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Abstract
Particles and fields are standard components in numerical calculations like transport simulations

in nuclear physics and have well understood dynamics. Still, a common problem is the interaction

between particles and fields due to their different formal description. Particle interactions are

discrete, point-like events while field dynamics is described with continuous partial-differential

equations of motion. A workaround is the use of effective theories like the Langevin equation

with the drawback of energy conservation violation. We present a method, which allows to model

noncontinuous interactions between particles and scalar fields, allowing us to simulate scattering-

like interactions which exchange discrete “quanta” of energy and momentum between fields and

particles while obeying energy and momentum conservation and allowing control over interaction

strengths and times. In this paper we apply this method to different model systems, starting with

a simple harmonic oscillator, which is damped by losing discrete energy quanta. The second and

third system consists of an oscillator and a one-dimensional field, which are damped via discrete

energy loss and are coupled to a stochastic force, leading to equilibrium states which correspond to

statistical Langevin-like systems. The last example is a scalar field in (1+3) space-time dimensions,

which is coupled to a microcanonical ensemble of particles by incorporating particle production and

annihilation processes. Obeying the detailed-balance principle, the system equilibrates to thermal

and chemical equilibrium with dynamical fluctuations on the fields, generated dynamically by the

discrete interactions.
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I. INTRODUCTION

Monte-Carlo simulations are a mature tool in theoretical, experimental and computa-
tional physics to simulate a broad variety of problems. By randomly sampling a possible
system state of a complex system ensemble, they can be applied to problems which techni-
cally do not have an immediate probabilistic interpretation [1]. In nuclear physics, Monte-
Carlo simulations have been used to integrate the discretized action in Lattice QCD prob-
lems [2]; in transport simulations they are used to sample collision integrals and phase-space
distributions of particles [3]. Beside approaches with simple Gaussian (or white) random
processes, complex and microscopic interaction kernels, based on physical properties, can
be employed with help of the Boltzmann-equation [4]. Hydrodynamics is another, very suc-
cessful approach to the simulation of physical systems by propagating conserved quantities
on a mesoscopic scale. Hydrodynamics is not directly interpreted as a classical field theory.
However, its mathematical description resembles the one of fields, for example fields for the
energy density and pressure (energy-momentum tensor). Both classical field theories and
hydrodynamics are described by a set of deterministic, coupled partial differential equations
and are generally not in the scope of Monte-Carlo methods. To implement features of noise
and fluctuations, different approaches have been developed to couple random processes to
the equations of motion to mimic microscopic fluctuating forces [5, 6]. This implements
random processes and fluctuations in the systems but has the disadvantage of having only
a statistical and long-term control over the processes. Additionally, these methods imply
continuous interactions and dissipation between fields and their external forces or sources.
Trying to apply those methods to particle-field interactions will bring problems as processes
like particle creation and annihilation are not continuous processes.

In this paper we present a new approach which allows interactions between particles and
fields without the need of effective random processes. The underlying physical interactions
and processes can be modeled and simulated with Monte-Carlo methods; their impact on
the system change are then propagated back to the fields and particles. This is achieved
by precisely controlling momentum and energy conservation at all times of the simulation.
Various examples are given in this paper, including the simulation of a thermal box with
inelastic interactions between particles and fields.

This paper is organized as follows. In the first section, we summarize current methods
to simulate interactions between fields and particles employing Monte-Carlo like methods
and discuss their advantages and disadvantages. In section III we introduce the framework
of our new method to model and simulate noncontinuous interactions between fields and
particles. Sec. IV shows different examples for the implementation of our method in various
test scenarios. Applications to various other physical fields and disciplines are discussed in
V. Finally, we conclude with a short summary.

II. APPROACHES FOR PARTICLE-FIELD INTERACTIONS

A. Vlasov-Approach

The classical Boltzmann-equation is used to describe the transport and interactions of
particles in the dilute-gas limit [7]. The particles are described by a continuous distribution
function which is propagated by a set of integro-differential equations. To describe charged
particles in a plasma, Vlasov used the collisionless Boltzmann equation and coupled the
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particles to self-consistent field potentials [8–10] resulting in the famous (relativistic) Vlasov-
equation,

df

dt
=
∂f

∂t
+

p

E
· ∂f
∂x

+ F (x,p, t) · ∂f
∂p

= 0 . (1)

Eq. (1) describes the propagation of a distribution function in position and momentum
space, the interesting part is the interplay between the change of momenta by the external
force F and the propagation of particles by their velocity p/E. The external force F can
be given by an external potential and/or a mean-field interaction with the surrounding
particles.

A possible way to couple a field φ with a particle distribution function f(x,p, t) is to
employ a Yukawa interaction [11]. Particles are accelerated by the gradients of the fields

F = −∇xE(φ) , (2)

corresponding to a mean field mean field coupling which cannot thermalize the system as it
leads to reversible dynamics. By employing interactions with higher-order loops [12, 13] or by
coupling the mean field to particles with collision kernels, thermalization can be recovered
but on large time scales. Additionally, the interactions within the Vlasov equation are
very soft and do not include inelastic processes like particle production and annihilation.
Nevertheless these processes can play an important role in some applications. The linear
σ-model, for example, shows a shift in thermodynamic properties when particle-number
changing processes are neglected, and in dynamical calculations the chiral phase transition
is lost if the field can not dissipate energy by particle production and annihilation upon a
temperature change [14].

B. Momentum Space Approach

A common approach to approximate quantum field systems is to assume spatial isotropy
and reduce the phase-space distribution of the physical problem to functions in momen-
tum space. This ansatz has been very successful and answered many questions regarding
non-equilibrium phenomena and thermalization [15–17]. Additionally, in quantum field the-
ory interactions and their propagators are often well-defined in momentum space, leading
to transition probabilities for single Fourier modes in terms of scattering-matrix elements,
Sfi = 〈p′1p′2 . . . |S|p1p2 . . .〉. These probabilities can be treated perturbatively, like in quan-
tum electrodynamics (QED). In numerical simulations, such dynamics can be applied to
a classical field, and the impact on the system by changing single Fourier modes is easily
calculated through the sum of the modes’ energies. This method works well for systems in
momentum space with the assumption of spatial isotropy. In the case of spatial anisotropy
or if the system propagation has to be described in position space and only the interactions
are performed in momentum space, then this method implies a violation of causality. The
change of a single mode in momentum space changes the field distribution instantaneously
in position space over the whole volume, resulting in superluminal signal propagation. These
artifacts render this method unsuitable for simulations which rely on position-space calcu-
lations.
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C. Langevin Equation

The Langevin or Ito-Langevin equation [18] is a stochastic differential equation, used to
describe systems with two different scales. The “macroscopic” long-range and slow-timescale
part is described by deterministic equations of motion. Additionally it is coupled to the
“microscopic” small scales, which are described by short-ranged fast random processes. For
a heavy particle in a heat bath, the original Langevin equations reads

mẍ(t) = −γẋ(t) + Fext(x, t) + ξ(t) (3)

with an external force Fext, the linear damping coefficient γ, and a stochastic force ξ. Often
a simple Gaussian white-noise process is assumed for the fluctuating force, which leads to
an average energy flux from and into the bulk system, while the damping is the dissipative
average part with the back reaction of the medium to the energy-momentum exchange
neglected.

