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Cross Section for e++ e−→ µ++µ−
In this exercise we want to calculate the invariant matrix element for the unpolarized cross section for the
annihilation of an electron-positron pair to a muon-antimuon pair in leading order QED perturbation theory.
One has to evaluate just one tree-level diagram (at order q2 = e2):
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The vertex for electrons/positrons and muons/antimuons are the same. In the fermion propgators and uσ (p)
and vσ (p) the only difference is the mass, i.e., one has to set m = me or m = mµ, corresponding to the involved
particle.

(a) Evaluate iM f i for definite spins σ1, σ2 for the electron and positron in the incoming and σ ′1 and σ ′2 for
the muon and antimuon in the outgoing state.

(b) Evaluate |M f i |2. To that end show that
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(c) to get the “unpolarized cross section” we have to average over the initial spins and sum over the final
spins, i.e., to calculate
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Hint: The spin-sum formulae are (see presentation/notes to Lect. 7)
∑
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The final result is that get two traces (one for the electron and one for the muon piece). These can be
calculated by using the following trace formulae for Dirac-γ matrices:

tr(γµ1γµ2 · · ·γµ2 j+1) = 0 for j ∈ {0,1,2, . . .},
tr(γµ1γµ2) = 4ηµ1µ2 ,
tr(γµ1γµ2γµ3γµ4) = 4(ηµ1µ2ηµ3µ4 −ηµ1µ3ηµ2µ4 +ηµ1µ4ηµ2µ3).

(4)

For proofs see [Hee11].

(d) Finally express everything in terms of the invariant Mandelstam variables s and t . The three Mandel-
stam variables are defined by
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Note that the four-momenta are on-shell, i.e., p2
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µ.

For the especially motivated: Extra work
Calculate the invariant differential and total cross section in the center-momentum frame, where p⃗1 =− p⃗2 =
p⃗ and p⃗ ′1 =− p⃗ ′2 = p⃗ ′.

Merry Christmas and a Happy New Year!
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