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Using the two-particle irreducible (2PI) ®-functional formalism for self-
consistent approximations of a linear-c model for quarks and mesons in
and out of equilibrium, the build-up of fluctuations of net-baryon number
during the time evolution of an expanding fireball is studied within a kinetic
theory for the order parameter (o field) and quark distribution functions.
Initializing the system with purely Gaussian fluctuations a fourth-order
cumulant is temporarily built up due to the evolution of the o-field. This
is counterbalanced, however, by the dissipative evolution due to collisions
between quarks, anti-quarks, mesons, and the mean field, depending on the
speed of the fireball expansion.

1. Introduction

One important motivation for ultra-relativistic heavy-ion experiments,
as conducted, e.g., with the large-hadron collider at CERN, the Relativistic
Heavy-Ion Collider (RHIC) at BNL, and in the future at the Facility for An-
tiproton and Ion Research (FAIR) is the understanding of the phase diagram
of strongly interacting matter under extreme conditions of temperature and
density. For small baryo-chemical potentials, up, lattice-QCD calculations
[1, 2] show that the transition between a quark-gluon plasma and a hadron-
resonance gas as well as the chiral transition is a smooth crossover at a
transition temperature T, ~ 155 MeV. Based on effective models like the
Nambu-Jona-Lasinio model, quark-meson models with constituent quarks
[3, 4, 5] [6], and their Polyakov-loop extended versions [7}, |8, 9] [10], at larger
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up one expects a 15%-order transition line ending in a critical point with a
20dorder transition [T} 12} 13, 14]. The main challenge is that this phase
structure must be reconstructed from the observables, which reflect the
state of this medium at the end of the fireball evolution (thermal freeze-out),
which lasts only for a very short time at the order of some 10 fm/c ~ 10~%3s.
A challenging theoretical question therefore is, whether “grand-canonical”
higher-order cumulants of the net-baryon density can develop and survive
the rapid time evolution of the finite-size fireball, expected to occur when the
medium is undergoing a 15%- or especially a 2"d-order phase transition and
whether corresponding quantitative signatures of a possible critical point
can be observed.

In this contribution we study this, employing a set of coupled equations
for the quarks, anti-quarks, and mesons as well as the order parameter, o,
of the chiral symmetry within a linear quark-meson ¢ model, derived from
the two-particle irreducible functional (® functional) formalism [15].

2. The kinetic equations

We start from an O(4) linear-o model for o-mesons, pions, and u- and
d-quarks,

L= wiif =g (o +in7 - 7) v
= . )
+ 3 (Opod*o + 0,TOMT) — 1 (02 + 72— 1/2)2 + fam2o + Uy,

where A = 20, fr = 93MeV, m, = 138MeV, v? = f2 — m2/\, and Uy =
mi/(4)\) — fram, 2 are chosen to lead to the right pion phenomenology in
the vacuum. The quark-meson-coupling constant g is varied in the range
between 2-5, leading to cross-over as well as 15t- and 2"d-order chiral phase
transitions at finite 7' and up.

For the kinetic equations to describe both the equilibrium state as well as
the off-equilibrium kinetic evolution of this model we use the 2PI ®-derivable
approximation, defined in terms of the corresponding Feynman diagrams in
Fig. (1] (left panel). Solving the corresponding self-consistent equations for
the propagators and the mean o-field in thermal equilibrium indeed leads
to a phase diagram with a cross-over transition at lower up and a first-order
transition line ending in a critical point at (7, ug) = (108, 157) MeV (for a
quark-meson coupling, g = 3.3).

For the derivation of coupled kinetic equations of motion for the mean
o-field and the generalized Boltzmann equations for the quark- and meson-
phase-space-distribution functions the diagrams are evaluated within the
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Fig.1. Left: Included 2PI part of the effective action with 15 line: Hartree dia-
grams, 2"¢ line: basketball diagrams, 3" line: sunset diagrams, where solid lines
stand for the o propagator, dashed and pointed lines for the pion propagators and
solid lines with arrows for the fermion propagator. The circle with a cross repre-
sents a o mean-field. Right: The scattering processes in the collision integrals of
the kinetic equation. A full o-line indicates a mean-field contribution, while a full
¢-line describes a scattering process involving a ¢ meson.