In nuclear physics, the Langevin Equation has been applied on top of the Boltzmann
equation to include fluctuations in the system [19–22]. By dividing dynamics of a scalar
quantum field in a hard and a soft part, a stochastic description of the system can be em-
ployed which resembles a Langevin equation [23]. The Langevin equation can be used to
investigate fluctuations in the linear σ-model [24] or with similar methods to investigate dis-
oriented chiral condensates [25]. Using the influence formalism, classical equations for the
O(N) fields at presence of a heat bath can be derived, when a stochastic interpretation is
employed [26]. In [27–29] the Langevin equation has then been employed to phenomenolog-
ically model a stochastic coupling of a locally equilibrated (hydrodynamical) particle bath
and a classical field within a linear σ-model. This coupling allows an effective thermalization
of the mean field.

However, the Langevin equation has some drawbacks, the dissipation of the equation (3)
due to the friction term, γ dφ(t)/dt is a continuous process. This is a natural assumption for
continuous systems like fields or waves and a reasonable approximation for systems with a
clear separation of scales, like in the classical example of a heavy particle in a bath of small
ones. However, many processes are discrete and occur as single events. The same problem
holds for the random force, ξ, which acts continuously and changes its value with every time
step in numerical implementations. Because of the random nature of this process, the exact
amount of exchanged energy can only be controlled in a statistical manner, and the back
reaction of the bulk medium is neglected. In most implementations, the random force ξ(t)
is modeled by Gaussian white noise without a memory kernel. Using a more sophisticated
ansatz with memory kernel, the random force can be extended to a non-Markovian stochastic
process with colored noise [30].

Before we discuss the relation between momentum and energy dissipation within a
Langevin equation, we have to define them for a field φ. For a general Klein-Gordon
equation,

∂µ∂
µφ+m2φ+

∂U

∂φ
= 0 , (4)
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the following conserved quantities can be defined [31, 32]:

E =

∫
V

d3x ε(x)

=

∫
V

d3x

[
1

2
φ̇2 +

1

2

(
~∇φ
)2

+ U(φ)

]
,

(5)

P =

∫
V

d3xΠ(x) =

∫
V

d3x φ̇~∇φ, (6)

where E denotes the total field energy, and P is the total momentum. For any positive-
definite potential U , the relation

P ≤ E (7)

holds. The dissipative part of the Langevin equation for the field γ∂tφ damps both the
energy (5) and the momentum (6). For a potential-free wave equation with damping,

∂2
t φ(t, x) + γφ̇(t, x) = ∇2φ(t, x) , (8)

the ratio of P (t)/E(t) is non-linear in time because both quantities are non-linear operators

while φ̇ is linear. This results in different damping rates for E and P and complicates
any attempt to couple particles and fields through inelastic interactions within an effective
model.

Another problem arises with the continuous nature of the dissipative term in the Langevin
equation. For a continuous process, quantities like energy transfer can be calculated by
integrating over a time interval, but this leads to a continuous value which can not be
interpreted by an integer number of events. In contrast, singular events like particle-pair
production and annihilation can be counted, and rates are defined in a statistical manner.
This becomes a problem when one tries to couple a scalar field to an ensemble of particles
with interactions given by pair production and annihilation. Energy loss of the scalar field
leads to energy gain in the particle ensemble and vice versa. Such an ansatz is used in the
famous and successful cosmological inflation model [33], in which particles are created by
the energy loss of the oscillating scalar field, Φ. Particle production is described by rate
equations, which are derived from the fields’ equations of motion. Trying to simulate such
a process with finite ensembles of particles leads to different problems. The energy loss
within a time step ∆t can be calculated from the fields and mapped to a certain number
of created particles. The energy of a discrete number of created particles will, however,
never match exactly with the continuous loss rate. Additionally, the physical process of
pair production will depend on the simulation time-step size, and for ∆t → 0 a mapping
between the continuous dissipation and the noncontinuous particle creation will not be
possible anymore. Another problem is the fact that the random force ξ(t) changes its value
at every point in time, both for white and colored noise. Trying to couple this behavior to
pair production and annihilation leads to the same problem as the microscopic processes
will depend on the time step.

In summary, the Langevin equation is a very good choice for an effective description of a
system with two separate time scales. However, a microscopic modeling of the interaction
processes is complicated by the continuous nature of the Langevin process. In the next
section we will present how to potentially solve these problems by a noncontinuous approach.
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III. NONCONTINUOUS INTERACTIONS BETWEEN FIELDS AND PARTI-

CLES

This work is originally motivated by the need to describe inelastic and discrete interactions
between fields and particles. The process of creating particles and anti-particles from field
excitations and vice versa,

q̄ + q ↔ φ , (9)

turns out to be very important for a consistent description of chemical and thermal equilibra-
tion in the linear σ-model and in our transport simulation DSLAM (Dynamical Simulation
of a Linear SigmA Model) [14]. The particles are modeled with the test-particle ansatz,
and the fields are represented by classical scalar fields. Any interactions beyond mean-field
couplings have to be discrete, because energy and momentum can only be transferred in
terms of whole particle pairs; we therefore have developed a particle-field method which
allows such noncontinuous interactions. The method is split up in two parts: a framework
for transferring an exact amount of energy and momentum from and to a field and a field
theoretical calculation for taking possible interactions between fields and particles into ac-
count in a microscopic way. The second method enables us to develop Monte-Carlo models
for the interaction probability of a given process, and the first method allows us to realize
the interactions in a simulation.

A. Discrete energy and momentum transfers from and to a field

Particles and fields are described in a very different manner. While scalar fields define a
single quantity as function of time and position in continuous space (or discrete space on a
grid), particles are characterized by their position and momentum. For particles, this sums
up to three position coordinates, the energy and three-momentum values at every point in
time. Fields are described by continuous functions or N3 values on a three-dimensional
N -sized grid for the field φ(x, t) and its time derivative, φ̇(x, t).

To link these very different descriptions, common mathematical and physical properties
have to be found. The most simple approach is to use energy and momentum. For particles,
energy and momentum are directly given by their momentum four-vector. For a field we
can employ the already discussed relations (5) and (6). A discrete interaction now maps
to a discrete change of energy and momentum at a given position x and time tk. The
field φ(x, tk) is propagated with its undisturbed equations of motion and changed due to
an interaction by a kick δφ(x, tk) which changes the energy and momentum by the desired
amount ∆E and ∆P . This leads to relations of four coupled non-linear equations,

∆E(tk) = E [φ(x, tk) + δφ(x, tk)]− E [φ(x, tk)] , (10)

∆P (tk) = P [φ(x, tk) + δφ(x, tk)]− P [φ(x, tk)] . (11)

In general (10) and (11) have to be solved with a numerical non-linear equation solver. For
∆E < 0 energy will be taken out of the field, ∆E > 0 will add this amount energy (and
analogously for the momentum).

