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Preface

In the first chapter, we start with some facts known, from ordinary nonrelativistic quantum
mechanics. We emphasise the picture of the evolution of quantum systems in space and time.
The aim was to introduce the functional methods of path integrals on hand of the familiar
framework of nonrelativistic quantum theory.
In this introductory chapter it was my goal to keep the story as simple as possible. Thus, all
problems concerning operator ordering or interaction with electromagnetic fields were omitted.
All these topics will be treated in terms of quantum field theory, beginning with the third chapter.
The second chapter is not yet written completely. It will be short and is intended to contain the
vacuum many-body theory for nonrelativistic particles given as a quantum many-particle theory.
It is shown that the same theory can be obtained by using the field-quantisation method (which
was often called “the second quantisation”, but on my opinion this is a very misleading term). I
intend to work out the most simple applications to the hydrogen atom including bound states
and exact scattering theory.
In the third chapter, we start with the classical principles of special relativity which are Lorentz
covariance and the action principle in the covariant Lagrangian formulation, but we shall in-
troduce only scalar fields to keep the stuff quite easy, since there is only one field degree of
freedom. The classical part of the chapter ends with a discussion of Noether’s theorem which is
on the heart of our approach to observables which are defined from conserved currents caused
by symmetries of space and time as well as by intrinsic symmetries of the fields.
After that introduction to classical relativistic field theory, we quantise the free fields, ending with
a sketch about the nowadays well established facts of relativistic quantum theory: It is necessarily
a many-body theory, because there is no possibility for a Schrödinger-like one-particle theory.
The physical reason is simply the possibility of creation and annihilation of particle-antiparticle
pairs (pair creation). It will come out that for a local quantum field theory the Hamiltonian of
the free particles is bounded from below for the quantised field theory only if we quantise it with
bosonic commutation relations. This is a special case of the famous spin-statistics theorem.
Then we show, how to treat ϕ4 theory as the most simple example of an interacting field theory
with help of perturbation theory, prove Wick’s theorem and the LSZ-reduction formula. The
goal of this chapter is a derivation of the perturbative Feynman-diagram rules. The chapter ends
with the sad result that diagrams, which contain loops, correspond to integrals which do not
exist since they are divergent. This difficulty is solved by renormalisation theory which will be
treated later in these notes.
The fourth chapter starts with a systematic treatment of relativistic invariant theory using
appendix B which contains the complete mathematical treatment of the representation theory
of the Poincaré group, as far as it is necessary for physics. The most important result is the
general proof of the spin-statistics theorem and the PCT theorem.
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Preface

The rest of the chapter contains the foundations of path integrals for quantum field theories.
Hereby, we shall find the methods helpful, which we have learnt in Chapter 1. This contains also
the path integral formalism for fermions which needs a short introduction to the mathematics of
Grassmann numbers.
After setting up these facts, we shall rederive the perturbation theory, which we have found with
help of Wick’s theorem in chapter 3 from the operator formalism. We shall use from the very
beginning the diagrams as a very intuitive technique for book-keeping of the rather technically
involved functional derivatives of the generating functional for Green’s functions. On the other
hand we shall also illustrate the „digram-less” derivation of the ℏ-expansion which corresponds
to the number of loops in the diagrams.
We shall also give a complete proof of the theorems about generating functionals for subclasses
of diagrams, namely the connected Green’s functions and the proper vertex functions.
The chapter ends with the derivation of the Feynman rules for a simple toy theory involving a
Dirac spin 1/2 Fermi field with the now completely developed functional (path integral) tech-
nique. As will come out quite straight forwardly, the only difference compared to the pure boson
case are some sign rules for fermion lines and diagrams containing a closed fermion loop, coming
from the fact that we have anticommuting Grassmann numbers for the fermions rather than
commuting c-numbers for the bosons.
Chapter 5 is a detailed treatment of modern renormalisation theory. Here, we emphasise the
calculation techniques, needed to calculate Feynman diagrams which have to be regularised in
some way. I have chosen dimensional regularisation from the very beginning, because it leads to
the most convenient treatment which is espacially true for the physically most important gauge
field theories, about which we will learn in the later chapters of these notes. We will also prove
Weinberg’s theorem and the finiteness of the renormalised diagrams within the BPHZ formalism.
The sixth chapter is devoted to QED, including the most simple physical applications at tree-
level. From the very beginning we shall take the gauge theoretical point of view. Gauge theories
have proved to be the most important class of field theories, including the Standard Model of
elementary particles. Thus, we use from the very beginning the modern techniques to quantise
the theory with help of formal path integral manipulations, known as Faddeev-Popov quantisation
in a certain class of covariant gauges. We shall also derive the very important Ward-Takahashi
identities. As an especially useful gauge fixing we shall also formulate the background field gauge
which is a manifestly gauge invariant procedure. We shall give the proof of renormalisability of
QED in the background field gauge.
Chapter 7 contains a complete treatment of nonabelian gauge theories, including the notion of
BRST invariance and renormalisability of these type of theories.
The appendix contains some mathematical material needed in the main parts.
Appendix A introduces some very basic facts about functionals and variational calculus.
Appendix B has grown a little lengthy, but on the other hand I think it is useful to write down
all the stuff about the representation theory of the Poincaré groups. In a way it may be seen as
a simplification of Wigner’s famous paper from 1939.
Appendix C I hope the reader of my notes will have as much fun as I had when I wrote them!
Last but not least I come to the acknowledgements. First to mention are Robert Roth and
Christoph Appel who gave me their various book style hackings for making it as nice looking as
it is.
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Preface

Also Thomas Neff has contributed by his patient help with all “mysteries” of the computer
systems, I used at GSI, while I prepared this script.
Christoph Appel was always discussing with me about the hot topics of QFT, like, e.g., obtaining
the correct symmetry factors of diagrams and the proper use of Feynman rules for various types
of QFTs. He was also carefully reading the script and has corrected many spelling errors.

Literature

Finally I have to stress the fact that the lack of citations in these notes mean not that I claim that
the contents are original ideas of mine. It was just my laziness in finding out all the references I
used through my own tour through the literature and learning of quantum field theory.
I just cite some of the textbooks I found most illuminating during the preparation of these notes:
For the fundamentals there exist a lot of textbooks of very different quality. For me the most
important were [Wei95, Wei96, Sch14, BL86, Ram89, PS95, Kak93, Kug97]. Concerning gauge
theories some of the clearest sources of textbook or review character are [Tay76, AL73, FLS72,
Kug97, LZJ72a, LZJ72b, LZJ72c, Mut87]. One of the most difficult topics in quantum field
theory is the question of renormalisation. Except the already mentioned textbooks, here I found
the original papers very important, some of them are [BP57, Wei60, Zim68, Zim69, Zim70]. A
very nice and concise monograph of this topic is [Col86]. Whenever I was aware of a URL with
the full text of the paper, I cited it too, so that one can access these papers as easily as possible.
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Chapter 1

Path Integrals

In this chapter we shall summarise some well known facts about nonrelativistic quantum me-
chanics in terms of path integrals, which where invented by Feynman in 1948 as an alternative
formulation of quantum mechanics. It is thought to be an introduction to the tools of functional
methods used in quantum field theory.

1.1 Quantum Mechanics

In this course we assume that the reader is familiar with quantum mechanics in terms of Dirac’s
bra- and ket formalism. We repeat the basic facts by giving some postulates about the structure
of quantum mechanics which are valid in the nonrelativistic case as well as in the relativistic. In
these notes, we emphasise that quantum theory is the description of physical systems in space
and time. As we know, this picture is in some sense valid for a wider range of phenomena than
the classical picture of particles and fields.
Although it is an interesting topic, we do not care about some problems with philosophy of
quantum mechanics. In my opinion, the physicists have a well understood way in applying
the formalism to phenomena in nature, and the problem of measurement is not of practical
physical importance. That sight seems to be settled by all experimental tests of quantum theory,
undertaken so far: They all show that quantum theory is correct in predicting and explaining
the outcome of experiments with systems and there is no (practical) problem in interpreting the
results from calculating “physical properties of systems” with help of the formalism given by the
mathematical tool “quantum theory”. So let us begin with the summary of the mathematical
structure of quantum mechanics, as it is formulated in Dirac’s famous book.

