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Abstract

The application of finite temperature field theory

to the φ4 model yields to a variation of the mass of

the described bosons depending on the temperature.

This new mass must be understood as an effective

mass rather than a fundamental one. Calculations

for the mass variations are shown for both types of

potential: the symmetric potential and the potential

that induces spontaneous symmetry breaking in the

system.

1 Introduction

As is well known the main tool in quantum field
theory is the propagator. It is the amplitude of
emission of a single a particle in a given space-
time point x and its annihilation at another
point y ,i.e., it describes the motion of a particle
in terms of fields. One of the most important re-
sults in this area is the fact that propagators can
be derived from the vacuum expectation value
of a pair of field operators.

iG(x− y) = 〈0|Tcφ(x)φ(y)|0〉 (1)

The whole formalism of QFT has proven to be
impressively useful for calculating cross sections
and life times.

But many times the systems involve so many
particles that it is impossible to handle them
explicitly. We are no longer interested in scat-
terings that involve few particles but in the
common and simultaneous interactions of many
particles. In other words we are looking for
the quantum equivalent of Classical Statistical
Physics. We will see that the statistical oper-
ator is a very good formalism for handling this
situation and finally we will show that under the
conditions of a thermal bath particles evolve as
if they had a different masses, in fact effective
masses.

2 Fundamentals

For the general reader the fundamentals are out-
lined below

Statistical operator (Density ma-
trix)

It is possible that in a given situation we do not
know all the information of a system, i.e., we
do not know its state. But we can assign it a
probability distribution for finding it in the state
|ψk〉. Let us call Pk to this probability. Then
we can build the statistical operator as:

ρ̂ =
∑

k

Pk|ψk〉〈ψk | (2)

It can be proved that this operator satisfies:

Tr(ρ̂) = 1 〈O〉 = Tr(ρ̂Ô) (3)

We will take a result from information theory
without proof. The amount of lost information
in our system will be I = −Tr(ρ̂ ln ρ̂).

Suppose now we perform an energy measure
over our system. By the postulates of Quantum
Mechanics we know that after this measure the
system will be in a Hamiltonian eigenstate. If
the energy spectrum is non degenerate this mea-
sure is enough for knowing the exact state, but
if it is not the case, all we can say is that the
system ket belongs to the subspace generated
by all the eigenstates associated with the en-
ergy we have measured. Our aim is to find how
to describe the system we have obtained. One
way for doing this is assume that it is going to
be described by a statistical operator , in other
words we look on an ensemble of systems with
the measured value for the mean energy value.
The required operator must be looked up from
all the hermitian operators acting on the Hilbert
space of the system that fulfilling the conditions
(3) make maximum our lost information. This
last imposition is just an assumption but doing
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it is possible to re-derive the entire statistical
thermodynamics, coming out that our lost in-
formation measure is nothing than the entropy
of the system. That is why it is going to be con-
sidered as a valid assumption. At this point we
will assume our system is in equilibrium, that
means ρ̂ does not depend on time.

We cannot go on the details but the result of
our query is :

ρ̂ =
exp(− Ĥ

kT
)

∑

k exp(−Ek

kT
)

(4)

Notice the resemblance between the denomina-
tor and the partition function.

We have done a energy measure that is the
reason why finally we have finished working with
the canonical ensemble. The other ensembles
can be developed in a similar way.

Basics required in field theory

In Field Theory the main aim is looking for a
relativistic quantum formulation. For many rea-
sons the standard substitutions:

E −→ ih̄
∂

∂t
~P −→ −ih̄~∇ ~x −→ ~x (5)

do not work with the basic relativistic formula
E2 = p2c2 +m2c4.

The new conserved quantities are not definite
positive and the standard probability density
|ψ|2 is no longer conserved.

Second Quantization

This is one possible proceeding to achieve our
goal. Not only (5) is able to quantize a clas-
sical system with a finite number of degrees of
freedom but the next recipe can also do it:

{f, g} −→ 1

ih̄
[f̂ , ĝ] (6)

Where the Poisson brackets are used. The im-
portant feature is that it is perfectly applicable
to an infinite degrees of freedom system. When
this is done for classical fields all the observables
show a quantized spectrum and it is interpreted
as the single contributions of each particle. The
eigenstates being {|0〉, |1〉, . . . , |n〉, . . . }.

