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Exercise Sheet 9

1. Baker-Campbell-Hausdorff-Formel

We want to prove some formulae concerning operator exponential functions.

(@) We start with

|
exp(A)Bexp(—A)= >~ [A, [A.Bl,=B, [A,B];,,=[A[AB]] (1)
n=0
Hint: calculate the Taylor expansion of
F(z) =exp(zA)Bexp(—zA) )

around z = 0 end then set z = 1.

(b) Next, we consider the Baker-Campbell-Hausdorff formula Assume that A and B are operators, for

which
[A,[A,B]]=[[A,B],B] =0 ®)
holds. Then
exp(A+B)=expA expB exp <—% [A, B]> . 4)
Hint: First define
F(z)=exp[z(A+B)]. Q)

and then apply (1) to F(z)AF~!(z) and use the result to manipulate F/(z) in such a way that you can
integrate the resulting differential equation for F(z), using the initial condition F(0) = 1 (and making
use of the commutation relations (3)).

2. Various two-point-correlation functions of free KG fields

In the following let ®(x) be a free self-adjoint Klein"=Gordon"=field operator (representing strictly neutral
scalar particles). Its mode decomposition reads

(x) =2 (x) +8(x) with

#)= | d By L ap)exp(—ip-x)|

(2m)32E, = ~po=k, ©6)
= f d* ﬂ@( Na(p)exp(—ip-x), (x)=H(x)
B I

The on-shell energy is defined as £, = ++/ P2+ m2 > 0 and the annihilation and creation operators fulfill

the bosonic commutator relations

[a(P).a(@)] =0, [a(p).a"(§)]=8(F—9). @)



Further we use the Fourier transform of the Heaviside unit-step function

1 for t>0,
O(t)=<1/2 for =0, ®)
0 for t<0,

which can be calculated as follows:

. 0N 1t . 0 . . 1
= JR dtO(t)exp(+ip t) = (lgélJr JR dtO(¢)explit(p” +1€)] = —po o ©9)
Then 10
0(1)= |5 expl=ip’0(p") (1)

This can be proven by making use of the theorem of residues using the closed time contours as indicated in
the following figure:

Further we use

f dp®exp(—ip®t) =278(t), f deexp(ip®t) = (27)8(p°), (11)
R R
and the convolution theorem:
o(t):= J dt’a(t —t"b(t') = f b(t—ta(t)) < &p°) =a(p°)b(p). (12)
R R
Further we define for functions f(x)
x d4p x )
f(p)= d xf(x)exp(+ix - p) < f(x) JR‘ (2ﬂ)4f(£)exp(—1£.£). (13)

Now evaluate A(p) for the following invariant two-point vacuum correlation functions, using the convention

d'p
Alxyx,) EA(x; —x,) = Jw ( 2754 A(p)exp[—ip - (x, —x,)]. (14)

(a) The Wightman function
iA+(§1,§2) = <Q |<I)(§1 )¢(§2)| Q> > (15)

(b) the commutator function (Pauli-Jordan-Schwinger function)

1A(xy,xy) = <Q |[‘I’(£1):‘I’(§2)]{ Q> (16)
Use the Lorentz invariance of this function to prove from the equal-time commutation relations of the
fields that A(x,,x,) =0, if (x;, —x,)? < O (microcausality condition).
(c) the retarded propagator
D, (x1,%,) = (21]0(t; — 1) [B(x,), B(x,) ]| ) (17)
(d) the Feynman propagator
iDp(xy,x,) = <Q |9‘I’(£1)‘I’(§2){ Q> (18)

with the time-ordering operator defined as

T B(x1)®(x,) = O(1; — 1)B(x)B(x,) + O(1; — 1) B(x,)P(x,). (19)



(e) finally prove that A and A fulfill the free Klein"=Gordon equation,
@+ mz)A+(§1,£2) =0+ mz)A(Epﬁz) =0 (20)

and that D, as Dy are Green’s functions of the Klein"=Gordon operator, i.e.,

ret

(Dl + mz)Dret(ﬁlaﬁz) = (Dl + mz)DF(Epﬁz) = —8(4)(961 _ﬁz)- (21)