• Each quantum system is described completely by a ray in a Hilbert space H . A ray is
defined as the following equivalence class of vectors:

[|ψ⟩] = {c |ψ⟩ | |ψ⟩ ∈ H , c ∈ C \ {0}}. (1.1)

• The observables of the system are represented by selfadjoint operators O which build to-
gether with the unity operator an algebra of operators, acting on the Hilbert-space vectors.
For instance, in the case of a quantised classical point particle this algebra of observables is
built by the operators of the Cartesian components of position and (canonical) momentum

11



Chapter 1 · Path Integrals

operators, which fullfil the Heisenberg algebra:

[xi,xk] = [pi,pk] = 0, [xi,pk] = iδik1. (1.2)

Here and further on (except in cases when it is stated explicitly) we set Planck’s constant
ℏ = 1. In the next chapter, when we consider the relativistic theory, we shall also set the
velocity of light c = 1 too. In this so called natural system of units, observables with the
dimension of an action are dimensionless. Spatial distances and time intervals have the
same unit, which is reciprocal to that of energy and momentum, and convenient unities in
particle physics are MeV or GeV for energies, momenta and masses and fm for space or
time intervals. The conversion within these units is given by the value ℏc ≃ 0.197 GeV fm.

A possible result of a precise measurement of the observable O is necessarily an eigenvalue
of the corresponding operator O. Because O is selfadjoint, its eigenvalues are real, and
the eigenvectors can be chosen such that they build a complete normalised set of mutually
orthogonal vectors |o, α⟩. Here α is a set of discrete or continuous parameters, labeling the
different eigenvectors of O with the same eigenvalue o. The orthonormalization condition
reads 〈

o, α
∣∣ o′, α′ 〉 = δ(o− o′)δ(α− α′), (1.3)

where δ denotes either a Kronecker-δ symbol for discrete eigenvalues and parameters or a
Dirac-δ distribution for continuous quantities. The completeness relation reads

∫
do

∫
dα |o, α⟩ ⟨o, α| = 1. (1.4)

Here, the integrals may also denote sums for the case of decrete eigenvalues and/or param-
eters, α.

• If the system is prepared in a state, represented by a vector |ψ⟩, fulfilling the the normal-
ization condition ⟨ψ |ψ ⟩ = 1, then the probability to find the value o when measuring the
observable O, is given by

Pψ(o) =

∫
dα| ⟨o, α |ψ ⟩ |2. (1.5)

This postulate is known as Born’s rule.

The most famous consequence of this description of physical systems is Heisenberg’s uncer-
tainty relation, which follows from the positive definiteness of the scalar product in Hilbert
space:

∆A∆B ≥ 1

2
|⟨[A,B]⟩| . (1.6)

Two observables can take simultaneously sharply determined values if and only if the
corresponding operators commute. In this case both operators have a complete orthonormal
basis of common eigenvectors.

A set of pairwise commutating observables is said to be complete if the simultaneous
determination of the values of all these observables fixes the state of the system completely,
i.e., if the simultaneous eigenspaces of these operators are one-dimensional (nondegenerate).

• Time is represented by a real parameter. There is a hermitian operator H, associated with
the system such that, if O is an observable, then

O̊ =
1

i
[O,H] + ∂tO (1.7)
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1.2 · Choice of the Picture

is the operator representing the time derivative of this observable.

The partial time derivative is only for the explicit time dependence. The fundamental
operators like space and momentum operators, which form a complete generating system
of the algebra of observables, are not explicitly time dependent (by definition!). It should
be emphasised that O̊ is usually not the mathematical total derivative with respect to
time. We shall see that the mathematical dependence on time is arbitrary in a wide sense,
because, if we have a description of quantum mechanics, then we are free to redefine the
operators and state kets by a time dependent unitary transformation without changing any
physical prediction (probabilities, mean values of observables etc.).

• Due to our first assumption, the state of the quantum system is completely known, if we
know a state ket |ψ⟩ lying in the ray [|ψ⟩], in which the system is prepared in, at an arbitrary
initial time. This preparation of a system is possible by the simultaneous determination of
the values of a complete set of compatible observables.

It is more convenient to have a description of the state in terms of Hilbert-space quantities
than in terms of the projective space (built by the above defined rays). It is easy to see
that the state is uniquely given by the projection operator

P|ψ⟩ =
|ψ⟩ ⟨ψ|
∥ψ∥2 , (1.8)

with |ψ⟩ an arbitrary ket contained in the ray (i.e., the state the system is in).

• In general, especially if we like to describe macroscopic systems within quantum mechanics,
we do not know the state of the system completely. In this case, we can describe the system
by a selfadjoint statistical operator ρ which is positive semidefinite (that means that for
all kets |ψ⟩ ∈ H we have ⟨ψ |ρ|ψ⟩ ≥ 0) and fulfills the normalisation condition Trρ = 1.

The trace of an operator is defined with help of a complete set of orthonormal vectors |n⟩
as Trρ =

∑
n ⟨n |ρ|n⟩. The mean value of any operator O is given by ⟨O⟩ = Tr(Oρ).

The last assumption of quantum theory is that the statistical operator is associated with
the system at all times. This implies the von Neumann equation,

ρ̊ =
1

i
[ρ,H] + ∂tρ = 0. (1.9)

This equation is also valid for the special case that the system is prepared in a pure state,
i.e., for ρ = P|ψ⟩.

1.2 Choice of the Picture

Now, having briefly summarised how quantum mechanics works, we like to give the time evolution
a mathematical content, i.e., we settle the time dependence of the operators and states describing
the system. As mentioned above, it is in a wide range arbitrary, how this time dependence is
chosen. The only observable facts about the system are expectation values of its observables, so
they should have a unique time evolution. To keep the story short, we formulate the result as
a theorem and prove afterwards that it gives really the right answer. Each special choice of the
mathematical time dependence of observables and state kets, that is consistent with the above
given postulates of quantum mechanics, is called a picture of the time evolution. Now, we can
state
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Theorem 1. The picture of quantum mechanics is uniquely determined by the choice of an
arbitrary selfadjoint operator X which can be a local function of time. Local means in this
context that it depends only on one time, so to say the time point “now” and not (as could be
consistent with the causality property of physical laws) on the whole past of the system.
This operator is the generator of the time evolution of the fundamental operators of the system.
This means that it determines the unitary time evolution operator A(t, t0) of the observables by
the initial-value problem

i∂tA(t, t0) = −X(t)A(t, t0), A(t0, t0) = 1 (1.10)

such that for all observables, which do not depend explicitly on time,

O(t) = A(t, t0)O(t0)A
†(t, t0). (1.11)

Then, the generator of the time evolution of the states is necessarily given by the selfadjoint
operator Y = H −X, where H is the Hamiltonian of the system. This means that the unitary
time evolution operator of the states is given by

i∂tC(t, t0) = +Y(t)C(t, t0). (1.12)

Proof. The proof of the theorem is not too difficult. At first one sees easily that all the laws
given by the axioms like commutation rules (which are determined by the physical meaning of the
observables due to symmetry requirements as will be shown later on) or the connection between
states and probabilities is not changed by applying different unitary transformations to states
and observables.
So there are only two statements to show: First we have to assure that the equation of motion for
the time evolution operators is consistent with the time evolution of the entities themselves and
second we have to show that this mathematics is consistent with the axioms concerning “physical
time evolution” above, especially that the time evolution of expectation values of observables is
unique and independent of the choice of the picture.
For the first task, let us look at the time evolution of the operators. Because the properties
of the algebra, given by sums or series of products of the fundamental operators, especially
their commutation rules, should not change with time, the time evolution has to be a linear
transformation of operators, i.e., O → AOA−1, with an invertible linear operator A on Hilbert
space. Because the observables are represented by selfadjoint operators, this property has to
be preserved during the time evolution, leading to the constraint that A has to be unitary, i.e.,
A−1 = A†.
Now, for t > t0, the operator A should be a function of t and t0 only. Let us suppose the
operators evolved with time from a given initial setting at t0 to time t1 > t0 by the evolution
operator A(t0, t1). Now, we can take the status of these operators at time t1 as a new initial
condition for their further time development to a time t2. This is given by the operator A(t1, t2).
On the other hand, the evolution of the operators from t0 to t2 should be given directly by the
transformation with the operator A(t0, t2). One can easily see that this long argument can be
simply written mathematically as the consistency condition:

∀t0 < t1 < t2 ∈ R : A(t2, t1)A(t1, t0) = A(t2, t0), (1.13)

i.e., in short words: The time evolution from t0 to t1 and then from t1 to t2 is the same as the
evolution directly from t0 to t2.
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Now from unitarity of A(t, t0) one concludes:

AA† = 1 = const.⇒ (i∂tA)A† = A∂t(iA)†, (1.14)

so that the operator X = −i(∂tA)A† is indeed selfadjoint: X† = X. Now using eq. (1.13) one
can immediately show that

[i∂tA(t, t0)]A
†(t, t0) = [i∂tA(t, t1)]A

†(t, t1) := −X(t) (1.15)

which in turn shows that X(t) does not depend on the initial time t0, i.e., it is really local in
time as stated in the theorem. Thus, the first task is done since the proof for the time evolution
operator of the states is exactly the same: The assumption of a generator X(t) resp. Y(t) which
is local in time is consistent with the initial value problems defining the time evolution operators
by their generator.
Now, the second task, namely to show that this description of time evolution is consistent with the
above mentioned axioms, is done without much sophistication. From O(t) = A(t, t0)O(t0)A

†(t, t0)
together with the definition (1.10) one obtains for an operator which may depend on time:

dO(t)

dt
=

1

i
[O(t),X(t)] + ∂tO(t). (1.16)

This equation can be written with help of the “physical time derivative” (1.7) in the following
form:

dO(t)

dt
= O̊− 1

i
[O,H−X] . (1.17)

One sees that the eqs. (1.16) and (1.17) together with given initial values for an operator O
at time t0 are uniquely solved by applying a unitary time evolution operator which fulfils Eq.
(1.10).
Now, the statistical operator ρ fulfils these equations of motion as any operator. But by the
axiom (1.9), we conclude from (1.17)

dρ(t)

dt
= −1

i
[ρ(t),Y(t)] , (1.18)

and this equation is solved uniquely by a unitary time evolution with the operator C fulfilling
(1.12).

Q.E.D.

It should be emphasised that this evolution takes only into account the time dependence of the
operators which comes from their dependence on the fundamental operators of the algebra of
observables. It does not consider an explicit time dependence. The statistical operator is always
time dependent. The only very important exception is the case of thermodynamical equilibrium
where the statistical operator is a function of the constants of motion.
Now, we have to look at the special case that we have full quantum theoretical information about
the system. Then we know that this system is in a pure state, given by ρ = P|ψ⟩ = |ψ⟩ ⟨ψ| (where
|ψ⟩ is normalised). It is clear that for this special statistical operator the general eq. (1.18) and
from that (1.12) is still valid. It follows immediately, that up to an unimportant phase factor
the state ket evolves with time by the unitary transformation

|ψ, t⟩ = C(t, t0) |ψ, t0⟩ . (1.19)

From this, one sees that the normalisation of |ψ, t⟩ is 1, if the ket was renormalised at the initial
time t0. The same holds true for a general statistical operator, i.e., Trρ(t) = Trρ(t0) (exercise:
show this by calculating the trace with help of a complete set of orthonormal vectors).
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1.3 Formal Solution of the Equations of Motion

Now we want to integrate the equations of motion for the time-evolution operators formally. Let
us do this for the case of A, introduced in (1.11). Its equation of motion, which we like to solve
now, is given by (1.10).
The main problem comes from the fact that the selfadjoint operator X(t), generating the time
evolution, depends in general on time t, and operators at different times need not commute.
Because of this fact we can not solve the equation of motion like the analogous differential
equation with functions, having values in C.
At first, we find by integration of (1.10) with help of the initial condition A(t0, t0) = 1 an integral
equation which is equivalent to the initial-value problem (1.10):

A(t, t0) = 1+ i

∫ t

t0

dτX(τ)A(τ, t0). (1.20)

The form of this equation leads us to solve it by defining the following iteration scheme.

An(t, t0) = 1+ i

∫ t

t0

X(τ)An−1(τ, t0)dτ, A0(t, t0) = 1. (1.21)

The solution of the equation should be given by taking the limit n → ∞. We will not think
about the convergence because this is a rather difficult task and, as far as I know, yet unsolved
problem.
One can prove by induction that the formal solution is given by the series

A(t, t0) =

∞∑

k=0

A(k)(t, t0) with (1.22)

A(k)(t, t0) =

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τk−1

t0

dτkX(τ1)X(τ2) . . .X(τk).

To bring this series in a less complicated form, let us first look at A(2)(t, t0):

∫ t

t0

dτ1

∫ τ1

t0

dτ2X(τ1)X(τ2). (1.23)

The range of the integration variables is the triangle in the τ1τ2-plane shown at figure 1.1:
Using Fubini’s theorem we can interchange the integrations

A(2) =

∫ t

t0

dτ1

∫ t

τ1

dτ2X(τ2)X(τ1). (1.24)

A glance at the operator ordering in (1.23) and (1.24) shows that it is such that the operator at
the later time is always on the left. For this, one introduces the causal time ordering operator
Tc, invented by Dyson. With help of Tc, one can add both equations, leading to the result

2A(2)(t, t0) = Tc

∫ t

t0

dτ1

∫ t

t0

dτ2X(τ1)X(τ2). (1.25)
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t0 t
τ1

t0

t

τ2

τ1 = τ2

Figure 1.1: Range of integration variables in (1.23)

We state that this observation holds for the general case of an arbitrary summand in the series
(1.22), i.e.,

A(k)(t, t0) =
1

k!
Tc

∫ t

t0

dτ1 · · ·
∫ t

t0

dτnX(τ1) · · ·X(τn). (1.26)

To prove this assumption, we use an induction argument. Assume the assumption is true for
k = n − 1 and look at the nth summand of the series. Because the assumption is true for
k = n− 1, we can apply it to the n− 1 inner integrals:

A(n)(t, t0) =
1

(n− 1)!
Tc

∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τ1

t0

dτnX(τ1) · · ·X(τn). (1.27)

Now we can do the same calculation as we did for A(2) with the outer integral and one of the
inner ones. Adding all the possibilities of pairing and dividing by n one gets immediately

A(n)(t, t0) =
1

n!
Tc

∫ t

t0

dτ1 · · ·
∫ t

t0

dτnX(τ1) · · ·X(τn), (1.28)

and that is (1.26) for k = n. So, our assumption is proven by induction.
With this little combinatorics we can write the series formally as

A(t, t0) = Tc exp

[
i

∫ t

t0

dτX(τ)

]
. (1.29)

This is the required formal solution of the equation of motion. For the operator C(t, t0) one finds
the solution by the same manipulations to be:

C(t, t0) = Tc exp

[
−i

∫ t

t0

dτY(τ)

]
. (1.30)

1.4 Example: The Free Particle

The most simple example is the free particle. For calculating the time development of quantum
mechanical quantities, we chose the Heisenberg picture defined in terms of the above introduced
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time evolution operators X = H and Y = 0. We take as an example a free point particle moving
in one-dimensional space. The fundamental algebra is given by the space and the momentum
operator which fulfil the Heisenberg algebra

1

i
[x,p] = 1, (1.31)

which follows from the rules of canonical quantisation from the Poisson bracket relation in Hamil-
tonian mechanics or from the fact that the momentum is defined as the generator of translations
in space.
As said above, in the Heisenberg picture only the operators, representing observables, depend on
time, and the states are time independent. To solve the problem of time evolution we can solve
the operator equations of motion for the fundamental operators rather than solving the equation
for the time evolution operator. The Hamiltonian for the free particle is given by

H =
p2

2m
, (1.32)

where m is the mass of the particle. The operator equations of motion can be obtained from the
general rule (1.16) with X = H:

dp

dt
=

1

i
[p,H] = 0,

dx

dt
=

1

i
[x,H] =

p

m
. (1.33)

This looks like the equation for the classical case, but it is an operator equation. But in our case
that doesn’t affect the solution which is given in the same way as the classical one by

p(t) = p(0) = const, x(t) = x(0) +
p

m
t. (1.34)

Here, without loss of generality, we have set t0=0.
Now let us look on the time evolution of the wave function given as the matrix elements of the
state ket and a complete set of orthonormal eigenvectors of observables. We emphasise that the
time evolution of such a wave function is up to a phase independent of the choice of the picture.
So we may use any picture we like to get the answer. Here, we use the Heisenberg picture, where
the state ket is time independent. The whole time dependence comes from the eigenvectors of
the observables. As a first example we take the momentum eigenvectors and calculate the wave
function in the momentum representation. From (1.33) we get up to a phase:

|p, t⟩ = exp(iHt) |p, 0⟩ = exp

(
i
p2

2m
t

)
|p, 0⟩ , (1.35)

and the time evolution of the wave function is simply

ψ(p, t) = ⟨p, t |ψ ⟩ = exp

(
−i

p2

2m
t

)
ψ(p, 0). (1.36)