Once the future predictions of this theory are
compared with experiments the agreement is
pretty good only with bosons. For fermions the
commutator must be changed in (6) by the an-
ticommutator.

Propagators

For interpreting them let it be a free field in
its ground state,i.e.,vacuum |0〉. In this state
all the expectation values are zero. There is
a probability of a particle being created at one
point of space in a definite instant x and being
annihilated in y. The amplitude for this event is
just (1). This is the fundamental vacuum fluc-
tuation. And this amplitude is just the Green’s
function of the classical equations of motion of
the classical free field,i.e., what classically de-
scribes the propagation of a signal by the field
under consideration. The Tc is the time ordered
operator, it causes the field operator with lower
time coordinate acting first over the vacuum.
A particle cannot be annihilated without previ-
ously being created!. This being is called prop-
agator.

When interactive fields are taken into account
the complete solution cannot be obtained and
perturbation theory is used. For instance, let
us consider the next Lagrangian that describes
an self-interactive field, i.e., its particles interact
among each other:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 (7)

The unperturbated Hamiltonian in the theory
is defined as the free term when no interaction
takes place, at this order of approximation the
propagator is:

〈0|Tcφ(x)φ(y)|0〉 =

∫

d4p

4π

i

p2 −m2 + iε
e−ip(x−y)

(8)

And the second term of the perturbation
series, 〈0|Tcφ(x)φ(y) λ

4!

∫

d4zφ4(z)|0〉, describes
the emission and re-absortion of a virtual parti-
cle at one instant of time during the travel of the
created particle. Physically means that along
the path the real particle is exciting the vacuum.
This effect causes that the predicted mass of the
particle goes off to infinity and renormalization
is required.

φ4 theory

Symmetric case

The Lagrangian for this system is no other than
(7). The first term must be interpreted as a ki-
netic term and the two seconds as a potential
term. Then this Lagrangian describes the inter-
actions between particles of mass m.
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Spontaneous Symmetry Breaking

If in the former Lagrangian is changed
m2 → − µ2 then the potential changes as
shown in the figure and it makes sense to ex-
pand the field φ around one of the minimums
φ = ϕ + ψ, where ϕ must be understood as a
constant field called mean field and ψ the vari-
ation around the minimum. Now the symmetry

Figure 1: Sombrero shaped potential

of the Lagrangian is hidden in the solution and
the new Lagrangian is describing the interaction
between particles of mass

√
2µ but interacting

in a rather more complicated way.

L =
1

2
∂µψ∂

µψ − µ2ψ2 −
√

λ

6
µψ3 − λ

4!
ψ4 (9)

Where it has been used the value of the mini-
mum for ϕ. The physical idea is that the sim-
plicity of the interaction is lost around the mini-
mum. Pay attention that the symmetry φ→ −φ
now is lost.

Phase transitions

A first order phase transition occurs in a system
when one of the variables that is describing it
changes discontinuously. This phenomenon oc-
curs always when the ground state is degenerate.
In this situation if some external agent acts over
the system then it could modify the potential in
a way that one of the ground states is now pre-
ferred due to it has now the lower energy. If
this agent acts in the opposite direction it can
select between the different ground states. In
most circumstances it is possible to change one
of the parameter of the system in a way that
the different ground states came closer, even co-
alesce in one single state. This is a second order
phase transition. The point where this occurs is
called critical point.

The most paradigmatic example is the phase
transitions between liquid and gas. The param-
eter that causes the transitions being the tem-
perature. But it is also well known that over the

critic temperature it has no sense to distinguish
between two phases.

In our system the transitions phases occur
when our sombrero shaped potential evolves to
a potential like:

Figure 2: Potential for the symmetric case

3 Finite temperature field
theory

Now we are no longer interested in vacuum fluc-
tuations. A system of many particles is now un-
der consideration. If the energy of the system
is known then (4) will describe it perfectly. If
it is also known the value of the number of par-
ticles grand canonical ensemble must be used.
The important point is that fluctuations of this
special state are searched. The behavior of few
particles can be understood with vacuum exci-
tations now it is expected to understand the be-
havior of many particles with this formalism.

