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Exercise Sheet 3 (Solutions)

Task 3.1: Deformed nucleus

For a deformed nucleus with a surface given by the multipole expansion with coefficients @,,,, calculate:

1. The nuclear volume in second order of @,,. How can we ensure that it is unnafected by deformations from a
sphere?

Solution: The boundary of the nucleus’s surface is given by
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The volume is (neglecting terms of order &> and a? )
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In the final step we have interchanged the integrals with the sums and used the fact that R(z, ¢, ) = R*(¢, 9, ¢),
from which also follows that
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For integrating over the angles we use the orthonormality of the spherical harmonics. For the first sum we
use Y5, =1/4/4m = const:
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In the second sum we can simply apply the orthonormality of the spherical harmonics and do the sum over
(¢, m"), finally leading to
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So up to contributions of order O(a;, ) the volume stays unchanged if one chooses

2o(t) =— Z| ap(t) ®)

. The center of mass vector in first order of @, ,. What is the physical interpretation?
Solution: The center of mass is defined by
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In the last step we have used that p(7) = M/V = 3m/(4nR;) = const. To evaluate the numerator, we note

that
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This shows that in leading order 0(«,,,) the shift of the center of mass is determined by the dipole contribution
of the deformation.

Task 3.2: Uranium nucleus
In Cartesian coordinates, the radius of a uranium-238 nucleus with a quadrupole deformation is given by

R(x,y,z):Ro<l+ Z al-]-xl-x]) (11)
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where

—0.03602963 —0.06457203 —0.01736175
0.08174144 —0.01736175 —0.03283557

a;; = (12)
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1. Calculate the eigenvalues of this matrix. What do they tell you about the symmetries of the nucleus?

Solution: Using Mathematica one finds the eigenvalues,

A=A, =—0.0722247, A, =0.144449 (13)



and eigenvectors

—0.0365068 —0.464517 0.884812
g,=| 088428 |, &=[—0427471), [—0.187933 ], (14)
0.465529 0.77556 0.426368

choosen such that they form a right-handed Cartesian basis. The shape of the nucleus is a axially symmetric
ellipsoid with the symmetry axis in direction &; the long axis, because A, = A, < 0 < A;. Thus ?*U is a prolate
nucleus.

2. Calculate the deformation parameters a, and a,. Make sure to choose your major axes such that you exploit
any symmetries.

Solution: The multipole deformation coefficients in terms of the spherical harmonics, &,,, with £ = 2
(quadrupole), are related to the Cartesian coefficients in the principal-axes basis (i.c., the eigenbasis (14)),
(“;k) = diag(4, A, 4;) by
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a, describes the stretch along the €; principal axis with respect to the é; and ¢, principal axes, and 4, the stretch
along €, with respect to the ¢, direction, which is 0 in our case, because the deformation is symmetric in the
plane perpendicular to €.

3. Measuring these deformation parameters is not trivial, since the body-fixed frame is not usually accessible in
experiment. Read the first 3 pages of this Nature paper| [[A™24] (also accessible in the OLAT) and summarize:
what are the differences between high and low-energy collisions, when it comes to measuring the excitations
of #8U? How can we understand the effect that the nuclear shape has on the observables v, and & p;-?

Solutions: At low collition energies the duration of the interaction in the collision, 7;,, is much longer than
the rotation-time scale 7., =1/ 5, i.e., in such experiments the rotation-energy levels can be measured, which
gives access to moments of inertia and thus the mass distribution within the nuclei.

At high collision energies 7,,, < 7,., and in central collisions rotational states are not excited. The prolate
nuclei can hit each other either in a “tip-tip” or “body body configurtation” (see Fig. 1d in the paper). Now, in
a heavy-ion collisin at ultrarelativistic energies a collectively flowing medium, behaving like a nearly perfect
fluid, is formed, consisting of the quarks and gluons produced in the collision. Now the initial shape of this
“fireball” produced in a tip-tip collision is pretty circular with than the one of a fireball produced in a body-
body collision, where the initial shape is elliptical with a larger area than the former one. Due to the smaller size
of the tip-tip-produced fireballs the pressure gradients are large than in those of the body-body-produced ones.
Due to the collective fluid-like behavior that implies that the radial flow (i.e., the momentum components of
the observed particles perpendicular to the beam direction, py) are larger in the tip-tip than in the body-body
collisions.

On the other hand the eccentricity of the initial fireball state in configuration space translates in a larger
asymmetry of the py distribution, which is measured in the so-called elliptic-flow parameter v,, which is the
order-2 coefficient in a Fourier expansion of the pr angular distribution in the transverse plane of the reaction.

Thus in a tip-tip collision thus one expects to find a large radial flow with small v,, while in the body-body
collision a smaller radial flow with a large v,. Thus correlating the radial flow with the v, of the observed
transverse-momentum spectra, together with model calculations simulating the time-evolution of the entire
collision allows for parametrizing the nuclear shape.
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