This can be described by the operation of an integral operator in the form

ψ(p, t) =

∫
dp′
〈
p, t
∣∣ p′, 0

〉
︸ ︷︷ ︸
U(t,p;0,p′)

〈
p′, 0

∣∣ψ
〉
=

∫
dp′U(t, p; 0, p′)ψ(p′, 0). (1.37)
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From (1.34) one finds

U(t, p, 0, p′) = exp

(
−i

p2

2m
t

)
δ(p− p′). (1.38)

It should be kept in mind from this example that the time evolution kernels or propagators which
define the time development of wave functions are in general distributions rather than functions.
The next task, we like to solve, is the propagator in the configuration-space representation of
the wave function. We will give two approaches: First we start anew and calculate the space
eigenvectors from the solution of the operator equations of motion (1.34). We have by definition:

x(t) |x, t⟩ =
(
x(0) +

p(0)

m
t

)
|x, t⟩ = x |x, t⟩ . (1.39)

Multiplying this with ⟨x′, 0| we find by using the representation of the momentum operator in
space representation p = 1/i∂x:

(x′ − x)
〈
x′, 0

∣∣x, t
〉
=

it

m
∂x′
〈
x′, 0

∣∣x, t
〉

(1.40)

which is solved in a straight forward way:

U(t, x; 0, x′)∗ =
〈
x′, 0

∣∣x, t
〉
= N exp

[
−i
m

2t
(x′ − x)2

]
. (1.41)

Now we have to find the complex normalisation factor N . It is given by the initial condition

U(0, x; 0, x′) = δ(x− x′) (1.42)

which also determines its phase and the fact that U is the matrix element of a unitary operator:
∫

dx′U(t, x1; 0, x
′)U∗(t, x2; 0, x′) = δ(x1 − x2). (1.43)

Using (1.41), this integral gives
∫

dx′U(t, x1; 0, x
′)U∗(t, x2; 0, x′) = |N |2 2πt

m
δ(x1 − x2), → N =

√
m

2πt
exp(iα). (1.44)

To determine the phase, we use (1.42). It is most simple to fold U with an arbitrary L2 function,
for which we choose the Gaussian exp(−ax2):

∫
dx′U(t, x; 0, x′) exp(−ax′2) =

√
1

2at/m− i
exp

(
− amx2

m+ 2iat
+ iα

)
. (1.45)

The square root is understood as its principle value, i.e., for t > 0 it has a positive imaginary
part. Now taking the limit t → 0+ it becomes exp(+iπ/4) and thus we must have α = −π/4,
yielding the final result or the propagator:

U(t, x; 0, x′) =

√
m

2πit
exp

[
im

2t
(x− x′)2

]
. (1.46)

An alternative possibility to get this result is to use the momentum space result and transform
it to space representation. We leave this nice calculation as an exercise for the reader. For help
we give the hint that again one has to regularise the distribution to give the resulting Fourier
integral a proper meaning.
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1.5 The Feynman-Kac Formula

Now we are at the right stage for deriving the path integral formalism of quantum mechanics. In
these lectures we shall often switch between operator formalism and path integral formalism. We
shall see that both approaches to quantum theory have their own advantages and disadvantages.
The operator formalism is quite nice to see the unitarity of the time evolution. On the other hand
the canonical quantisation procedure needs the Hamiltonian formulation of classical mechanics
to define Poisson brackets which can be mapped to commutators in the quantum case. This is
very inconvenient for the relativistic case because we have to treat the time variable in a different
way than the space variables. So the canonical formalism hides relativistic invariance leading to
non covariant rules at intermediate steps. Relativistic invariance will be evident at the very end
of the calculation.
Additional to this facts which are rather formal we shall like to discuss gauge theories like
electrodynamics or the standard model. The quantisation of theories of that kind is not so
simple to formulate in the operator formalism but the path integral is rather nice to handle. It is
also convenient to use functional methods to derive formal properties of quantum field theories as
well as such practical important topics like Feynman graphs for calculating scattering amplitudes
perturbatively.
In this section we shall take a closer look on path integrals applied to nonrelativistic quantum
mechanics.
For sake of simplicity we look again on a particle in one configuration space dimension moving in
a given potential V . Again we want to calculate the time evolution kernel U(t′, x′; t, x) which was
given in the previous chapter in terms of the Heisenberg picture space coordinate eigenstates:

〈
x′, t′

∣∣x, t
〉
=
〈
x′, 0

∣∣exp[−iH(t′ − t)]
∣∣x, 0

〉
(1.47)

where we have used the solution of the equation of motion for Hamiltonian which is explicitly
time independent, i.e. in the Heisenberg picture it is a function of the fundamental operators,
here taken as x and p alone. We consider at the moment the most simple case which in fact
covers a wide range of application in the case of nonrelativistic quantum mechanics:

H =
p2

2m
+ V (x). (1.48)

We will take into account more general cases later. The idea behind our derivation of the path
integral formula is quite simple. Because we know the time evolution explicitly for very small
time intervals, namely it is given by the Hamiltonian, it seems to be sensible to divide the time
interval (t,t’) in N equal pieces (in the following called time slices) of length ∆t = (t′ − t)/N .
Since the Hamiltonian is not explicitly time dependent which means in the Heisenberg picture
that it is a constant of motion (see eq. (1.16) and keep in mind that in the Heisenberg picture
we have by definition X = H) we can write the time evolution operator in the “time sliced” form

exp[−iH(t′ − t)] = exp(−iH∆t) exp(−iH∆t) . . . exp(−iH∆t)︸ ︷︷ ︸
N times

. (1.49)

Now there is the problem that x and p are not commuting. But one can show easily, that there
holds the following formula

exp[λ(A+B)] = expλA expλB+O(λ2) (1.50)
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by expanding both sides of the equation in orders of λ.
From this we can hope that with N → ∞ the error made by splitting the time evolution operator
in the form

exp(−i∆tH) = exp

(
−i∆t

p2

2m

)
exp[−i∆tV (x)] +O(∆t2) (1.51)

and neglecting the terms of order ∆t2 becomes negligible. Now splitting the time evolution
operator in this way we may put a unity operator in between which is written as the spectral
representation

∫
dx |x⟩ ⟨x| or

∫
dp |p⟩ ⟨p| in the following way:

U(t′, x′; t, x) =

∫
dp1 . . . dpNdx2 . . . dxN ×

×
〈
x′
∣∣∣∣exp

(
−i∆t

p2

2m

)∣∣∣∣ pN
〉
⟨pN |exp[−i∆tV (x)]|xN ⟩ ×

×
〈
xN

∣∣∣∣exp
(
−i∆t

p2

2m

)∣∣∣∣ pN−1

〉
⟨pN−1 |exp[−i∆tV (x)]|xN−1⟩ ×

× · · · ×

×
〈
x2

∣∣∣∣exp
(
−i∆t

p2

2m

)∣∣∣∣ p1
〉
⟨p1 |exp(−i∆tV )|x⟩ , (1.52)

where, in the latter sum, we have set x1 = x′ and xN+1 = x. Now the two different sorts of
matrix elements arising in this expression are trivially calculated to be

〈
xk+1

∣∣∣∣exp
(
−i∆t

p2

2m

)∣∣∣∣ pk
〉

= exp

(
−i∆t

p2k
2m

)
exp(ipkxk+1)√

2π
(1.53)

⟨pk |exp(−i∆tV )|xk⟩ = exp[−i∆tV (xk)]
exp(−ixkpk)√

2π
, (1.54)

where we have used the correctly “normalised” momentum eigenstate in the configuration-qspace
representation:

⟨x | p⟩ = exp(ixp)√
2π

. (1.55)

Putting all this together we obtain the time sliced form of the path integral formula which is
named after its inventors Feynman-Kac formula:

U(t′, x′; t, x) = lim
N→∞

∫
dp1 . . . dpNdx2 . . . dxN−1 ×

×
(

1

2π

)N
exp

[
−i∆t

N∑

k=1

(
p2k
2m

+ V (xk)

)
+ i

N∑

k=1

pk(xk+1 − xk)

]
, (1.56)

Now we interpret this result in another way than we have obtained it. The pairs (xk, pk) together
can be seen as a discrete approximation of a path in phase space parametrised by the time. The
mentioned points are defined to be (x(tk), p(tk)) on the path. Then the sum in the argument of
the exponential function is an approximation for the following integral along the given path:

∫ t′

t
dt

[
−H(x, p) + p

dx

dt

]
. (1.57)

