

Exercise Sheet 12

Problem 1: Spontaneously breaking discrete and continuous symmetries

Consider the following Lagrangian

$$\begin{aligned}\mathcal{L} &= \frac{1}{2}(\partial_\mu \phi)^2 - V(\phi) \\ &= \frac{1}{2}(\partial_\mu \phi)^2 - \frac{1}{2}\mu^2 \phi^2 - \frac{1}{4}\lambda \phi^4\end{aligned}\tag{1}$$

that describes a real scalar field ϕ with a specific potential term. It is straightforward to show that \mathcal{L} is invariant under $\phi \rightarrow -\phi$. Regarding the parameters (λ, μ^2) , λ should be positive to ensure the existence of a ground state but, in principle, μ^2 could be positive or negative. The minimum of $V(\phi)$, ϕ_0 , turns out to be:

$$\phi_0 = \begin{cases} 0 & \text{for } \mu^2 > 0 \\ \pm \sqrt{\frac{-\mu^2}{\lambda}} \equiv \nu & \text{for } \mu^2 < 0 \end{cases}\tag{2}$$

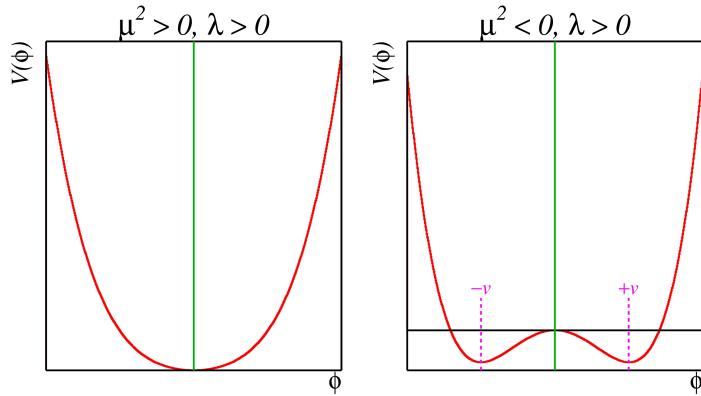


Figure 1: $V(\phi)$ as given by Eq. 1 in two different cases: $\mu^2 > 0$ (left) and $\mu^2 < 0$ (right).

The potential, $V(\phi)$, in both scenarios is shown in Fig. 1. For $\mu^2 > 0$ the quantum field must have a null vacuum expectation value (VEV). This is not the case for ϕ when $\mu^2 < 0$

$$\langle 0 | \phi | 0 \rangle = \nu\tag{3}$$

i.e. the vacuum is degenerate. Thus, a field η that is centered at the vacuum should be introduced

$$\eta = \phi - \nu\tag{4}$$

such that this shifted field satisfies

$$\langle 0 | \eta | 0 \rangle = 0.\tag{5}$$

Then, at the quantum level, the same system is described by $\eta(x)$ with Lagrangian

$$\mathcal{L} = \frac{1}{2}(\partial_\mu \eta)(\partial^\mu \eta) - \lambda \nu^2 \eta^2 - \lambda \nu \eta^3 - \frac{\lambda}{4} \eta^4\tag{6}$$

that describes a massive scalar field ($m_\eta = \sqrt{2\lambda}\nu$) but is no longer invariant under $\eta \rightarrow -\eta$. $\mathcal{L}(\phi)$ had the symmetry but the parameters (λ, μ^2) can be such that the ground state of the Hamiltonian is not symmetric: the symmetry has been spontaneously broken.

The same procedure can be applied to more complex scenarios.

