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Schwinger-Keldysh time contour

I Aim: Calculate expectation values:

〈O(t)〉 = Tr[ρO(t)], Equilibrium: ρ = exp(−βH)/Z

I Introduce extended closed time-path, invented by Schwinger and Keldysh

Im t

Re t

K
−

K+

−iβ

tfti

C = K
−

+ K+ + M
M

t−1

t+2

I Green’s function on the contour:

iGC (x1, x2) = 〈TC φ(x1)φ(x2)〉β
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Local and bilocal sources

I Generating functional for (disconnected) Green’s functions

Z [J, B] = N

Z
Dφ exp

»
iS [φ] + i {J1φ1}1 +

i

2
{B12φ1φ2}12

–

I Generating functional for connected Green’s functions

W [J, B] = −i ln Z [J, B],
δW

δJ1
= ϕ1,

δW

δB12
=

1

2
(G12 + ϕ1ϕ2)

I Legendre transform: 2PI generating functional

Γ[ϕ, G ] = W [J, B]− {J1ϕ1}1 −
1

2
{(ϕ1ϕ2 + iG12)B12}12

I Saddle point expansion of the path integral

Γ[ϕ, G ] = S [ϕ] +
i

2
Tr ln(β2G−1) +

i

2

n
D−1

12 (G12 − D12)
o

12
+ Φ[ϕ, G ]

with D−1
12 =

δ2S [ϕ]

δϕ1δϕ2
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Equations of Motion

I Want to find ϕ and G at vanishing external sources ⇒ Equations of
motion:

δΓ

δϕ1
= j1 + {B12ϕ2}2

!
= 0,

δΓ

δG12
= − i

2
B12

!
= 0

I Second equation:

D−1
12 − G12

−1 = 2i
δΦ

δG12
= Σ12

I Φ generates skeleton diagrams for self-energy

I Φ must be 2-particle irreducible (2PI)

I Saddle-point expansion of the path integral: Φ diagrams ≥ 2 loops
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“Diagrammar”

Simple φ4 model

L =
1

2
(∂µφ)(∂µφ)− m

2
φ2 − λ

2
φ4, S [φ] = {L1}1

The functional:

+ + · · ·+++iΓ[ϕ, G] = iS[ϕ]+

iΦ

Field equation of motion:

+
x

+ · · ·+i(2 + m
2)ϕ =
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“Diagrammar”

Simple φ4 model

L =
1

2
(∂µφ)(∂µφ)− m

2
φ2 − λ

2
φ4, S [φ] = {L1}1

The functional:

+ + · · ·+++iΓ[ϕ, G] = iS[ϕ]+

iΦ

Self energy:

+ +
−iΣ12 = + · · ·
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Why should one use the Φ functional

I Provides a self-consistent set of equations of motion
I Approximations yield equations, which

I lead to conserved expectation values of Noether currents

I iΓ = ln Z at the solution
(a non-perturbative approximation of the partition sum)

I allows consistent determination of thermodynamical and dynamical
properties through analytic properties of Green’s functions

I especially useful for description of particles and resonances with finite
mass width

I Baym showed that it is the only way to find self-consistent equation with
these properties!

I To show now: Such approximations are renormalizable with local,
temperature-independent counterterms
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Definition of the functional
Renormalization at zero and finite temperature
Numerical Results

The problem

I Diagrams to determine self-energy or Γ are UV-divergent

I Parameters (masses, couplings etc.) should be fixed in vacuum

I in-medium dependence from dynamics alone!

I Self-consistent equations = resummation of infinitely many diagrams

I Need to renormalize these at once

I Diagrams have not only explicit nested and overlapping divergences

I but also those, hidden within self-consistent resummation

I Additional problem at finite temperature: Renormalization parts should be
temperature independent

I Last but not least: Must be feasible for numerical calculations
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Numerical Results

Example: Tadpole in φ4-model

−iΣ =iΦ = ⇒

Temperature dependent mass

M2 = m2 + Σren

Eq. of motion ⇒ Resummation of
“daisy” and “super-daisy” diagrams: + + + · · ·
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Example: Tadpole in φ4-model

−iΣ =iΦ = ⇒

Temperature dependent mass

M2 = m2 + Σren

Eq. of motion ⇒ Resummation of
“daisy” and “super-daisy” diagrams: + + + · · ·

I Expand Green’s function in vacuum part and temperature part
I Dyson equation: G = Gv + GvΣGv + . . .
I Subtract vacuum divergences and subdivergences only
I Counterterms: Vacuum-mass and coupling-constant counterterm

− −−iΣren =

λ

2
Gv(l)λ

2
G(l) λ

2
G2

v
(l)Σren

=
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Example: Tadpole in φ4-model

−iΣ =iΦ = ⇒

Temperature dependent mass

M2 = m2 + Σren

Eq. of motion ⇒ Resummation of
“daisy” and “super-daisy” diagrams: + + + · · ·

I Result: Finite gap equation

M2 = m2 + Σren =m2 +
λ

32π2

„
M2 ln

M2

m2
− Σren

«
+

+
λ

2

Z
d4p

(2π)4
2πδ(p2 −M2)n(p0)| {z }
→0 for T→0

with n(p0) Bose-Einstein distribution

Hendrik van Hees Selfconsistent Renormalization Schemes for Thermodynamic Potentials



Outline
Motivation

Φ-derivable Approximations
Symmetries and conservation laws

Toy-model for dilepton rates
Conclusions and Outlook

Bibliography

Definition of the functional
Renormalization at zero and finite temperature
Numerical Results