Without further constraints, Eqs. (10) and (11) have either no solutions or infinitely many.
To define and find unique solutions, the disturbance kick δφ(x, tk) has to be parameterized.
In general, δφ(x, tk) must have a finite support to keep causality. Furthermore it can not
be a point like disturbance as this will cause instabilities in the field equations as well as
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FIG. 1. (Color online) Visualization of the interaction principle, as described in (12). The energy

of the initial field φ(t) is changed by a parameterized field variation δφ. The resulting field φ(t)+δφ

is increased by a given energy ∆E and momentum ∆P . The traveling direction of the Gaussian

is depending on the momentum.

numerical problems [14]. Therefore, the parameterization should be as smooth as possible
to avoid shocks and numerical artifacts on the scalar field.

A useful and robust parameterization is a three-dimensional, moving Gaussian wave
packet,

δφ(x,v) = A0

3∏
i

exp

[
−(xi − vit̃)2

2σ2
i

]∣∣∣∣∣
t̃→0

, (12)

where v defines the velocity of the Gaussian wave packet, A0 the strength of the interac-
tion, and the parameter t̃ is needed to define and calculate the derivatives for energy and
momentum in (5) and (6). The three position arguments xi are fixed by the interaction
position.

To find A0 and v in the parameterization (12), which solve (10) and (11) for a given
∆E and ∆P , the four coupled and non-linear equations have to be solved with a numerical
equation solver with ∆E and ∆P given by the physical interaction; the definition of these
quantities will be given in various examples in the following Sections. A simple visualization
of this principle is given in Figure 1, which shows the local modification of the field by a
Gaussian.

The three widths of the Gaussian, σi, are free parameters and can be fixed to a single
spherical radius by σx = σy = σz = σ. It determines the interaction volume and should be
chosen to fit the system scale. It has an impact on the minimal scale of possible modes in
the system, as we will see in (47).

Furthermore, the parameterization (12) should be seen as a non-relativistic approximation
which is valid for small velocities. The parameterization is not Lorentz invariant, resulting
in spatial extent which does not depend on the velocity. This has the interesting effect, that
for a (1+3)D system the maximal momentum to energy ratio which can be generated with
(12) is max

{
P
E

}
= 1/2. The parameterization can be extended with a Lorentz boost, for
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example along the x-direction for v = (vx, 0, 0)

δφ(x, t) =A0 exp

(
−γ

2 (x− vxt)2

2σ2

)

× exp

(
−y

2 + z2

2σ2

) (13)

The Lorentz boost leads to a disc-shaped deformation of the initially spherical Gaussian.
With the boost, the momentum to energy ratio of (13) has the correct relativistic limit.

lim
v→1

{
P

E

}
= 1 (14)

At v = 0.3 both solutions differ by a factor of about 18%, for small velocities they are nearly
the same, and (12) can be used as a safe approximation.

B. Modeling of energy transfers

In Sect. III A, the mathematical framework for energy and momentum transfer has been
discussed. To apply this method to physical systems, additional modeling has to be done.
The above method describes, how to transfer a given amount of energy ∆E and momentum
∆P to or from a scalar field at a given interaction point x and time ti. To realize this
method in a transport or Monte-Carlo simulation, appropriate values for ∆E, ∆P , x and ti
have to be defined. Motivated by the stochastic interpretation of interaction cross sections,
a probability distribution for energy and momentum exchanges,

P (∆E,∆P ,∆t) , (15)

can be defined, which has to be derived according to the physical model; in Sect. IV we
will give various examples, calculations and results for such a modeling. In general, the
probability distribution (15) can have a memory kernel and can depend on the whole history
with P (∆E,∆P , t), but we will use the Markov approximation in which only the current
system state is important for future events, and (15) depends on the time-step size, ∆t, only.

IV. EXAMPLES AND MODEL CALCULATIONS

A. Discretely damped harmonic oscillator

As the most simple test system, we choose the classical one-dimensional oscillator with
damping,

ẍ(t) + γẋ(t) + ω2
0x = 0. (16)

In this example the mass of the system is set to unity. With no loss of generality units like
c, ~ and kB are set to unity in the rest of the paper, and physical quantities like the energy
are chosen to have an arbitrary unit (arb. units).

The frictional part γẋ dissipates energy from the system in a continuous process. We want
to model the same system to have a discrete, noncontinuous damping such that, within an
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ensemble average, both systems should behave the same. We assume to have a weak damping
of the oscillator with γ < ω0. The analytic solution of the oscillator’s energy scales with

E(t) ≈ Ē0 e−γt. (17)

So the linear damping term ẋ leads to an exponential energy loss in the oscillator. To model
a discrete damping for (16), we could introduce a deterministic formalism which removes a
given quantum of energy at fixed times out of the system. The second and more natural
choice is a probabilistic ansatz, which models the system’s initial total energy E0 as a sum
of small energy quanta ∆E,

E0 = N0 ·∆E, (18)

where N0 is the initial number of energy quanta and can also be called “steppiness” because
it defines in which energy steps the system can be damped. The energy of the system can
be damped by changing the number of energy quanta N(t)

E(t) = N(t) ·∆E (19)

This change of N(t) has to be modeled according to the equations of motion. We now
explain how to find an interaction-probability function like (15) for this system. In this
example, we can assume a two-state interaction: for a given ∆t, the oscillator can lose a
quantum of energy ∆E, or it can be left undisturbed. For ∆t� 1 we can neglect multiple
decays; additionally we assume a Markov process, so the oscillator only depends on its
current state and has no “memory”. Using these constraints, the interaction-probability
distribution P (∆E,∆t) without memory kernel can be described as

P (∆E,∆t) = Pr
loss

(∆t)δ(∆E −∆E) + Pr
0

(∆t)δ(∆E) (20)

with Prloss being the probability to lose an energy quantum ∆E in the time interval ∆t,
while Pr0 is the probability for the system to stay unchanged. Both probabilities are related
by the normalization of the probability distribution,∫

P (∆E,∆t) d∆E = Pr
loss

(∆t) + Pr
0

(∆t) = 1. (21)

To find the probability for the oscillator to lose a certain amount of energy, we assume
that every energy quantum ∆E can decay independently. The definition for the exponential
decay is

dN(t)

dt
= −γN(t) (22)

with each decay event having a constant and independent decay probability in a time step
dt of Pr = γdt. With dt→ ∆t and ∆t� 1 we can write

∆N(t) = −γ∆tN(t) (23)

However, we want to calculate the probability of a single energy quantum to decay. The
number of energy quanta is given by (19)

N(t) = E(t)/∆E (24)

which increases the number of energy quanta if ∆E decreased.
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The total probability of a decay of a single quantum in a system of many quanta in first-
order approximation factors to the product of an individual quantum’s decay probability
times the number of individual quanta,

Pr
loss

(∆E) = γ ·∆t ·N(t) = γ ·∆t E(t)

∆E
. (25)

For N0 → ∞ or ∆E → 0 this is the definition of the exponential decay law, while a finite
N0 will give a discrete exponential decay for a finite ensemble. For the total probability-
distribution function we obtain

P (∆E,∆t) = δ(∆E −∆E)

(
γ ·∆tE(t)

∆E

)
+ δ(∆E)

(
1− γ ·∆tE(t)

∆E

)
.