Consider a complex scalar field $\phi(x)$ with Lagrangian

$$\mathcal{L} = (\partial_\mu \phi^*)(\partial^\mu \phi) - V(|\phi|) = (\partial_\mu \phi^*)(\partial^\mu \phi) - \mu^2 |\phi|^2 - \lambda |\phi|^4 \quad (7)$$

Show that it is invariant under a global U(1) symmetry, i.e., $\phi \rightarrow \exp(-i\alpha)\phi$, $\alpha = \text{const} \in \mathbb{R}$. Write down the Lagrangian in terms of (ϕ_1, ϕ_2) where

$$\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2) \quad (8)$$

Repeat the previous procedure in the case of the discrete symmetry to compute ϕ_0 . Write down the Lagrangian in terms of the shifted fields:

$$\begin{aligned} \eta &= \phi_1 - \nu \\ \xi &= \phi_2 \end{aligned} \quad (9)$$

How many massive and massless scalar particles does it contain? What does this fact have to do with the broken symmetry?

Hint: If we repeat the same calculation but with an SU(2) triplet instead of a scalar, the Lagrangian in terms of the shifted fields would no longer be invariant under SU(2) but under U(1) and it would contain 2 massless scalar fields.

Problem 2: Spontaneously breaking gauge invariance

Consider a U(1) gauge-invariant Lagrangian for a complex scalar field $\phi(x)$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D_\mu \phi)^*(D^\mu \phi) \underbrace{-\mu^2 \phi^* \phi - \lambda (\phi^* \phi)^2}_{-V(|\phi|)} \quad (10)$$

with the gauge-covariant derivative

$$D_\mu = \partial_\mu + iqA_\mu(\underline{x}) \quad (11)$$

and the field-strength tensor

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \quad (12)$$

that is invariant under

$$\begin{aligned} \phi'(\underline{x})\phi(\underline{x}) &= \exp[-iq\Theta(\underline{x})]\phi(\underline{x}) \\ A'_\mu(\underline{x}) &= A_\mu(x) + \partial_\mu \Theta(x) \end{aligned} \quad (13)$$

Compute the minimum $\phi_0 = \nu/\sqrt{2} > 0 \in \mathbb{R}$ of the potential of $V(|\phi|)$ for $\mu^2 < 0$. In this case instead of writing ϕ in terms of the shifted fields (η, ξ) as

$$\phi(x) \equiv \frac{1}{\sqrt{2}}[\nu + \eta(x) + i\xi(x)], \quad \langle 0|\eta|0 \rangle = \langle 0|\xi|0 \rangle = 0 \quad (14)$$

it is more transparent to write

$$\phi(x) \equiv \exp(-iq\xi(x)/\nu) \frac{1}{\sqrt{2}}[\nu + \eta(x)], \quad \langle 0|\eta|0 \rangle = \langle 0|\xi|0 \rangle = 0 \quad (15)$$

and exploit local gauge invariance so that

$$\phi'(x) = \exp(iq\xi(x)/\nu)\phi(x) = \frac{1}{\sqrt{2}}[\nu + \eta(x)] \quad (16)$$

that is equivalent to choose the gauge field $\Theta(x) = -\xi(x)/\nu$. This choice is called unitary gauge. Rewrite \mathcal{L} in terms of $\eta(x)$ and analyse the different terms that it contains. Is the gauge boson massless?

Discuss, how the various “field-degrees of freedom” are redistributed when comparing the cases with and without broken *local* gauge invariance, and discuss, why there are no massless Goldstone modes in this case in contradistinction to the case of a spontaneously broken *global* symmetry, as considered in Problem 1.

Solution: It's easy to see that again the parameters in the potential and the normalization of ϕ are chosen such that $\nu = \sqrt{-\mu^2/\lambda} > 0 \in \mathbb{R}$ (for $\mu^2 < 0$).

The gauge-transformed gauge field is

$$A'_\mu = A_\mu + \partial_\mu \Theta = A_\mu - \frac{1}{\nu} \partial_\mu \xi. \quad (17)$$

The Lagrangian in the new fields is

$$\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}[D'_\mu(\nu + \eta)]^*[D'_\mu(\nu + \eta)] - V(|\nu + \eta|/2) \quad (18)$$

As to be expected, since \mathcal{L} is invariant under the *local* gauge transformations, the field ξ does