q). Correspondingly Ψ†(x) leads to a state with charge Q + q
(superposition of creating a particle or annihilating an anti-particle) at the space-time point x.
Correspondingly the transformations written in (14), describe the corresponding lowering and raising of
charge in reference frames, which are translated, boosted, or rotated relative to the original one. That these
events are completely invariantly described in any such inertial frame of reference is the manifestation of the
special-relativistic realization of the indistinguishability of all inertial reference frames, i.e., two experiments
lead to the same result, when they only differ by the time when they are performed or by a translation or
a rotation of the measurement device or if they are fixed in either inertial reference frame. Formally that’s
described by the invariance of the physical laws under proper orthocrhonous Poincaré transformations, i.e.,
the symmetry group of affine Minkowski spacetime.