(26)

Simulating P (∆E,∆t) will give the same average energy loss scaling for E(t) as the original
harmonic oscillator with continuous damping.

In a numerical realization, the oscillator is propagated with the free equation of motion,

d2x

dt2
+ ω2

0x = 0. (27)

This equation of motion conserves the total energy. To simulate damping, at every time step
the decay-probability density P (∆E) is sampled using Monte-Carlo techniques. In case of
a decay, the oscillator will lose the given amount ∆E by employing the method described in
section III A. In case of an oscillator, only the energy equation (10) has to be solved. The
change δx on x(t) becomes a simple shift of the oscillator,

xt → xt + δx. (28)

For a harmonic potential, this can be done analytically by solving

∆E = E(xt+1)− E(xt)

=
1

2

[
ω2

0x
2
t+1 + ẋ2

t+1 − ω2
0x

2
t − ẋ2

t

]
.

(29)

The derivatives are approximated by the first-order difference discretization and with dt→
∆t:

ẋt+1 =
xt+1 − xt

∆t
(30)

Solving (29)for xt+1 results in a rather lengthy equation which can be simplified by neglecting
all terms of order O (ω2∆t2) and higher. The result is

xt+1 = xt ±∆t

√
2∆E + ẋ2

t . (31)

This can be seen as an addition to the undisturbed equations of motion. With ∆E → 0
equation (31) becomes the usual, first order Euler propagation for a differential equation:
xt+1 = xt + ∆t · ẋt. The additional term ∆E is the change of the system given by the
“interaction kick”, changing the total system’s energy with exactly this amount of energy.
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FIG. 2. (Color online) Simulation of a discretely damped harmonic oscillator. The number of

simulated particles and energy excitations is N = 150. With every decay of a particle, the oscillator

loses a bit of energy, which leads to damping of its motion. The discrete and continuous version

have the same ensemble average. In a single run statistical fluctuations occur.

The sign ± in front of the square root is determined by the direction of ẋt, a kick with
∆E > 0 should always point in the direction of the current velocity ẋt. Note that ∆E can
always be positive while it can only be negative if ẋ2

t − 2
∣∣∆E∣∣ > 0 to have a real solution

for the propagation equation.
Fig. 2 shows a single simulation run of such a system. Both curves show statistical fluc-

tuations but are in good agreement over the runtime. Averaged over many realizations, the
energy shows the expected exponential decay. Using different values for N , the ‘steppiness’
can be controlled from a very smooth damping to a rough damping with only a few steps.
On average, all show the exponential decay with the expected rate.

B. Harmonic oscillator coupled to a heat bath (Langevin approach)

In a second benchmark, we extend the damped harmonic oscillator by a coupling to a
heat bath via a Langevin equation, similar to [34]. This calculation is done for a simple
harmonic oscillator as well as for a scalar field in (1+1) space-time dimensions. Again, the
mass of the system is set to unity, and energy units labeled as arbitrary unit (arb. units).
For the non-relativistic case, the equation of motion reads

d2

dt2
x(t) + γ

d

dt
x(t) + x(t) = κξ(t), (32)

where ξ(t) is defined as Gaussian white noise with 〈ξ(t)ξ(t′)〉 = δ(t− t′), using the equipar-
tition theorem and the fluctuation-dissipation theorem [35], we can fix the strength of the
stochastic force in the equilibrium case as

κ =
√

2γT . (33)

This equation of motion describes a damped harmonic oscillator, driven by a Gaussian-
distributed random force ξ(t), which can increase or decrease the energy of the system by
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“kicking” the oscillator. On average, the oscillator will show a Gaussian position distribution,
and by using the Fokker-Planck equation one can derive the equilibrium distribution for the
energy, which is a Boltzmann distribution

f(E) ∝ exp(−E/T ). (34)

To simulate the oscillator with the Langevin-dynamics within our proposed method, we
propagate the system with the interaction-free equation of motion,

d2

dt2
x(t) + x(t) = 0, (35)

and model the discrete interactions again as small kicks to have the same statistical averages
as the original Langevin equation of motion (32). A representation for the stochastic force
κ · ξ(t) in terms of energy changes can be found by using the energy-work theorem, applied
to the fluctuating part of the force in the Langevin equation,

dE

dt
= ẋ(t) · F (t) = ẋ(t) · κ · ξ(t), (36)

which after discretization with dt→ ∆t and t→ tn becomes

∆E = ẋ(t) ·∆t · κ · ξ̃(tn). (37)

The stochastic force ξ̃(t) is still a Gaussian white noise with a normally distributed random
number ξn at each time step tn,

ξ̃(tn) =
ξn√
∆t
. (38)

The factor ∆t−
1
2 is needed to fix the norm of the uncorrelated white noise via

〈ξnξm〉 =
δmn
∆t

. (39)

The total interaction-probability distribution function, P (∆E,∆t), is now composed of four
components of single probabilities. The probability of no interaction in a time interval Pr0,
the damping of the oscillator by the process γẋ(t) with the probability Prloss, as discussed
in the previous section, and the two cases where the energy of the system is changed by the
stochastic force ξ̃(t): we can see in (37) that depending on the signs of ξ and ẋ(t) a random
kick can add energy to a system or dissipate energy from it. Both processes are symmetric in
general and from this symmetry one obtains 〈∆E〉 = 0 in equilibrium. However 〈∆E2〉 > 0
is always given.

The probability Prloss has already been discussed in the previous section IV A and follows
the same schematics here. Due to their symmetry, the loss and gain terms induced by the
stochastic force, given by (37), can be subsumed in a single probability density term. The
sum of all terms for the interaction probability distribution is

P (∆E,∆t) =δ (∆E − ẋ(t) ·∆t · κ · ξ(t))

+ δ(∆E −∆E)

(
γ ·∆t
∆E

E(t)

)
+ Pr

0
δ(∆E).

(40)
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The no-interaction probability Pr0 is again fixed by the normalization condition,∫
P (∆E,∆t)d∆E = 1. Equation (40) looks quite complicated, but the single terms can

be easily interpreted and simulated. The last term is the contribution for no interaction to
happen at all. The second last term describes the probability for a system to lose a given
amount of energy ∆E due to friction, just like in our first example. Finally, the first term
describes the process of changing the energy from a kick by the stochastic force. The system
gains energy, if the direction of the kick points in direction if the velocity, ẋ(t) · ξ(t) > 0,
and loses energy if the kick reduces the velocity, which is the case for ẋ(t) · ξ(t) < 0.

To sample the gain and loss terms by the random kicks in the probability density, one can
simply sample a random kick ξn and calculate the given energy difference from (37), which
is propagated back to the system. As we simulate a simple (0+1)D problem, the already
known relation for changing the energy (31) can be used.