Renormalization of general approximations

I The same strategy as in the tadpole example

I Renormalize vacuum first

I can be done with the BPHZ formalism

I power counting is the same for perturbative diagrams

I The temperature part of the self-energy is of power 0

I the asymptotic behavior is governed by the vacuum part alone

I expand Green’s function due to Dyson equation

G = Gv|{z}
δ=−2

+ GvΣTGv| {z }
δ=−4

+ Gr|{z}
δ=−6

I coupling constant renormalization more difficult than for tadpole

I can be solved due to the 2PI properties of the Φ-functional!
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Definition of the functional
Renormalization at zero and finite temperature
Numerical Results
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Breaking of symmetries: The O(N)-σ model

L =
1

2
(∂µ

~φ)(∂µ~φ)− m

2
~φ2 − λ

8

“
~φ2

”2

I Action symmetric under global O(N) rotations of ~φ

I Symmetry linear ⇒ exact Quantum action also symmetric

I perturbative loop expansion = power expansion in ~ ⇒ also symmetric at
any finite order of pert. theory

I If symmetry spontaneously broken (m2 < 0), from this symmetry alone
follows Goldstone’s theorem: There are N − 1 massless Goldstone bosons

I Long known (Baym, Grinstein 1977): Φ-derivable approximations break
the symmetry explicitly!

I Goldstone’s theorem also violated
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Why is the symmetry broken?

I Loop expansion of the functional is of certain order of ~
I but solutions are of arbitrary order of ~
I but, of course, not completely resummed

I Nevertheless expectation values of Noether currents are conserved

I Even crossing symmetry is violated: Four-point function is resummed only
in certain channels

I Example: Tadpole Approximation for spontaneously broken O(N)-Model

iΦ =

I here: Put all mean-field interactions to the Φ-functional ⇒ provides
possibility of self-consistenten MIR!
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Why is the symmetry broken?

I Through self-consistency the four-vertex is intrinsically resummed:

+ + · · ·Σ = · · ·+ +

I The “t and u channels” of the intrinsic four-point function are missing

I Way out: Calculate the corresponding approximation to the 1PI action

I extract proper vertex function from them

I This, by construction, restores crossing symmetry wrt. the external points
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From 2PI back to 1PI approximations

I 2PI functional becomes the 1PI functional (i.e., the “effective action”) by
setting the bilocal source to 0

I For an arbitrarily given mean field ~ϕ we define a Green’s function G̃ [ϕ] by

δΓ[ϕ, G ]

δG

˛̨̨̨
G=G̃ [ϕ]

= − i

2
B

!
= 0

I The 1PI functional is then given by

Γ1PI[ϕ] = Γ[ϕ, G̃ [ϕ]]

I For approximations to Γ ⇒ nonperturbative approximations to Γ1PI

I generate proper vertex functions, which . . .
I . . . are symmetric in their arguments ⇒ crossing symmetric
I . . . fulfil the Ward-Takahashi identities of linearly realized symmetries
I Goldstone’s theorem fulfilled for spontaneously broken symmetries
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The “external” propagators

I Define the inverse propagator from 1PI as usual

(G−1
ext )12 =

δ2Γ1PI

δϕ1δϕ2
:= D−1

12 − (Σext)12

I Only for the exact 2PI functional Gext = G

I For approximations, we have to resum the missing channels for the vertex:

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

= +iΓ(3) iI(3) iK iΓ(3)

iΓ
(3)
123 = 2

δG̃12

δϕ3
, iI

(3)
123 := i

δ3S [ϕ]

δϕ1δϕ2δϕ3
+ 2

δ2Φ

δG12δϕ3
, K12,34 := −2

δ2Φ

G12G34
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iI(3)= +−iΣext iΓ(3)iΦϕϕ
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Example: The Hartree Approximation

+−iΣext = + + · · ·

I The self-consistent solutions
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I Violate symmetries: Goldstone’s theorem not fulfilled!
Hendrik van Hees Selfconsistent Renormalization Schemes for Thermodynamic Potentials



Outline
Motivation

Φ-derivable Approximations
Symmetries and conservation laws

Toy-model for dilepton rates
Conclusions and Outlook

Bibliography

Example: The Hartree Approximation

+−iΣext = + + · · ·

I The inverse external propagators

External π−mass at T=150 MeV (stable solution)
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I External inverse propagator fulfills Goldstone’s theorem
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Example: The Hartree Approximation

+−iΣext = + + · · ·

I The inverse external propagators:

External σ-mass at T=150 MeV (stable solution)
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Schematic rough calculation

I Motivation: Check finite mass-widths effects of dressed propagators on
dilepton spectra

I Used Kroll-Lee-Zumino type vector meson dominance model for π and ρ
mesons

I Symmetry problem causes even worse trouble: Unphysical, acausal degrees
of freedom become falsely populated

I Way out: Just projected to transverse propagators

I In this calculation only imaginary parts taken into account

I Thus: No mass shifts included
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The model and approximation for Φ

Lagrangian:

Lint =
ρ

π
π +

ρ
π
a1 +

π

π

π
π

Φ–Funktional:

Φ =

π

ρ

π
+

π

ρ

a1

+
π

π

π

π

Self–energies:

Πρ =

π

π

+

π

a1

Πa1
=

π

ρ

Σπ =

π

ρ

+

ρ

a1

+

π

π
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Results
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Results
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Results
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Conclusions

I Self-consistent Φ-derivable approximation schemes

I Renormalization problem is solved

I Symmetry problems analyzed

I Projector method for vector particles (or other fields with unphysical
degrees of freedom like ∆)

I Class of numerically feasable approximations

I Can calculate the thermodynamic potential: Nonpert. study of phase
transitions
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Outlook

I Appl. to realistic models for in-medium properties of hadrons (the QGP)

I Self-consistent treatment of gauge theories: Abelian case formally
understood

I Trouble remains for non-Abelian theories like QCD

I Also applicable to derive consistent transport equations for particles with
broad mass widths
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