Now we should remember that we have fixed the endpoints of the path in configuration space
to be x(t) = x and x(t′) = x′. So we have the following interpretation of the Feynman-Kac
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formula after taking the limit N → ∞: The time evolution kernel U(x′, t′;x, t) is the sum of the
functional exp(iS[x, p]) over all paths beginning at time t at the point x ending at the point x′

at time t′. For the momenta there is no boundary condition at all. This is quite o.k., because we
have no restriction on the momenta. Because of the uncertainty relation it does not make any
sense to have such conditions on both x and p at the same time! The action S is here seen as a
functional depending on the paths in phase space which fulfil this boundary conditions:

S[x, p] =

∫ t′

t
dt

[
p
dx

dt
−H(x, p)

]
. (1.58)

We conclude that the formula (1.56) may be taken as the definition of the continuum limit of
the path integral, written symbolically as

U(t′, x′; t, x) =
∫ (t′,x′)

(t,x)
DpDx exp {iS[x, p]} . (1.59)

The physical interpretation is now quite clear: The probability that the particle known to be
at time t exactly at the point x is at time t′ exactly at the point x′ is given with help of the
time evolution kernel in space representation as |U(t′, x′; t, x)|2 and the amplitude is given as
the coherent sum over all paths with the correct boundary conditions. All paths in phase space
contribute to this sum. Because the boundary space points x and x′ are exactly fixed at the
given times t and t′ respectively it is quantum mechanically impossible to know anything about
the momenta at this times. Because of that typical quantum mechanical feature there are no
boundary conditions for the momenta in the path integral!
Now let us come back to the discretised version (1.56) of the path integral. Since the Hamiltonian
is quadratic in p the same holds for the p-dependence of the exponential in this formula. So the
p-integrals can be calculated exactly. As seen above we have to regularise it by giving the time
interval ∆t a negative imaginary part which is to be tent to zero after the calculation. For one
of the momentum integrals this now familiar procedure gives the result

Ik =

∫
dpk exp

[
−i∆t

p2k
2m

+ ipk(xk − xk−1)

]
=

√
2πm

i∆t
exp

[
im(xk − xx−1)

2

2∆t

]
. (1.60)

Inserting this result in eq. (1.56) we find the configuration space version of the path integral
formula:

U(t′, x′; t, x) = lim
N→∞

∫
dx1 . . . dxN

√
m

2πi∆t

N

exp

{
i
N∑

k=1

[
m(xk − xk−1)

2

2∆t
− V (xi)∆t

]}
.

(1.61)
As above we can see that this is the discretised version of the path integral

U(t′, x′; t, x) =
∫ t′,x′

t,x
D′x exp{iS[x]}, (1.62)

where we now obtained S[x] =
∫ t′
t dtL, i.e. the action as a functional of the path in configuration

space. The prime on the path integral measure is to remember that there are the square root
factors in (1.61).
With that manipulation we have obtained an important feature of the path integral: It is a
description which works with the Lagrangian version of classical physics rather than with the
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1.6 · The Path Integral for the Harmonic Oscillator

Hamiltonian form. This is especially convenient for relativistic physics, because then the Hamil-
tonian formalism is not manifestly covariant.
It was Feynman who invented the path integrals in 1942 in his Ph.D. thesis. Later on he could
use it as a tool for finding the famous Feynman graphs for perturbative QED which we shall
derive later in our lectures. That Feynman graphs give a very suggestive picture of the scattering
processes of the particles due to electromagnetic interaction among them. In the early days of
quantum field theory Schwinger and Feynman wondered why they obtained the same results in
QED. Schwinger was using his very complicated formal field operator techniques and Feynman
his more or less handwaving graphical arguments derived from his intuitive space-time picture.
Later on Dyson derived the Feynman rules formally from the canonical quantisation of classical
electrodynamics and that was the standard way getting the rules for calculating scattering cross
sections etc. With the advent of non-Abelian gauge theories in the late fifties and their great
breakthrough in the early seventies (electro weak theory, renormalisability of gauge theories) this
has changed completely: Nowadays the path integral formalism is the standard way to obtain
the content of the theory for all physicists who are interested in theoretical many body quantum
physics.
After this little historical sideway let us come back to the path integrals themselves. Now it is
time to get some feeling for it by applying it to the most simple nontrivial example which can
be calculated in a closed form: The harmonic oscillator.

1.6 The Path Integral for the Harmonic Oscillator

The harmonic oscillator is defined by the Lagrangian

L =
m

2
ẋ2 − mω2

2
x2. (1.63)

The corresponding Hamiltonian is quadratic not only in p but also in x. This is the reason, why
we can calculate the path integral exactly in this case. We will use the discretised version (1.61)
of the configuration space path integral.
The biggest problem is the handling of the boundary conditions of the path. Fortunately this
problem can be solved by parameterising the path relative to the classical one defined as that
path which extremises the action S[x]:

δS[x]

δx

∣∣∣∣
x=xcl

= 0 with x(t) = x, x(t′) = x′. (1.64)

Since the action is quadratic it can be expanded around the classical path and the series will end
with the summand of second order in y = x− xcl:

S[y + xcl] = S[xcl] +
1

2

〈
δ2S

δx1δx2

∣∣∣∣
x=xcl

y1y2

〉

12

, (1.65)

where the bracket is a shorthand notation with the following meaning

⟨f12...n⟩12...n =

∫ t′

t
dt1dt2 . . . dtnf(t1, t2, . . . , tn). (1.66)
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Chapter 1 · Path Integrals

The term linear in y does not contribute because of (1.64).
Since we have to sum over all paths x with the boundary conditions fulfilled by the classical
path this can be expressed as sum over all paths y with the easier to handle boundary conditions
y(t) = y(t′) = 0. Formally this is done by substitution y = x − xcl into the path integral.
Thinking in terms of the discretised version of the path integral one immediately sees that the
path integral measure is invariant under time dependent translations of x, i.e. D′x = D′y. So we
get the important result

U(t′, x′; t, x) = exp{iS[xcl]}
∫ (t′,0)

(t,0)
D′y exp

[
i

2

〈
δS[xcl]

δx1δx2
y1y2

〉]
(1.67)

As the first step we calculate the action along the classical path. We have to calculate the
functional derivative of S with fixed boundary conditions.

δS =

∫ t′

t
dt

[
∂L

∂x
δx+

∂L

∂ẋ
δẋ

]
. (1.68)

By integration by parts with taking into account the boundary conditions δx(t) = δx(t′) = 0 we
obtain

δS =

∫ t′

t
dt

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
δx. (1.69)

So the equations of motion defining the classical path are given by the Euler Lagrange equations
with the Lagrangian L:

0 =
δS

δx

∣∣∣∣
x=xcl

=

(
∂L

∂x
− d

dt

∂L

∂ẋ

)

x=xcl

. (1.70)

It is clear that we get the equation of the classical motion of the harmonic oscillator. The
equation with the correct boundary conditions defined in (1.64) is simple to solve:

xcl(τ) = x cos[ω(τ − t)] +
x′ − x cos[ω(t′ − t)]

sin[ω(t′ − t)]
sin[ω(τ − t)]. (1.71)

From this result the action along the classical path is given by

S[xcl] =
mω{(x2 + x′2) cos[ω(t′ − t)]− 2xx′}

2 sin[ω(t′ − t)]
. (1.72)

To finish the calculation now we are left with the path integral in (1.67) with the homogeneous
boundary conditions. This has to be calculated in the discretised version. We call the path
integral the amplitude A:

A = lim
N→∞

(
mN

2πi(t′ − t)

)N/2 ∫
dy1 . . . dyN−1 exp

{
i

N∑

k=1

[
m(yk − yk−1)

2

2∆t
− m2

2
ω2y2k∆t

]}

(1.73)
Since y0 = yN = 0 the argument of the exponential function can be written as

N∑

k=1

[
m(yk − yk−1)

2

2∆t
− m2

2
ω2y2k∆t

]
=

m

2∆t
y⃗tMN y⃗, (1.74)
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1.7 · Some Rules for Path Integrals

where y⃗ is the column vector (y1, y2, . . . , yN−1) and

MN =




C −1 0 0 0 · · ·
−1 C −1 0 0 · · ·
0 −1 C −1 0 · · ·
...

...
...

...
...