In this example we describe the dissipative process with discrete decay steps while the
energy fluctuations given by ξ(t) can have continuous values. Even though this seems con-
tradictory, it has two reasons: we wanted to stay as close as possible to the original Langevin
equation, which has continuous interactions. The second reason is that we wanted to in-
troduce continuous values for ∆E at this point because in the last example in this paper
(IV D) particles and fields exchange energy by discrete particle annihilation and creation
processes. While these processes are discrete in time, their energy and momentum spectrum
is continuous.

Fig. 3 shows the position and velocity distribution of the harmonic oscillator, which is
a Gaussian. The width of the distribution depends on the temperature in the fluctuation-
dissipation relation (33) and scales with

√
T . The energy distribution shows an exponential

tail exp(−E/T ) with the same temperature. The numerical calculation was performed with
our method, which does not solve exactly the classical Langevin equation, but a set of
equations which have the same statistical description as explained above. As a result, the
statistical properties of the simulated system are in good agreement due to the consistent
description of the energy-exchange rates.

C. One-dimensional scalar field coupled to Langevin equation

The previous calculations in this work have dealt with a simple harmonic oscillator. In
the next example, the scalar system (16) is advanced to a 1 + 1-dimensional case with a
spatially extended field. The position coordinate of the oscillator, x(t), is now generalized
to a scalar field φ(x, t). The equation of motion of a potential-free Klein-Gordon equation
with a stochastic force and damping is given by(

∂2

∂t2
− ∂2

∂x2

)
φ(x, t) + γ

∂

∂t
φ(x, t) + φ(x, t) = κξ(x, t) (41)

The stochastic force is the 1 + 1-dimensional extension of the Gaussian white noise
〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′). The stochastic process (41) is simulated as a ref-
erence system. In comparison, in our simulation the field φ(x, t) is propagated with the
disturbance-free equations of motion. The stochastic force and damping are simulated anal-
ogously as in the (0+1)-dimensional example. Because of the additional spatial dimension
of the system, we could model a momentum exchange ∆P , as given in (15). We neglect this
term because the original Langevin-equation does not have this term either. However, the
last example in this paper will address this issue.
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FIG. 3. (Color online) Simulation of a simple harmonic oscillator, coupled to a heat bath via a

Langevin equation. The random force and the damping is implemented with the noncontinuous

energy-transfer method. The plot shows the distribution function of the energy, the position

distribution and the velocity distribution for a temperature of T = 0.5arb. units and 108 calculation

steps and a corresponding energy-step size. Both plots coincide with the expected analytical result,

which is exp (−E/T ) for the energy distribution (top) and 1/
(√

2πT
)

exp
(
−mω2

0x
2/2T

)
for the

spatial distribution.

In the previous example of the simple oscillator, the change of the oscillator’s position
∆x could be calculated with the analytic relation (31), which included both the kick from
the energy exchange and the propagation by the equation of motion. Such an analytic
relation can not be found anymore in this example because the spatial extent of the system
and the interaction region leads to a complex dependency of the energy equation (10),
requiring a numerical solution of the problem. The numerical problem decomposes in finding
a solution for the kick by the change of energy and then for propagating the newly found field-
configuration with the equation of motion. Additionally, the change of the field ∆φ(x) has
to be parameterized, as many possible solutions could be found for eq. (10) for systems with
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FIG. 4. (Color online) Time averaged power-spectrum of the scalar field φ(x, t) in (1+1) space-

time dimensions. The spectrum is calculated according to (43). The system is a one-dimensional

harmonic oscillator, coupled to a Langevin equation with a continuous and a noncontinuous ansatz.

The dashed, blue line shows the theoretical solution of the system T/k2, the red circles the non-

continuous approach and the green diamonds show the classical Langevin equation as a reference.

All three curves are in very good agreement in the intermediate region and show the same system

temperature, which was chosen to T = 0.5arb. units Both Fourier plots are averaged over 100

snapshots of the same run. Simulated was a grid with 1024 points. At large wavelengths, both

systems deviate due to finite system size effects. At small wavelengths the noncontinuous meth-

ods has an interesting cut-off due to the finite-size of the interaction region in comparison to the

point-like interactions of the classical Langevin method.

a spatial extend. In this example a one-dimensional form of the Gaussian parameterization
(12) has been chosen.

For each point of the system an interaction probability is sampled with (40). In case
of an interaction, the center of the Gaussian interaction parameterization is located at the
interaction point, and the change of the field φ(x, t) + δφ(x) is solved by using equation
(10) with help of a numerical solver. For every interaction at some point x the neighbor
cells of the interaction point are changed as well. The reason is the spatial extension of the
Gaussian parameterization leading to a smeared interaction region or volume. This holds
both for adding energy as well as removing energy from the system.

As shown in figure 1, this will result in a field given by a superposition of small interaction
“bumps”. In the equilibrium state, the field distribution will show spatial fluctuations,
distributed among the field’s modes. Overall the equilibrium state behaves very similar to
the oscillator case but with a spatial extent in one dimension and therefore more dynamics.
The same holds true for the interaction probability-distribution density, which is the spatially
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extended version of (40):

P (x,∆E,∆t) = δ
(

∆E − φ̇(x, t) ·∆t · κ · ξ(x, t)
)

+δ(∆E −∆E)

(
γ ·∆t
∆E

E(x, t)

)
+ Pr

0
δ(∆E).

(42)

A very interesting observable is the power spectrum of the field,

S(k) = lim
t→∞

1

2t

∫ t

−t
dt |F [φ(x, t)](k)|2 , (43)

with the spatial Fourier transformation F

F [φ](k, t) =

∫
d3x exp (−ik · x)φ(x, t) . (44)

In case of the classical Langevin equation, the expected distribution of the power spectrum
can be calculated. A damped field coupled to a white-noise process is expected to show
Brownian noise, as it effectively integrates the white noise over time [36]. The resulting field
has an average power spectrum with the temperature as the mode amplitude [35, 37],

S(k) =
T

k2
. (45)

Fig. 4 shows the expected spatial spectrum for the classical Langevin equation (41) and
for the simulation with our proposed method. For large and small momenta k, deviations
occur due to finite-system effects, in the intermediate region the spectrum shows a very
good agreement with (45). At some point the small wavelengths with large k are suddenly
strongly suppressed.