The Finite Temperature Green’s
Functions

In such mixed state the expectation values are
given by (3). Using the axioms of Quantum Me-
chanics and working in the interaction picture it
can be shown that:

〈O(t)〉 = Tr
(

ρ̂(t0)Ĉ
†(t, t0)Ô(t)Ĉ(t, t0)

)

(10)

Where Ĉ(t, t0) is just the time evolution op-
erator of the states in the interaction picture. It
can be written as a Dyson series :

Ĉ(t, t0) = Tc exp

(

−i
∫ t

t0

dτĤI (τ)

)

(11)

Ĉ†(t, t0) = Ta exp

(

i

∫ t

t0

dτĤI (τ)

)

(12)

Where Ta is just the time anti-ordered opera-
tor. After doing few non trivial manipulations:
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〈O(t)〉 =
∑

k

exp

(

− 1

kT
E

(0)
k

)

×

× Tr

(

TC exp

[

−i
∫

C

dτĤI (τ)

]

Ô(t)

)

(13)

Being C the path in the complex plane and
TC the operator that establish the correct order
of the operators depending in which branch the
integration is being done. As we are looking for
fluctuations of a mixed state, it is sensible to
permit this fluctuations be mixed states as well.
That is why now our Green’s Functions have to
be matrices and is easy to prove that:

iG̃(x, y) = 〈TCφ(x)φ(y)〉 (14)

fulfills the equation:

M̂
(

iG̃(x, y)
)

= δ(4)(x− y)

(

1 0
0 −1

)

showing that they are our searched object since
M̂ stands for the motion equations of the clas-
sical field1.

4 φ4 revisited

A massive uncharged spin-less point particle is
described by a scalar field. Relativity forces its
Lagrangian to be:

L = ∂µφ∂µφ−m2φ2 (15)

So particles like free pions can be described with
this Lagrangian. If it is added the term − λ

4!φ
4

the interaction for this system is set.

As many other problems the complete solu-
tion of this system is impossible with elemen-
tary manipulations and perturbation theory is
used. What is searched is (14) for this case.

Free case

Now it is considered to have many of such par-
ticles in a state of definite energy described by
(4). When only the free part is considered the
Green’s functions happen to be in the momen-
tum representation:

1The -1 stands for causality reasons because in one

branch must be used the time ordered operator and in

the other the anti-time ordered

iG̃11 =
i

p2 −m2 + iε
+ 2πδ(p2 −m2)n(p0) (16)

iG̃22 =
i

p2 −m2 − iε
+ 2πδ(p2 −m2)n(p0) (17)

iG̃12 = 2πδ(p2 −m2)[Θ(−p0) + n(p0)] (18)

iG̃21 = 2πδ(p2 −m2)[Θ(p0) + n(p0)] (19)

Where Θ is the Heaviside function and n(p)
is the occupation number for a Bose-Einstein
statistics:

n(p) =
1

exp
(

− p2

2mkT

)

− 1
(20)

The value of m depends on the potential taken
and stands for the mass of the particles2.

The physical meaning is easy to understand.
The first terms in G̃11 and G̃22 are the vacuum
contributions since they are the same than (8)
but in momentum space. So they describe a
virtual particle of mass m being created as a
vacuum excitation. The second terms are the
new contributions due to the thermal bath and
describe the creation of only on-shell3 particles.
This particles are created in the thermal bath
and have a mass m.

