Institut für Theoretische Physik Goethe Universität Frankfurt WiSe 2025/2026 PD Dr. Hendrik van Hees

Exercise Sheet 5

The complex Klein-Gordon field

Consider a complex-valued Lorentz-scalar field. The Lagrangian, defining the free field equations is given by

$$\mathcal{L} = (\partial_{\mu}\Phi^*)(\partial^{\mu}\Phi) - m^2\Phi^*\Phi. \tag{1}$$

Obviously the Lagrangian is a Lorentz scalar and thus the action too. The Lagrangian is not explicitly dependent on the space-time coordinates $\underline{x} = (x^{\mu})$, with the fields transforming under both translations and Lorentz transformations as a scalar field.

1. Derive the equations of motion from the Lagrange equations. The complex scalar field has to be interpreted as two real field-degrees of freedom, i.e., you can vary Φ and Φ^* as independent fields, and thus you have the Euler-Lagrange equations for these two fields,

$$\Pi^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \Phi)}, \quad \Pi^{*\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \Phi^{*})}, \quad \partial_{\mu} \Pi^{\mu} = \frac{\partial \mathcal{L}}{\partial \Phi}, \quad \partial_{\mu} \Pi^{*\mu} = \frac{\partial \mathcal{L}}{\partial \Phi^{*}}. \tag{2}$$

Show that the result is the **Klein-Gordon equation** for both Φ and Φ^* .

2. Use the Fourier ansatz for the field Φ

$$\Phi(\underline{x}) = \int_{\mathbb{R}^3} d^3 \vec{p} A(t, \vec{p}) \exp(i \vec{p} \cdot \vec{x})$$
(3)

to show that the general solution of the Klein-Gordon equation can be written in the form

$$\Phi(\vec{x}) = \int_{\mathbb{R}^3} d^3 \vec{p} [a(\vec{p}) u_{\vec{p}}(\underline{x}) + b^*(\vec{p}) u_{\vec{p}}^*(\underline{x})] \tag{4}$$

with the "relativistic plane-wave mode functions"

$$u_{\vec{p}}(\underline{x}) = \frac{1}{\sqrt{(2\pi)^3 2E_p}} \exp(-i\underline{x} \cdot \underline{p})|_{p^0 = E_p}, \quad E_p = \sqrt{m^2 + \vec{p}^2}$$
 (5)

and arbitrary (square-integrable) \mathbb{C} -valued functions $a(\vec{p})$ and $b(\vec{p})$

3. For two scalar fields Φ_1 and Φ_2 we define

$$\Phi_1 \overleftrightarrow{\partial_{\mu}} \Phi_2 = \Phi_1 \partial_{\mu} \Phi_2 - (\partial_{\mu} \Phi_1) \Phi_2 \tag{6}$$

and the non-definite bilinear form

$$(\Phi_1, \Phi_2) = i \int_{\mathbb{R}^3} d^3 x \Phi_1 \overleftrightarrow{\partial_t} \Phi_2. \tag{7}$$

Show that for the mode functions (5) and $\vec{p}, \vec{q} \in \mathbb{R}^3$

$$(u_{\vec{p}}, u_{\vec{q}}) = (u_{\vec{p}}^*, u_{\vec{q}}^*) = 0, \quad (u_{\vec{p}}^*, u_{\vec{q}}) = -(u_{\vec{q}}, u_{\vec{p}}^*) = \delta^{(3)}(\vec{p} - \vec{q}). \tag{8}$$

4. Calculate the canonical energy-momentum tensor,

$$\Theta^{\mu\nu} = \Pi^{\mu} \partial^{\nu} \Phi + \Pi^{*\mu} \partial^{\nu} \Phi^* - \mathcal{L} \eta^{\mu\nu}$$

and express the total energy and momentum

$$P^{\nu} = \int_{\mathbb{R}^3} d^3 x \Theta^{0\nu} \tag{9}$$

in terms of the Fourier components $a(\vec{p})$ and $b(\vec{p})$ defined in (4).

5. From the obvious invariance of the Lagrangian under the phase transformation

$$\Phi'(x) = \exp(-iq\alpha)\Phi(x), \quad \Phi^{*\prime}(x) = \exp(+iq\alpha)\Phi^{*\prime}(x), \tag{10}$$

where $\alpha \in \mathbb{R}$ is the group parameter¹ the corresponding Noether current is given by

$$j_{\mu} = iq \Phi^* \overleftrightarrow{\partial_{\mu}} \Phi. \tag{11}$$

Show that indeed the continuity equation,

$$\partial_{\mu}j^{\mu} = 0 \tag{12}$$

holds if Φ fulfills the Klein-Gordon equation and calculate the total charge

$$Q = \int_{\mathbb{R}^3} d^3 x j^0(\underline{x}) \tag{13}$$

in terms of the Fourier components $a(\vec{p})$ and $b(\vec{p})$.

Extra task: Derive the form of this Noether current (12) from the Noether formalism as shown in the presentation slides of Lect. 5.

¹The group is the U(1), i.e., the multiplication of complex numbers z = x + iy ($x, y \in \mathbb{R}$ with a phase factor, keeping the absolute value |z| invariant, which is equivalent to the rotations of vectors $(x, y)^T \in \mathbb{R}^2$, i.e., SO(2).