The explanation for this behavior is the fact that we use a finite volume excitation
in the parameterization (12). In a classical Langevin equation, the point-like stochastic
force ξ has a constant spectrum Sξ(k) ∼ c, allowing to excite any modes. Within our
method, the energy is changed in a small but finite-size sub-volume. The smallest excitable
mode in the system has therefore the same scale as the interaction volume. Within the
Gaussian parameterization (12), this scale is the width σ. The resulting mode cutoff can
be calculated evaluating the spectrum of the parameterization (12), here for our (1+1)-
dimensional example:

|F [δφ(x, t)](k)|2 ∼ e−k
2·σ2/2 ≈

{
1 for k � σ,

0 for k � σ.
(46)

At the scale k2σ2 ≈ 1 the Gaussian shape leads to a soft cutoff which suppresses all higher
modes, preventing the well-known UV catastrophe of classical thermal fields. We therefore
define a soft cutoff scale at

kCutoff ≡
√

2

σ
. (47)

These results show that our method is capable of simulating a thermal system with
Langevin dynamics with controlled systematic numerical errors.
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D. Particle ensemble coupled to scalar field

In this Section we use the proposed method to couple an ensemble of particles to a scalar
field in a (3+1)-dimensional simulation. The simulated system is a microcanonical box with
a scalar field, particles and anti-particles. Particles can perform two-body elastic collisions,
the field is propagated via a wave equation, like in the sections before. Additionally, field and
particles can interact by microscopic particle annihilation and creation processes. This sys-
tem is motivated by a physical problem which is discussed in an upcoming paper. However,
we want to use these calculations to demonstrate the proposed method in a more complex
example and try to keep the details of the used model as generic as possible, while still being
exact in our derivations. The underlying physical system is the linear sigma model with con-
stituent quarks. We model quark-pair creation and annihilation to study non-equilibrium
effects near and at the phase transition. The process of creating particles from field modes
and vice versa is crucial for describing critical phenomena and fluctuations driven by the
dynamics of the phase transition.

The equations of motion in a general form are(
∂2

∂t2
−∇2

x

)
φ(x, t) =λ1φ

3(x, t) + λ2φ(x, t)

+ Uq̄q(x, t) + U0

(48)

with the coupling strength for the potentials λ1, λ2 � 1, a source term U0 and a mean
field potential between the field and the particles Uq̄q. Besides the mean-field and potential
interactions, a particle q and an anti-particle q̄ can annihilate to a field-quantum. The
underlying process is given by the Yukawa coupling,

Lint = gσ̄φ∗φ, (49)

which can create a σ particle by pair annihilation, q̄ + q → σ, or destroy it in the inverse
decay process, σ → q̄ + q.

The interaction between particles and the field is modeled in several steps. The quark-
annihilation process is calculated with a microscopic cross section, the generated particle
is treated as an unstable particle resonance, the σ particle. The created σ particle is not
propagated or added to the system as a real particle, but its energy and momentum are
transferred to the scalar field, keeping the system’s total energy and momentum conserved.
In the inverse process, excitations in the scalar field are treated as energy excitations. These
excitations are modeled as unstable particles which can decay to a quark-antiquark pair.

The interaction probability of the two incoming particles for the process q̄q → σ is
calculated microscopically. In our simulation it is modeled with a constant, isotropic cross
section σ̂q̄q→σ with respect to all kinematic constraints. For Monte-Carlo sampling, we use
the stochastic interpretation of the cross section [4] for a set of particles in a cell employing
a constant and isotropic cross section:

Pr (q̄q → σ) = σ̂q̄q→σ vrel
∆t

∆V Ntest

(50)

with the particles’ relative velocity,

vrel =
s

2E1E2

, (51)
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and the Mandelstam variable,

s =
(
p1
µ + p2

µ

)2
. (52)

We have chosen the Breit-Wigner cross section [38, 39]

σq̄q→σ(s) =
σ̄ Γ

(
√
s−mσ)

2
+
(

1
2
Γ
)2 (53)

with a constant factor σ̄ and the mass of the created unstable particle mσ.
given by

∆E =
√
s, ∆P = p1 + p2 . (54)

At the particles’ interaction point the particles are removed from the ensemble and their
total energy and momentum are transferred to the field φ at this point, keeping the total
energy and the total momentum conserved. This transfer is done by changing the field energy
and momentum at the interaction point of the particles using our proposed method. The
energy and momentum difference equations (10) and (11) are solved for the interaction-time
step with a numerical solver. The field φ(x, t) is changed by employing the 3D Gaussian
parameterization δφ(x) (12). By changing the amplitude as well as the direction of motion
of the Gaussian, both the energy and momentum can be changed within the interaction
volume until ∆E and ∆P are transferred to the field. Figure 1 shows a simplified version
of this process in which small Gaussian blobs over a small volume generate small energy
excitations on the field φ.

To guarantee thermal and chemical equilibration, the inverse process has to be imple-
mented according to the principle of detailed balance. This has several implications. First,
the average interaction rates of particle creation and annihilation has to be the same for
a given temperature, leading to no change of net-particle number. Secondly, the average
energy exchange per process has to be the same for both processes. Finally, the spectra of
both processes have to be the same.

We have already discussed the method for particle annihilation. The inverse process,
particle production, has to be modeled differently, because the field has no initial particles
which we could use for Monte-Carlo sampling of a collision term. Instead, we only have
the scalar field φ and its properties like energy and momentum density, from which we
have to derive particle-like properties. This step is again subject to the underlying physical
model. For every point in space, we assume the field excitations to consist of unstable
particles which can decay to stable particles, σ → q̄q. In case of a decay, the field φ
loses the amount of energy at the interaction point, leading to an effective damping of the
field. This decay process is modeled in two steps. First we have to assume a distribution
function fσ(x,p, t) for σ particles at every possible interaction point. The properties of
fσ(x,p, t) have to be derived from the field properties at every point in space which is done
by assuming local equilibrium via coarse graining within a field cell. To be consistent with
detailed balance, the equilibrium distribution for fσ must have the same temperature as
the particle’s distributions, fq and fq̄. In the linear σ model, the potential and therefore
the equilibrium-mean field has a thermodynamical temperature dependence, which maps a
mean-field value for every temperature T → 〈φ〉(T ). By inverting this relation 〈φ〉(T )→ T ,
we can calculate the effective temperature of the field at every point of the field. The
resulting phase-space distribution function, fσ defines the particle density by

nσ (x, t) =

∫
d3p

(2π)3
fσ (x,p, t) . (55)
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Depending on the underlying distribution function fσ a relation between the particle and
energy density has to be found

nσ (x, t)→ nσ (x, t, ε (x)) . (56)

The energy density ε is fixed by assuming the same energy density for the distribution
function and the field:

ε = T 00 =

∫
d3p

(2π)3
E fσ(x,p, t) ≡ E (σ(x), σ̇(x)) (57)

The chosen distribution function and particle density has to be consistent with the decay
process. Additionally, any momentum of the field with p 6= 0 implies a non-zero collective
velocity of the coarse-grained distribution function fσ. This effect is covered by a relativistic
boost of the distribution function with the mean velocity of the field via the four-velocity
uµ = pµ/E. The field energy and momentum, E and p, contained in the cell around x
are determined according to (5). In our calculations we have used the boosted Boltzmann
distribution for the particles q, anti-particles q̄ and the σ-particles,

fσ ∼ exp

(
−pµ · u

µ(x)

T

)
, (58)

but the local energy relation (57) can easily be extended to other distributions like the Bose-
Einstein distribution. After calculating a distribution function, σ particles are sampled from
fσ with Monte-Carlo methods. For every sampled particle the decay probability is calculated.
In the center of mass system of the particle, the decay probability is given by

Γσ =
g2

8πmσ

√
1−

4m2
q

m2
σ

(59)

with a Γ consistent with (53). If a σ-particle decays, the energy and momentum of the
particle is calculated with the assumption of all particles being scalar

∆E = Eσ, ∆P = Pσ. (60)

The resulting amount of energy and momentum is removed again from the field around the
interaction point with help of the four energy and momentum difference equations (10) and
(11) and the Gaussian parameterization (12). Again, this parameterization leads to a small
interaction volume from which the energy is dissipated.