Schwinger-Keldysh real-time formalism, leading to corresponding Kadanoff-
Baym equations. Then a first-order gradient-expansion approximation to
the Wigner transforms of the Green’s functions as well as an “on-shell ap-
proximation” with self-consistent dispersion relations has been applied. This
results in a non-Markovian dissipative equation for the mean field, o, and
a Boltzmann equation with a collision integral including the scattering pro-
cesses depicted in Fig. [1] (right panel).

3. Simulation of a heavy-ion collision

To simulate the formation of higher-order cumulants of net-baryon-
density fluctuations in momentum bins, we describe the fireball of strongly
interacting quark-meson matter by an expanding homogeneous and isotropic
Friedmann-Lemaitre-Robertson-Walker metric, ds? = dt? — a?(t)(dz? +
dz3+dz3). This only leads to a modification in the drift terms of the mean-
field and kinetic equations. For the mean field the “Hubble expansion” adds
an additional dissipation term 3H 0,0 with the “Hubble constant” H = a/a,
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as well as an additional term of the form —Hpd, f(t,p) in the drift terms for
the particle phase-space distribution. Note that due to the assumed spatial
homogeneity and isotropy the f’s only depend on ¢t and p = |p].

To initialize the fireball a spherically symmetric bubble of radius Ry =
5 fm is considered, which then is expanding according to the above defined
FLRW expansion with a = vt. The medium within this bubble is initialized
in thermal equilibrium with a temperature 7Ty and baryon chemical potential
uBo- Then the initial net-quark number is Monte-Carlo sampled correspond-
ing to a Gaussian distribution with the mean determined by the thermal
initial state and a standard deviation of ognet = (Ngnet)/10. To mimick
the expected fluctuations in a heavy-ion collision within a given “centrality
bin” we keep the parameters Ry and Ty fixed and adjust p4 such that the
fireball contains the net-quark number N, ¢ specified by the Monte-Carlo
sampling.

With this initial conditions the coupled mean-field and kinetic integro-
differential equations of motion are solved numerically on a momentum grid.
It has been checked that the total net-quark number is conserved within a
few precent numerical accuracy.

In Fig. |2l we show the results for the cumulant ratio, R4o = K4/ K2,
for initial conditions adjusted such that the system undergoes cross-over,
second-order, and first-order transition, respectively. The fluctuations are
plotted in different momentum intervals and for different expansion veloci-
ties, v, as a function of vt. I turns out that the most pronounced fluctua-
tions occur at the critical time scales 7y, min (dynamical minimum of the o
mass) and 7,45 (¢G-pair production from o decay). The fluctuations be-
come largest for the smallest expansion velocity of v = 0.05¢, corresponding
to a quasi-adiabatic expansion, where the system stays for the longest time
close to the critical region. However, in relativistic heavy-ion collisions this
intermediate build-up of fluctuations related with the critical region of the
phase diagram cannot be observed but only those surviving until the ther-
mal freeze-out, which corresponds in our model to vt > 6 fm and a fireball
radius of R > 11 fm.

In the most interesting case, py = 160 MeV, where the system evolves
close to the critical point of a 2"d-order phase transition the largest cumu-
lant ratio in the final state is observed for intermediate expansion velocities
v = 0.2-0.4c, while for the case when the system goes through a 1%%-order
phase transition the final fluctuations are rather insensitive to the expansion
velocity (for the most interesting momentum range p = 200-600 meV). This
allows in principle to distinguish between different types of the phase tran-
sition and indicates the expected longer relaxation times (“critical slowing
down”) around a critical point in the phase diagram, i.e., the system needs
longer to equilibrate and thus the fluctuations survive until the thermal
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Fig. 2. Results for the rescaled cumulant ratio Ry o for different initial conditions
where the fireball evolves through a cross-over, second-order, or first-order transi-
tion.

freeze-out. The absolute magnitude of the cumulant ratio increases with an
increasing net-baryon number (note the scaling factors sq, sy ~ 1/( q7net)2
in the plots of Fig. [2) '

4. Conclusions

Although the fluctuations of net-baryon numbers in an expanding finite
system are less pronounced compared to the expectations from a equili-
brated infinite strongly interaction matter, our simulations suggest that
a significant deviation from the crossover behavior is observable through
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higher-order cumulant ratios in different momentum bins, providing a pos-
itive candidate for an experimental signature of the chiral phase transition
and a possible critical region in the phase diagram of strongly interacting

matter.
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