...


 with C = 2− ω2∆t2 (1.75)

Now we calculate the k-dimensional Gaussian integral with a symmetric positive definite matrix
M . Since such matrices can be diagonalised by an orthogonal transformation we get

∫
dky exp(−ytMy) =

k∏

j=1

∫
dxj exp(−λjx2j ), (1.76)

where we have substituted z = Ox. The λj are the eigenvalues of the matrix M . So the problem
reduces to the product of single Gaussian integrals:

∫
dky exp(−ytMy) =

√
πk

∏k
j=1 λj

=

√
πk

detM
. (1.77)

So after giving ∆t a negative imaginary value and analytic continuation back to the real value
(t′ − t)/N (determinants are analytic functions of the matrix elements) our problem to calculate
(1.73) is reduced to calculate the determinant of MN . That will be done as an exercise because
the calculation is lengthy and tedious. The result after taking the continuum limit N → ∞ gives
the result for the amplitude:

A =

√
mω

2πi sin[ω(t′ − t)]
. (1.78)

Thus the final result is

U [x′, t′;x, t] =
√

mω

2πi sin[ω(t′ − t)]
exp

{
imω{(x2 + x′2) cos[ω(t′ − t)]− 2xx′}

2 sin[ω(t′ − t)]

}
, (1.79)

where we have put together (1.67), (1.68) and (1.78).

Exercise

Calculate the determinant of MN , put it into (1.73-1.74) to prove (1.78)! Hint: It is useful to
set C = 2 cosϕ in (1.75).

1.7 Some Rules for Path Integrals

Now that we have calculated a closed solvable example, we can derive some general properties of
path integrals. The first one we get by writing down the composition rule (1.13), which is valid
for our time evolution kernel too, in terms of path integrals. For t1 < t2 < t3 we have

∫ (t3,x3)

(t1,x1)
D′x exp{iS[x]} =

∫
dx2

∫ (t2,x2)

(t1,x1)
D′x exp{iS[x]}

∫ (t3,x3)

(t2,x2)
D′x exp{iS[x]}. (1.80)
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Chapter 1 · Path Integrals

This formula can be proved with help of the discretised version of the path integral formula.
That easy task is left as an exercise for the reader.
We can give a more intuitive explanation of this composition rule. The left hand side of the equa-
tion gives the sum of the functional exp{iS[x]} over all paths of the particle with the boundary
conditions x(t1) = x1 to x(t3) = x3. On the right hand side the both path integrals are the sum
of the same functional over all paths with the same boundary conditions but with the constraint
x(t2) = x2 for a time in the interval (t1, t3), i.e. over all paths with the particle at a given place
x2 at time t2. Now this restriction is compensated by the single integral over all intermediate
positions x2. So the left and the right hand side of the equation are indeed the same!
Now there is no problem to obtain a little bit more complicated quantities in terms of path
integrals. As an example which will become crucial in the quantum field case we shall calculate
the expectation value of a product of Heisenberg configuration space operators at different times.
If this times are ordered in the sense of the causal time ordering operator introduced after eq.
(1.34), that means that the time values of the operators increase from the right to the left, there
is no problem. Using the unit operator given in terms of x-eigenstates at the given times and
applying the composition rule of path integrals we obtain the following rule

〈
x′, t′

∣∣Tcx(t1)x(t2) . . .x(tk)
∣∣x, t

〉
=

∫ (t′,x′)

(t,x)
D′xx(t1)x(t2) . . . x(tk) exp{iS[x]}. (1.81)

1.8 The Schrödinger Wave Equation

In this section we want to derive Schrödinger’s wave equation for the kernel of time evolution.
The main idea is to show, how to find such equations from the path integral. We start again
with the Feynman-Kac formula for the time evolution kernel for t′ > t:

U(t′, x′; t, x) =
∫ (t′,x′)

(t,x)
D′x exp{iS[x]}. (1.82)

Now we want to calculate the time derivative of this expression with respect to t′. So let ϵ be a
little increment of t′. Now by the composition rule one has

U(t′ + ϵ, x′; t, x) =
∫

dξU(t′ + ϵ, x′; t′, ξ)U(t′, ξ;x, t). (1.83)

Now we try to find the expansion with respect to ϵ. Since it can be thought to be very small
compared to the typical time scale of the problem we can approximate the first kernel on the
right hand side by a path integral with just one time slice namely the interval (t′, t′ + ϵ). So we
get

U(t′, x′; t, x) =
∫

dξ

√
m

2πiϵ
exp

[
i
m(x′ − ξ)2

2ϵ

]
[1− iϵV (x′) +O(ϵ2)]U(t′, ξ; t, x). (1.84)

Since we like to calculate this expression for ϵ → 0 the exponential is oscillating rapidly except
for values ξ ≈ x′. In a mathematically more correct treatment we could have continued the
time to be imaginary instead of regularising the path integral by only a little negative imaginary
part. If we had done so the exponential is not oscillating but damped. From the imaginary
time formalism we obtain the correct time evolution kernel by analytic continuation. So we see
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1.9 · Potential Scattering

that the main contribution of the ξ-integral comes from ξ ≈ x′. By changing the variable of
integration to δ = x′ − ξ and expanding U(t′, ξ; t, x) around δ we obtain

U(t′ + ϵ, x′; t, x) =

∫
dδ

√
m

2πiϵ
exp

(
imδ2

2ϵ

)
[1− ϵV (x′) +O(ϵ2)]×

×
[ ∞∑

k=0

(
∂

∂x′

)k
U(t′, x′; t, x)

(−δ)k
k!

]
. (1.85)

Now interchanging integration and summation of the series we need integrals of a Gaussian
multiplied by any potence of δ. This integrals can be obtained by defining a generating function:

f(Λ) =

∫ √
m

2πiϵ
exp

(
imδ2

2ϵ
+ Λδ

)
. (1.86)

After the usual regularisation by an negative imaginary part for ϵ we can calculate this integral
and from this we find

Ik =

∫
dδ

√
m

2πiϵ
δk exp

(
imδ2

2ϵ

)
=
dkf(Λ)

dΛk

∣∣∣∣
Λ=0

. (1.87)

For ϵ→ 0 we need only the following identities

I0 = 1, I1 = 0, I2 =
iϵ

m
, I2n = O(ϵn), I2n+1 = 0 for n ∈ N. (1.88)

Inserting this into (1.85) we get

U(t′ + ϵ, x′; t, x) = [1− iϵV (x′) +O(ϵ2)]

[
1 +

iϵ

2m
∂2x′

]
U(t′, x′; t, x). (1.89)

Subtracting U(t′, x′; t, x) and letting ϵ→ 0 we obtain the important result

i∂t′U(t′, x′; t, x) =
[
− 1

2m
∂2x′ + V (x′)

]
U(t′, x′; t, x) for t′ > t. (1.90)

This is the Schrödinger equation, since the differential operator on the right hand side is the
Hamiltonian expressed in terms of configuration space representation. The initial condition for
the kernel, necessary to make the solution of the Schrödinger equation unique, is of course

U(t+ 0, x′; t, x) = δ(x′ − x). (1.91)

This is the first time we see that the time evolution kernel is nothing but the Green’s function
of the Schrödinger equation. We will get a deeper insight in this relation by looking on an
important physical application of all the developed formalism, namely the perturbative treatment
of potential scattering with help of path integrals.

1.9 Potential Scattering

Potential scattering is an example where the path integral formalism is very intuitive. The setup
of a scattering experiment can described in the following idealised way: The physicist prepares
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Chapter 1 · Path Integrals

a beam of particles with a definite momentum p⃗i far away from the target where it will be
scattered. After the scattering process the physicist will use detectors, again far away from the
scatterer, to find the rate of scattered particles as a function of their momentum p⃗f .
Now let us describe this from a little bit more mathematical point of view: Since we want to
look on the most simple situation now, we give the scatterer in terms of a external potential. So
we have only one particle scattered by this external potential. This is approximately realized by
the scattering of a particle on another particle with a much greater mass (e.g. scattering of an
electron at a heavy nucleus). This potential should have only a finite range, i.e., V (x⃗) should be
very small for |x⃗| > R, where R is a typical range scale of the potential. So the particles prepared
before the scattering and registered after the scattering, far away from x⃗ = 0, that means now
|x⃗| > R, can be treated as quasi free particles. This is what is widely known as an asymptotic
free state.
Now let us analyse this situation with help of quantum mechanics. What we like to calculate is
the transition rate of particles which are prepared at an initial time t0 → −∞ as asymptotic free
particles of definite momentum p⃗i to a given asymptotic free state of definite momentum p⃗f at
a time tf . In the Heisenberg picture this is simply written as

Sfi = lim
ti→−∞,tf→∞

⟨tf , p⃗f | p⃗i, ti ⟩ . (1.92)