To come back to our notation of an interaction-probability distribution, we use the above
discussed concepts to formulate an interaction probability density per numerical cell

P (∆E,∆P ,∆t) =
Ncell∑
i,j

δ
(
∆E −

√
s
)
δ (∆P − (pi + pj))

σ̂q̄q→σvrel(s)∆t

∆V Ntest

+ δ (∆E − Eσ) δ (∆P − Pσ)
Γσ(mσ) nσ(φ(x), t)∆t

∆V
+ Pr

0
δ (∆E) δ (∆P )

(61)
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with the sum over all particles Ncell in a cell.

Figs. 5- 10 show the results of the described simulation. Over the whole simulation time,
the total energy and momentum stays constant, cf. Fig. 5, while the particle number and the
scalar mean field show thermal fluctuations around a stable mean value. Fig. 6 shows the
total particle number which fluctuates around a mean value. Field and particles are coupled
via chemical processes and exchange energy and momentum, leading to fluctuations in both
local energy densities and their total energy, as shown in Fig. 5. Any particle-annihilation
process increases the energy of the field, any decay of field modes leads to an increase of the
particle number. All fluctuations caused by these interactions lead to a strong (negative)
correlation between the particle number and the mean field. Overall, the total energy of the
system is conserved and shows only numerical fluctuations.

Fig. 7 represents the scalar-field distribution, showing a stable Gaussian distribution.
For a thermal field this is the expected behavior, similar to the Langevin result (33). The
width of the Gaussian shows small thermal fluctuations over time, additionally does the
mean-value drift as a global fluctuation.

This is a remarkable result, because our scalar field shows the distribution of a thermal
field which usually is archived by coupling the field to a heatbath via a Langevin-like pro-
cess. A classical field, coupled to Gaussian noise, would show an equipartition of energy of
1
2
kBT for every degree of freedom. However, integrating over all modes leads to the famous

classical ultraviolet catastrophe. In our case, the field shows a slightly different distribution
of energy over the modes as shown in figure 9. For large wavelengths, the modes are popu-
lated according to the equipartition theorem; for small wavelengths the modes are strongly
suppressed by the soft cutoff given by (47) and (46). The finite extension of the interaction
volume leads to a smeared distribution of energy which is transferred to different modes.
However, no modes with a wavelength much smaller than the extension of the interaction
volume can be excited. The shape of the interaction parameterization (12) is directly re-
flected in the spectrum of the kinetic energy, as can be seen by the analytic line in the figure.
The effective extension of the interaction volume σeff in Fig. 9 is given by

σeff =
√
σ2
x + σ2

y + σ2
z . (62)

This soft cutoff is the first interesting feature of the proposed method. The second aspect
is that, while classical Langevin models require an ad-hoc description of a stochastic force
for thermalization, the proposed method does not need a non-deterministic random source.
Instead, the random process is determined by a physically motivated microscopic model for
the interactions of the particles and fields, having full control over the interaction rate as
well as the energy and momentum exchange. Fig. 8 shows an initially vanishing scalar field
with some field excitations generated by particle interactions. These particle-annihilation
processes increase the field’s energy, and large field modes are created. After some time, these
modes overlap and the field will start to show a random, Gaussian distribution. Fig. 7 shows
the field’s distribution after thermalization. The distribution function of the particles show a
thermal Boltzmann distribution fq(E) ∼ exp (−E/T ) as shown in Fig. 10. The temperature
of the particles is the same as the one of the thermal field fluctuations, demonstrating the
accurate implementation of the principle of detailed balance in our numerical simulation.

20



-6

-4

-2

0

2

4

6

8

10

 0  1  2  3  4  5E
n
e
rg

y
 F

lu
ct

u
a
ti

o
n
 ·

 1
0

3
 [

a
rb

. 
u
n
it

s]

Time [arb. units]

Total Energy
Energy Quarks

Energy Fields

FIG. 5. (Color online) Energy fluctuations of the scalar field and the particles, E(t)−〈E〉. Field and

particles exchange energy by particle production and annihilation processes. While the total energy

of the system is conserved and shows only numerical fluctuations, the energy of the components

show thermal fluctuations, which are anticorrelated due to total-energy conservation. The relative

fluctuations of the field’s energy is ∼ 10−2, of the quarks ∼ 10−3. The total energy fluctuates on

a scale of |∆E|/〈E〉 . 5 · 10−5.

 486000
 487000
 488000
 489000
 490000
 491000
 492000
 493000
 494000

 0  50  100  150  200  250

T
o
ta

l 
P
a
rt

ic
le

 N
u
m

b
e
r

Time [arb. units]

Total Particles

FIG. 6. (Color online) Total particle number in the thermal-box simulation. Particles can annihi-

late, their momentum and energy is transferred to the scalar field in form of scalar-field excitations.

Because of the dynamic nature of this process, the total particle number fluctuates around the av-

erage thermal value.

V. POSSIBLE APPLICATIONS

We have applied the particle-field method to a transport simulation for a model with
scalar fields and particles. This method is now applied to a linear σ-model [14] with the goal
to investigate the dynamics of the model near and at the phase transition, where fluctuations
are mainly driven by particle-field interactions. Additionally the impact of observables of
the order of the phase transition is investigated, results of this study will be presented in a
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FIG. 7. (Color online) Distribution of the scalar field, showing the expected thermal Gauss-

distributed fluctuations. The mean of the Gaussian can drift slowly with time due to fluctuations

of the scalar mean field. Particle annihilation increases the local fluctuations of the scalar field,

and particle production damps them by dissipating energy from the interaction region.

FIG. 8. (Color online) Plot of the 3D field with a cut in the x − y plane at different times in the

simulation. The simulation starts with a uniform scalar field without any excited modes. Due to

particle creation and annihilation, field fluctuations are created dynamically within the simulation.

The color coding shows the value of the scalar field. Left: Some particles have annihilated and

have created small, local excitations of the scalar field in form of moving, Gaussian shaped blobs.

Right: The equilibrated field in the long-time limit: Due to the particle-field interactions, Gaussian

fluctuations are dynamically created by microscopic interactions.

forthcoming paper [40]. Figure 11 shows the expansion of a hot quark-droplet, which is a
simple non-equilibrium setup for a heavy-ion collision. The Yukawa-coupling of the quarks
to the chiral σ-field determine their effective mass, while the expansion and interactions
drive fluctuations of the system. The coupling strength determines the order of the phase
transition, which has a strong impact on the particle interactions, production and type of
fluctuations. Results of this study will be presented in a forthcoming paper [40].

