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Exercise Sheet 3 (Solutions)

Task 3.1: Deformed nucleus

For a deformed nucleus with a surface given by the multipole expansion with coefficients αℓm , calculate:

1. The nuclear volume in second order of αλµ. How can we ensure that it is unnafected by deformations from a
sphere?

Solution: The boundary of the nucleus’s surface is given by
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In the final step we have interchanged the integrals with the sums and used the fact that R(t ,ϑ,ϕ) = R∗(t ,ϑ,ϕ),
from which also follows that
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where we have used that Yℓm = (−1)mY∗
ℓ,−m .

For integrating over the angles we use the orthonormality of the spherical harmonics. For the first sum we
use Y∗00 = 1/
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In the second sum we can simply apply the orthonormality of the spherical harmonics and do the sum over
(ℓ′, m′), finally leading to
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So up to contributions of order O (α3
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2. The center of mass vector in first order of αλµ. What is the physical interpretation?

Solution: The center of mass is defined by
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In the last step we have used that ρ( r⃗ ) = M/V = 3m/(4πR3
0) = const. To evaluate the numerator, we note
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This shows that in leading orderO (αℓm) the shift of the center of mass is determined by the dipole contribution
of the deformation.

Task 3.2: Uranium nucleus

In Cartesian coordinates, the radius of a uranium-238 nucleus with a quadrupole deformation is given by
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1. Calculate the eigenvalues of this matrix. What do they tell you about the symmetries of the nucleus?

Solution: Using Mathematica one finds the eigenvalues,

λ1 = λ2 =−0.0722247, λ3 = 0.144449 (13)



and eigenvectors
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choosen such that they form a right-handed Cartesian basis. The shape of the nucleus is a axially symmetric
ellipsoid with the symmetry axis in direction e⃗3 the long axis, because λ1 = λ2 < 0< λ3. Thus U238 is a prolate
nucleus.

2. Calculate the deformation parameters a0 and a2. Make sure to choose your major axes such that you exploit
any symmetries.

Solution: The multipole deformation coefficients in terms of the spherical harmonics, α̃ℓm with ℓ = 2
(quadrupole), are related to the Cartesian coefficients in the principal-axes basis (i.e., the eigenbasis (14)),
(α′j k ) = diag(λ1,λ2,λ3) by
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a0 describes the stretch along the e⃗3 principal axis with respect to the e⃗1 and e⃗2 principal axes, and a2 the stretch
along e⃗1 with respect to the e⃗2 direction, which is 0 in our case, because the deformation is symmetric in the
plane perpendicular to e⃗3.

3. Measuring these deformation parameters is not trivial, since the body-fixed frame is not usually accessible in
experiment. Read the first 3 pages of this Nature paper [A+24] (also accessible in the OLAT) and summarize:
what are the differences between high and low-energy collisions, when it comes to measuring the excitations
of U238 ? How can we understand the effect that the nuclear shape has on the observables v2 and δ pT ?

Solutions: At low collition energies the duration of the interaction in the collision, τint is much longer than
the rotation-time scale τrot = I/ħh, i.e., in such experiments the rotation-energy levels can be measured, which
gives access to moments of inertia and thus the mass distribution within the nuclei.

At high collision energies τint ≪ τrot and in central collisions rotational states are not excited. The prolate
nuclei can hit each other either in a “tip-tip” or “body body configurtation” (see Fig. 1d in the paper). Now, in
a heavy-ion collisin at ultrarelativistic energies a collectively flowing medium, behaving like a nearly perfect
fluid, is formed, consisting of the quarks and gluons produced in the collision. Now the initial shape of this
“fireball” produced in a tip-tip collision is pretty circular with than the one of a fireball produced in a body-
body collision, where the initial shape is elliptical with a larger area than the former one. Due to the smaller size
of the tip-tip-produced fireballs the pressure gradients are large than in those of the body-body-produced ones.
Due to the collective fluid-like behavior that implies that the radial flow (i.e., the momentum components of
the observed particles perpendicular to the beam direction, pT) are larger in the tip-tip than in the body-body
collisions.

On the other hand the eccentricity of the initial fireball state in configuration space translates in a larger
asymmetry of the pT distribution, which is measured in the so-called elliptic-flow parameter v2, which is the
order-2 coefficient in a Fourier expansion of the pT angular distribution in the transverse plane of the reaction.

Thus in a tip-tip collision thus one expects to find a large radial flow with small v2, while in the body-body
collision a smaller radial flow with a large v2. Thus correlating the radial flow with the v2 of the observed
transverse-momentum spectra, together with model calculations simulating the time-evolution of the entire
collision allows for parametrizing the nuclear shape.
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