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What’s a resonance?

quantum mechanics 101: Particle in a potential pot
wave packet with energy around transmission-resonance peak
nearly no reflection
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What’s a resonance?

quantum mechanics 101: Particle in a potential pot
wave packet with energy around resonance peak
nearly no reflection; stays a while in pot
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Schwinger-Keldysh real-time formalism

calculate expectation values of observables
statistical operator defines state at initial time, ti ⇒ “in-in formalism”
time evolution

〈O〉 (t) = Tr

[
ρ̂(ti) Ta

{
exp

[
+i
∫ t

ti

dt′HI(t′)
]}

︸ ︷︷ ︸
anti time–orderd

OI(t)

Tc

{
exp

[
−i
∫ t

ti

dt′HI(t′)
]}

︸ ︷︷ ︸
time–ordered

]
.

Schwinger-Keldysh real-time contour:

K2

K1ti tf
t

C = K1 + K2
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Baym’s Φ functional

write generating functional for Green’s functions as path integral
introduce local and bilocal sources

Z[J, K] = N
∫

Dφ exp
[

iS[φ] + i {J1φ1}1 +

{
i
2

K12φ1φ2

}
12

]
generating functional for connected Green’s functions

W[J, K] = −i ln Z[J, K]

functional Legendre transform

IΓ[ϕ, G] = W[J, K]− {ϕ1J1}1 −
1
2
{(ϕ1 ϕ2 + iG12)K12}12

loop expansion

IΓ[ϕ, G] =S0[ϕ] +
i
2

Tr ln(−iG−1) +
i
2

{
D−1

12 (G12 −D12)
}

12

+ Φ[ϕ, G]⇐ all closed 2PI interaction diagrams

D−1
12 =−�−m2
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Baym’s Φ functional

equations of motion

δIΓ
δϕ1

= −J1 − {K12 ϕ2}2
!
= 0,

δIΓ
δG12

= − i
2

K12
!
= 0

mean field
−�ϕ−m2 ϕ := j = − δΦ

δϕ

“full” propagator G⇒ Dyson equation:

−i(D−1
12 −G12

−1) := −iΣ = 2
δΦ

δG21

retarded Green’s function for homogeneous system in momentum space

Gret(p) =
1

p2 −m2 − Σret(p)

spectral function

A(p) = −2 Im Gret(p) = −2
Im Σret(p)

[p2 −m2 − Re Σret(p)]2 + [Im Σret(p)]2

H. van Hees (GU FfM and FIAS) Resonances in the medium July 16, 2013 7 / 15



Properties of Φ-derivable approximations

truncations of Φ functional⇒ Φ-derivable approximations

conservation laws for expectation values of conserved quantities
in thermal equilibrium iIΓ = ln Z
thermodynamic consistency: bulk properties like pressure, energy,
entropy in accordance with dynamics
same result from partition sum as from Green’s functions!
“Φ derivability” sufficient and necessary scheme!
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Transport equations

start from Φ-derivable Dyson equation for Green’s function

(�1 −�2)D12(x1, x2) =
∫
C

dx3[Σ(x1
1, x3)D(x3, x2

2)−D(x1
1, x3)Σ(x3, x2

2)]

= Coll(x1
1, x2

2)

assume smallness of space-time gradients in “collective macroscopic”
variable R = (x1 + x2)/2
Wigner transform of any two-point function, F

F(x1, x2) =
∫ d4p

(2π)4 exp[−ip · (x1 − x2)]F̃
(

x1 + x2

2
, p
)

.

assume space-time gradients wrt. R to be “small”⇒ gradient expansion
⇒ “coarse graining”

2p · ∂

∂R
iD12(R, p) = Coll12(R, p)
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Gradient expansion of collision term

2p · ∂

∂R
iD12(R, p) = Coll12(R, p)

if Φ beyond pure two-point level⇒memory + spatial correlations
simplify further by introducing Coll12

loc:
diagrams evaluated at reference point R
usual momentum Feynman rules with D12(R, p)
to have exact conservation laws add 1st-order ∂R correction

D
(xi + xj

2
, p
)
' D(R, p) +

1
2
[(xi + xj)− R] · ∂

∂R
D(R, p)

for local Green’s functions and self-energies

iD12(R, p) = f (R, p)A(R, p), A(R, p) = −2 Im Dret(R, p)

as in equilibrium with off-equilibrium phase-space distrib. f (R, p)
usual local Dyson equation for retarded Green’s function

Dret(R, p) =
1

p2 −m2 − Σret(R, p)
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Diagrammar for gradient expansion

arbitrary two-point function M(x1, x2) with internal points x3, . . .

M′(x1, x2; x3, x4) =
δM(x1, x2)

δiG(x4, x3)

collision term⇒ convolusion integral
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Diagrammar for gradient expansion
transport equation in Kadanoff-Baym form

p · ∂

∂R
iD12(R, p) +

{
Re Σret, iD12

}
pb

+
{

iΣ12, Re Dret

}
pb

= C12
loc + C12

mem

then Noether currents exactly conserved also after gradient expansion
problem: 2nd Poisson bracket (“back-flow term”) cannot be represented
in test-particle Monte Carlo
Botermans-Malfliet ansatz

iΣ12(R, p) = −f (R, p)Γ(R, p), Γ(R, p) = −2 Im Σret

valid up to 1st-order gradients
Caveat: in conservation laws from BM ansatz

A(R, p)→ B(R, p) :=
∂

∂p0

[
2 Im ln(D−1

ret )− Re GretΓ
]

for narrow resonances (BW approximation) B ' 1
2 A2Γ

for test-particle off-shell method⇒ see W. Cassing’s talk
Caveat: possible trouble with tachyons

transition to semi-class. particle picture↔WKB/eikonal approximation
particle velocity⇒ group velocity superluminal around resonance
no trouble in wave picture (see Sommerfeld+Brillouin 1913!)
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Application: Lifetime of an “off-shell resonance”

in transport codes: resonances propagated as particles
subject to decay with probability exp(−Γ∆t)
but Γ = Γ(M) (vacuum) or even Γ = Γ(M,~p) (in med)
in virial expansion (formally expansion of D around Dvac ⇒
“thermodynamics” in terms of S matrix [Dashen, Ma, Bernstein 1969]

correct lifetime from KB equations [Leupold, NPA 695, 377 (2001)]

τ = 2p0Bvac =
∂δ

∂p0

also from resonant wave propagation [Danielewicz, Pratt, PRC 53, 249 (1996)]

⇒ “delay time”: ∂δ/∂E
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Application: Lifetime of an “off-shell resonance”

example: ∆(1232) (from [Leupold, NPA 695, 377 (2001)])
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Summary

propagation of instable resonances great challenge for transport
start from self-consistent Φ derivable approximations
approximate Kadanoff-Baym equations
for Wigner transformed single-particle GF
gradient expansion⇒ coarse-grained dynamics
⇒ semi-classical transport equations
⇒ positive phase-space distributions
Kadanoff-Baym form: exact conservation laws for Noether currents for
complete 1st-order gradient expansion
Botermans-Malfliet form: feasibility as test-particle MC
finite width⇒ “off-shell potential”
Caveat: danger of superluminal particles;
pragmatically solved in GiBUU, pHSD (...?)
has intuitive physical interpretation (at least in simplifying limits)
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