This defines the scattering matrix, shortly called the S-Matrix, as the transition rate from a given
initial asymptotic free state (in our case of definite momentum) to a given final asymptotic free
state (in our case also of definite momentum).
It can be seen as the main application of vacuum quantum field theory to calculate the S-Matrix
for this and much more complicated processes. We will give a description of scattering from the
quantum field theory point of view later. We will see that in the case of nonrelativistic potential
scattering the both approaches are equivalent. But for example the scattering of two identical
particles is much easier to get from the field theoretic point of view than from our space-time
point of view because the space of two identical particles becomes much more complicated than
one should expect from classical physics. We come back to this in the next section when we show
a very convincing argument made by Cecile Morette-de Witt about the fact that there can only
be bosons and fermions in a configuration space with three or more dimensions. But let us come
now back to our potential scattering problem of one particle!
The whole sections before we always calculated the transition amplitudes, i.e. the time evolution
kernel, dependent on space and time variables. Now of course we can look at the scattering
process in configuration space too, and we can introduce the time evolution kernel simply by
setting some identity operators between the momentum eigenvectors in (1.92):

Sfi = lim
ti→−∞,tf→∞

∫
d3x⃗1d

3x⃗2 ⟨tf , p⃗f | tf , x⃗1 ⟩︸ ︷︷ ︸
φ∗
p⃗f

(tf ,x⃗1)

⟨tf , x⃗1 | ti, x⃗2 ⟩︸ ︷︷ ︸
U(t1,x⃗1;tx,x⃗2)

⟨ti, x⃗2 | ti, p⃗i ⟩︸ ︷︷ ︸
φp⃗f

(ti,x⃗2)

. (1.93)

So we can write the S-Matrix in the form

Sfi = lim

∫
d3x⃗1d

3x⃗2φ
∗
p⃗f
(tf , x⃗1)U(tf , x⃗1; ti, x⃗2)φp⃗i(ti, x⃗2), (1.94)

where lim is meant to remember to take the limit ti → −∞, tf → ∞ at the very end of the
calculation. Herein the wave functions φp⃗ have to be taken as the solution of the time dependent
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1.9 · Potential Scattering

(!) Schrödinger equation for a free particle with definite momentum p⃗:

φp⃗(t, x⃗) =
1

(2π)(3/2)
exp

(
−i

p⃗2

2m
t+ ip⃗x⃗

)
. (1.95)

So again the main task is solved if we find a solution for the time evolution kernel or an approx-
imation appropriate for our situation. In the most cases one has to do it in the former sense
because it is impossible to find an analytical solution for the kernel. The best method one can
use is to solve the Schrödinger equation for the kernel. But here we like to give a derivation of
the approximation series known as the Born series with help of the path integral. This has the
great advantage to give a very intuitive picture of scattering in terms of processes in space-time.
For this purpose we assume now that the potential is small in the sense of a small coupling
constant as is the case, for instance, for electromagnetic forces were the coupling constant is of
order of Sommerfeld’s fine structure constant α = e2/(ℏc) ≈ 1/137. In this case it is sensible to
expand the time evolution kernel in powers of the potential.
Our starting point is again the Feynman-Kac formula for the time evolution kernel

U(tf , x⃗1; ti, x⃗2) =

∫ (tf ,x⃗2)

(ti,x⃗1)
D′3x⃗ exp{iS[x⃗]}, (1.96)

which is a straight forward generalisation from the one dimensional case, treated so far, to the
case of three dimensional configuration space.
Now we have

S[x] =

∫ tf

ti

[L0(x⃗,
dx⃗

dt
)− V (x)]dt with L0(x⃗,

dx⃗

dt
) = S0[x] + SI [x] =

m

2

(
dx

dt

)2

. (1.97)

Here S0[x] is the action functional of free particles and SI [x] the interaction part of the full action
of the problem. Now we expand the integrand of the path integral in powers of SI :

U(tf , x⃗f ; ti, x⃗i) =

∫ (tf ,x⃗f )

(ti,x⃗i)
D′3x⃗ exp{iS0[x]} × (1.98)

×
{
1− i

∫ tf

ti

dτV [x(τ)] +
(−i)2

2!

∫ tf

ti

dτ1

∫ tf

ti

dτ2V [x(τ1)]V [x(τ2)] + . . .

}
.

From this we see that the 0th approximation is given by the noninteracting time evolution kernel.
Now using the same arguments as used above when calculating the path integral for the time
ordered product of space operators we find as the first order correction

U (1)(tf , x⃗f ; ti, x⃗i) = −i

∫ tf

ti

dτ1

∫
d3y⃗U0(tf , x⃗f ; τ1, y⃗1)V (y⃗1)U0(τ1, y⃗1; ti, x⃗i). (1.99)

Herein U0 is the time evolution kernel for free particles. Since under the time integral in (1.99)
there is always ti ≤ τ1 ≤ tf , we have no problem with the definition of the used time evolution
kernels.
Before proceeding to the second approximation let us interpret the result. For this purpose we
think about the integrand under the integral in (1.99) at a fixed time τ1 . Then we can get the
intuitive idea behind the formula as follows (we have to read it from the right to the left!): first
the particle propagates as a free particle from the initial position x⃗i at time ti to the point y⃗1,
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then it is scattered by the potential at this place, and it moves again as a free particle to the end
point x⃗f at the final time tf . The integrals over the time interval and the intermediate point y⃗1
can be interpreted again as the coherent sum over all possibilities for the particle to scatter once
at the potential: This may take place at all times in the interval (ti, tf ) and at all places y⃗. This
is again consistent with our summation over paths picture of quantum mechanics introduced by
the path integral. Now we see the meaning of the kth order of the expansion is clear: This term
is in the series to take into account the possibility that the particle is scattered k times by the
potential and that this can happen at each point in space and at each time in the interval (ti, tf ).
Because of the time ordering problem when using the time evolution kernel we take a closer look
on the second order of our series expansion. Here we have to distinguish the two cases τ1 < τ2
and τ1 > τ2. This can be written with help of Heaviside’s unit step function defined as

Θ(τ) =

{
0 for τ < 0
1 for τ ≥ 0.

(1.100)

With this function we can write the second order of the series as

U (2)(tf , x⃗1; ti, x⃗2) =
(−i)2

2!

∫ tf

ti

dτ1

∫ tf

ti

dτ2 × (1.101)

×[Θ(τ1 − τ2)U0(tf , x⃗2; τ1, y⃗1)V (y⃗1)U0(τ1, y⃗1; τ2, y⃗2)V (y⃗2)U0(τ2, y⃗2; ti, x⃗2) +

+Θ(τ2 − τ1)U0(tf , x⃗2; τ2, y⃗2)V (y⃗2)U0(τ2, y⃗2; τ1, y⃗1)V (y⃗1)U0(τ1, y⃗1; ti, x⃗2)].

For convenience now we introduce the retarded time evolution kernel by:

U
(R)
0 (τ1, y⃗1; τ2, y⃗2) =

{
U0(τ1, y⃗1; τ2, y⃗2) for τ1 > τ2

0 for τ1 ≤ τ2
= Θ(τ1 − τ2)U0(τ1, y⃗1; τ2, y⃗2) (1.102)

and with this we find by interchanging the integration variables in the second integral on the
right hand side of (1.101) that both integrals are the same and can be written as one integral
with the retarded kernel which contains the time Θ-functions. This line of arguing can be done
using induction with the general kth summand of the series:

U (k)(tf , x⃗f ; ti, x⃗i) = (−i)k
∫

d4y1

∫
d4y2 . . .

∫
d4yk × (1.103)

× U
(R)
0 (tf , x⃗f ; y1)V (y⃗1)U

(R)
0 (τ1, y⃗1; y2)V (y⃗2) . . . V (y⃗k)U

(R)
0 (y1; ti, x⃗i).