The method can easily be applied to other transport problems in heavy-ion and nuclear
physics, for example in heavy-quark simulations with a hydrodynamical background [41].
Besides the already shown examples, the particle-field method can be employed whenever
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FIG. 10. (Color online) Distribution function of the particle energies showing the expected thermal

Boltzmann distribution fq(E) ∼ exp (−E/T ). By microscopic interactions particles and field can

exchange energy and momentum and equilibrate to the same temperature T = 0.15arb. units via

annihilation and creation processes, demonstrating the proper implementation of the principle of

detailed balance in our simulation.

noncontinuous interactions between particles and fields or fields of different types have to
be modeled.

In cosmology, particle creation within the inflationary phase of the big bang are modeled
by the dissipative part of an expanding scalar field φ̇ [42, 43]. Our method can be used for
numerical simulation of the initial fluctuations on large scales. Another application in astro-
physics could be to simulate pair production in electric and magnetic fields near pulsars [44]
or to investigate the Sunyaev-Zel’dovich effect induced by inverse Compton scattering [45].
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FIG. 11. (Color online) Rapid expansion of a hot quark-droplet as a simply non-equilibrium setup

for a heavy-ion collision. The interaction between quarks and fields are implemented with the

method purposed in this paper. The chiral σ-field can remit latent energy, which is freed by the

phase transition, by creating particles. Results of this study will be presented in an upcoming

paper. Left: quark density; Right: mean field value of the σ-field.

The simulated Compton effect plays also an important role in plasma physics, where damping
of electromagnetic waves is affected by this process induced by density fluctuations [46]. In
geophysics earthquake crack- and wave-propagation are modeled with partial differential
equations [47, 48]. Our method could be used to simulate local instabilities, which deploy
energy within the earthquake.

VI. SUMMARY

In this paper we have discussed various methods to simulate interactions between parti-
cles and fields. Most of these methods are plagued by the problem to allow only continuous
changes of the fields, which are hard to implement on the particle side or have some draw-
backs like a non-consistent physical interpretation or create an artificial interaction-time
scale. Additionally, methods like the Langevin equation are effective theories which inte-
grate out microscopic interactions, or energy and momentum are not conserved.

In this paper we have presented a new method, which allows to describe and simulate
noncontinuous interactions with exact energy and momentum conservation at all times. The
position, strength and time of the interactions can be derived microscopically and simulated
with Monte-Carlo methods. To give examples for this method, we have applied this method
to a simple harmonic oscillator which dissipates energy by losing discrete energy quanta.
In a second example the harmonic oscillator is additionally coupled to a stochastic force,
the overall system behaves like an oscillator coupled to white-noise fluctuating forces as in
a classical Langevin-equation. This example is generalized to a (1 + 1)D scalar field. All
three systems behave in very good agreement with the analytic expectations. In the last
and most complex example a (3 + 1)D scalar field is coupled to an ensemble of particles and
anti-particles. Excitations of the scalar field are treated as particles which can decay via
microscopic interactions and create new particle-anti-particle pairs. Additionally particles
can annihilate and create field quanta. By obeying the principle of detailed balance both
particles and fields reach thermal equilibrium with the same temperature, fluctuations on the
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field are generated dynamically by field-particle interactions and have not to be implemented
via ad-hoc assumptions like Gaussian white noise.

In an outlook several potential interesting applications of various kinds of simulations
have been suggested.
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Appendix A: The principle of detailed balance for particle decay and recombination

In this appendix we briefly summarize our treatment of the particle-annihilation process
and the corresponding inverse decay process with regard to the principle of detailed balance.
To keep the discussion at the most simple level possible, we consider a purely bosonic model.
The relevant interaction part of the Lagrangian reads

LI = λσq∗q, (A1)

where σ, describing σ particles of mass mσ, is a real and q a complex scalar field, describing
particles with mass 2m < mσ. At tree level the matrix elements for decay and recombination
are the same and simply given by

Mσ→qq̄ =

q

q̄

σ
= −iλ =M, (A2)

Mqq̄→σ =

q

q̄

σ
= −iλ =M. (A3)

Assuming net-q-particle neutrality (fq = fq̄), the corresponding Boltzmann-Vlasov equations
for q and σ particles thus read

∂tfq +
p

Eq
· ∂fq
∂x

+ F (x,p, t)
∂fq
∂p

= Cq[fq, fσ],

∂tfσ +
q

Eσ
· ∂fσ
∂x

= Cσ[fq, fσ].

(A4)
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The collision terms are given by the transition rates for creation and annihilation of q and
σ particles,

Cq =
λ2

2Eq

∫
R3

d3p2

(2π)32Eq2

∫
R3

d3q

(2π)32Eσ

(2π)4δ(4)(p1 + p2 − q)
[fσ(x, q, t)− fq(x,p, t)fq̄(x,p2, t)] ,

(A5)

Cσ =
λ2

2Eσ

∫
R3

d3p

(2π)32Eq

∫
R3

d3p2

(2π)32Eq2

(2π)4δ(4)(p1 + p2 − q)
[fq(x,p, t)fq̄(x,p2, t)− fσ(x, q, t)] .

(A6)

These collision terms obviously fulfill the principle of detailed balance. Due to Boltzmann’s
H theorem, (local) equilibrium is reached when the square brackets in the above integrals
vanish, and this is indeed the case for the Boltzmann distributions,

fq(p) = exp(−p · u/T ), fσ(q) = exp(−q · u/T ), (A7)

where u = u(t,x) is the four-velocity flow field, and T = T (t,x) the temperature field
[49]. Further, the four-momenta of all particles in (A5) and (A6) are assumed to fulfill

the corresponding on-shell conditions, i.e., Eq =
√

p2 +m2
q and Eσ =

√
q2 +m2

σ. This
causes the difficulty that the recombination process (A3) is ineffective due to the on-shell
constraint (p + p2)2 = m2

σ, which is artificial since an unstable particle has a finite-width
spectral function. Thus, using the width according to the tree-level matrix element (A3),

Γσ =
λ2

8πmσ

√
1−

4m2
q

m2
σ

, (A8)

we substitute in (A5) the integration operator∫
R3

d3q

(2π)32Eσ
=

∫
R4

d4q

(2π)4
Θ(q0)δ[(q0)2 − E2

σ] (A9)

by ∫
R4

d4q

(2π)4

Γ

(q0 − Eσ)2 + Γ2
σ/4

. (A10)

For consistency and to preserve detailed balance, also (A6) has to be averaged by the Breit-
Wigner distribution in the same way, i.e., we have to substitute

δ(q0 − p0
1 − p0

2)→ 1

2π

Γ

(p0
1 + p0

2 − Eσ)2 + Γ2
σ/4

(A11)

for the energy-conserving δ distribution in the collision term. A fully self-consistent treat-
ment of particles of finite width within a kinetic approach [50, 51] is beyond the scope of
this paper.
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