Interacting case

After mathematical operations the next term in
the perturbation series for the matrix propaga-
tor is:

iG̃11 =
i

p2 −M2 + iε
+ 2πδ(p2 −M2)n(p0) (21)

iG̃22 =
i

p2 −M2 − iε
+ 2πδ(p2 −M2)n(p0) (22)

iG̃12 = 2πδ(p2 −M2)[Θ(−p0) + n(p0)] (23)

iG̃21 = 2πδ(p2 −M2)[Θ(p0) + n(p0)] (24)

where M = m2 + λ
2ϕ

2 + Σ11, Σ11 is the contri-
bution to the mass of the particles due to the
interactions with the thermal bath. It is the
same phenomenon than in standard QFT but
now fortunately the mass does not diverge, so
no longer regularizations are required. ϕ is the
mean field. Now it must be still considered as

2For instance if the sombrero shaped potential is used

then m =
√

2µ.
3That means p

2 = m
2. Relation that virtual particles

do not fulfill only real ones.

4



a constant but maybe temperature dependent.
The mean point is that the particles still behave
as free ones but with an effective mass what can
be understood by comparison with the free case.

Now it comes out that the equations that gov-
erns ϕ value and the value of Σ11 are coupled:

ϕ

(

m2 + Σ11 +
λ

6
ϕ2

)

= 0 (25)

Σ11 =
λ

4π2

∫ ∞

M

dω

√
ω2 −M2

exp
(

ω
kT

)

− 1
(26)

Effective potential

The physical interpretation of (25) permits the
introduction of an effective potential. If ϕ is
fixed then M can be computed solving the im-
plicit equation for it:

M2 = m2 +
λ

2
ϕ2 +

λ

4π2

∫ ∞

M

dω

√
ω2 −M2

exp
(

ω
kT

)

− 1

(27)

Once M is known Σ11 can be calculated, so
Σ11 depends finally on ϕ once the temperature
is fixed. Then (25) can be re-interpreted as
dVeff

dϕ
= 0. Which is consistent with the free

case since in that case Σ11 = 0.

Symmetric case

One immediate solution is ϕ = 0 and M be-
ing defined by the implicit (27). That case is
the symmetric one. The effective mass, M, de-
pends on temperature. That means that since
the mean field is constant and zero the mini-
mum of the effective potential does not change
its position, but as M changes then the shape of
the potential varies.

Spontaneous symmetry breaking

The other possible solution consists in fixing in
(25) the bracket to zero and solve the coupled
solution. This is more interesting since the mean
field now must change for fulfilling (25) and it
cannot be constant for all temperatures because
Σ11 is temperature dependent. The effective po-
tential then will vary in a more drastic way since
its minimums will move. If both minimums co-
alesce in a single one then the system will suffer
a phase transition.

pert.
self-con.

T [GeV]

M
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]

0.50.40.30.20.10

0.4
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0.1

Figure 3: Results for the symmetric case.

5 Numerical computations

Symmetric case

With a fairly simple iterative algorithm it is very
easy to compute M = f(T ). The results are
shown in figure 3.

Solid line corresponds to complete numerical
solution and the dashed one corresponds to per-
turbative solution when only one iteration is
done.

Here M increases with T showing that the
higher the temperature the higher interaction
with thermal bath.

Spontaneous Symmetry Breaking

Now M = f(T ) and ϕ = f(T ) are shown in
figures 4 and 5.

The mean field evolves until it reach the zero
value and then a phase transition is shown by
the system.

Further calculations

It would be very interesting to compute the evo-
lution of Veff as a function of temperature. It
would show explicitly if our previous interpreta-
tions in terms of an evolving effective potential
are true.
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Figure 4: Mass Temperature dependence.
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Figure 5: The self-consistent solution of the
equations for M (left) and ϕ (right). The
parameters were those of the linear σ-model
(µ = 389MeV and λ = 118.26)

6 Summary

After a brief introduction to field theory, φ4 the-
ory has been developed with the issues of Finite
Temperature Field Theory. The has shown very
interesting features like the possibility of treat-
ing the interactive case as a free one but with a
temperature dependent potential and an effec-
tive mass. It has many resemblances with solid
state physics.

One very important characteristic is the phase
transition shown in the Spontaneous Symmetric

Breaking case.
These ideas have a wide range of application

from beam collisions until the previous instants
of Big Bang passing by baryon asymmetry in
the universe . It is possible that phenomena as
phase transitions could be related with the mass
of the actual particles or with the process that
gives them mass.
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