Here we have introduced four-dimensional space-time variables (τk, y⃗k) which we have abbre-
viated with yk. The integrals have to be understood with the boundaries (ti, tf ) for the time
arguments of the yk and over all space for the y⃗k-components. This is the form of the Born series
for the time evolution kernel known from wave mechanics.
Now it is time to introduce the Feynman rules for this problem. They can be read off the eqs.
(1.98) and (1.103). They reflect the “history” of the particle passing the potential. For each
retarded time evolution kernel U (R)

0 (x1;x2) we draw a solid line with an arrow pointing from
x2 = (t2, x⃗2) to x1 = (t1, x⃗1), representing the direction of propagation. Each potential −iV
is drawn as a sticker with a dashed line. This sticker is connected to two directed solid lines,
i.e., an ingoing and an outgoing time evolution kernel. The potential is to take at the point
where the three lines come together. Finally one has to integrate over all inner points, also called
vertices. The propagator kernels describe the propagation of the particle between scattering

30



1.9 · Potential Scattering

��
��
��
�� ��

��
��
��

�
�
�
�

y1

(ti, ~xi)

(tf , ~xf )
(tf , ~xf )

(ti, ~xi)(ti, ~xi)

(tf , ~xf )

y1 + . . .++U(tf , ~xf ; ti, ~xi) =

y2

Figure 1.2: Diagrammatic representation of the Born series

events, and is therefore called propagator. Thus with this rules we can write the Born series
(1.98) diagrammatically in the form shown in fig. 1.2.
From this diagrams one reads off immediately that U (R)(x1;x2) fulfils the following integral
equation

U (R)(x1, x2) = U
(R)
0 (x1, x2)− i

∫
d4yU

(R)
0 (x1, y)V (y)U (R)(y, x2). (1.104)

From (1.90) and the analogous equation for the free propagator U (R)
0 (x1;x2), valid for t1 > t2,

one reads off as matching condition
(
i∂t1 +

∆1

2m

)
U

(R)
0 (x1, x2) = iδ(4)(x1 − x2), (1.105)

which leads us to the important conclusion that the free retarded propagator is the Green’s
function for the free Schrödinger equation with the appropriate bounding condition, namely

U
(R)
0 (x1;x2) ∝ Θ(t1 − t2), (1.106)

which expresses the retarded nature of the propagator and reflects the causal structure of the
Born series: At the time t there is no influence from the potential which comes from times later
than t!
Using (1.106) together with (1.104) we find that U (R), the exact propagator of the particle under
influence of the potential, is the retarded Green’s function of the Schrödinger equation with the
potential V : [

i∂t1 +
∆1

2m
− V (x⃗1)

]
U (R)(x1, x2) = iδ(4)(x1 − x2). (1.107)

This shows the particle wave dualism of quantum mechanics: The problem of scattering of a
particle at a potential V is equivalent to a scattering problem of Schrödinger’s waves. So starting
from the particle picture we ended here with the field picture of the behaviour of particles in
quantum theory. Here in the nonrelativistic case both pictures are equivalent. We will see in
the next chapter that this is not true for the relativistic case. The physical reason is simply
explained: In the nonrelativistic case there is a conservation law for the number of particles in a
closed system, but in the quantum case there is always the possibility to create pairs of particles
and antiparticles, for instance, when a particle is scattered at an external potential. The classical
analogue is known from electrodynamics, namely the effect of Bremsstrahlung, i.e., the emission
of light, when charged particles are accelerated. In the particle picture this is the creation of
photons. In the relativistic case it is thus physically not adequate to work with a Hilbert space of a
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fixed number of particles. Fortunately there is a formalism which exactly describes this situation,
namely quantum field theory. In the former days this was known as the “second quantisation”,
but this name is not consistent with our modern understanding of quantum field theory which
is nothing else than the quantum theory of particles with the possibility to describe the creation
and annihilation of particles consistent with the conservation laws.
The space-time picture is nice to get an idea of the meaning of the scattering process in the
quantum sense, but it is complicated to calculate with because of the involved time dependence
of the free propagator, shown by (1.46). It is much more simple to work in the momentum repre-
sentation. This we obtain by inserting the Fourier representation of the free retarded propagator.
This is a nice example for the application of (1.105). So we make the ansatz:

U0(x1;x2) =

∫
d3p⃗

(2π)3
exp[ip⃗(x⃗1 − x⃗2)]Ũ0(t1; t2; p⃗). (1.108)

With this (1.105) reads:
(
i∂t1 −

p⃗2

2m

)
U

(R)
0 (t1; t2; p⃗) = iδ(t1 − t2). (1.109)

The δ-function comes from the Θ function shown in the boundary condition (1.106). With this
we obtain the unique solution of the boundary value problem to be

U
(R)
0 (t1; t2; p⃗) = exp

[
−i

p⃗2

2m
(t1 − t2)

]
Θ(t1 − t2). (1.110)

The time dependence in this representation is much easier to handle with than with that of the
configuration space representation.
Now we insert the obtained results into the first order Born approximation (1.99) to find the
first order result for the S-Matrix (1.94). The somewhat lengthy but straightforward calculation
is left as an exercise for the reader.
It should be emphasised that the result after doing all space and momentum integrations can be
taken without ambiguities in the limit ti → −∞ and tf → ∞ which shows that the concept of
asymptotic states is well defined in the sense of a weak limit, i.e. it is a limit to be taken after
calculating the matrix elements.
Here we give the well known result of the first order Born approximation

S
(1)
fi =

−i

(2π)2
Ṽ (p⃗i − p⃗f )δ(Ef − Ei), (1.111)

where Ef and Ei are the energy of the outgoing and the ingoing asymptotically free particle,
respectively, i.e., Ef/i = p⃗2f/i/(2m). The δ-function reflects the fact that the energy is conserved
by the scattering process. The meaning of Ṽ is simply to be the Fourier transform of the
potential, namely

Ṽ (p⃗) =

∫
d3x⃗ exp[ip⃗x⃗]V (x⃗). (1.112)

Exercise

Calculate the first and second order result for the S-Matrix in terms of the momentum version
of U (R)

0 and V . Hint: Calculate at first U (1)(tf , x⃗f ; ti, x⃗i) and then the integrals with the initial
and final asymptotic states. You can use the result for calculation of the second order!
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Now we want to calculate the cross section for scattering at the external potential. It is defined
as the ratio of in a momentum p⃗f scattered particles per unit time and the incoming current (i.e.
number of particles per unit time and unit area).
The main difficulty is to calculate the number of particles per unit scattered in a given momen-
tum state, because for this we have to square Sfi − δfi ≈ S

(1)
fi . But this expression, given by

(1.111), contains a δ distribution. So what is the meaning of the δ distribution squared? From
a mathematical point of view there is no meaning. On the other hand this square gives the
transition probability, not the probability per time unit. So we have to go back to a finite time
interval, and take again the limit after all other calculations are done. The simple calculation
yields:

S
(1reg)
fi =

V (p⃗f − p⃗i){exp[−i(Ef − Ei)tf ]− exp[−i(Ef − Ei)ti]}
(2π)3(Ef − Ei)

. (1.113)

Taking the modulus of this expression squaring it and dividing by tf − ti gives after some
trigonometry

w
(1reg)
fi =

|V (p⃗f − p⃗i)|2
(2π)5

(
sin[(Ef − Ei)(tf − ti)/2]

(Ef − Ei)(tf − ti)/2

)2 tf − ti
2π

. (1.114)

Now we are ready to take the limit ti → −∞ and tf → ∞:

w
(1)
fi =

|V (p⃗f − p⃗i)|2
(2π)5

δ(Ef − Ei). (1.115)

We have again obtained an energy conserving δ distribution, but as before in the case of the
S-Matrix there is no ambiguity to take the weak limit at the end of the calculation.
For the definition of the cross section we need the current of incoming particles. We know from
elementary quantum mechanics that the density of particles ρ(t, x⃗) = |ψ(t, x⃗)|2, where ψ is the
asymptotic free wave function of the incoming particle, has a current defined by

j⃗(t, x⃗) =
1

2im
(ψ∗∇ψ − cc.) =

p⃗i
(2π)3m

. (1.116)

The conservation of the particle number is represented by the continuity equation

∂tρ(t, x⃗) + divj⃗(t, x⃗) = 0, (1.117)

which again shows in the integrated form, together with the validity of the Schrödinger equation,
the unitarity of time evolution.
Taking the absolute value of the current and dividing the transition probability yields the cross
section per unit momentum volume:

dσ(1)

d3p⃗f
=
m|V (p⃗f − p⃗i)|2

(2π)2|p⃗i|
δ(Ef − Ei). (1.118)

Integrating this result over all momentum lengths yields the cross section per solid angle. Here
we use δ(Ef − Ei) = m/piδ(pf − pi). The result is

dσ(1)

dΩ
=
m2|V (p⃗f − p⃗i)|2

(2π)2
with |p⃗f | = |p⃗i|. (1.119)
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Exercise

Calculate the first order Born approximation for the cross section in the cases of a Yukawa and
a Coulomb potential!

1.10 Generating functional for Vacuum Expectation Values

Now let us come back to the operator formalism of quantum mechanics for a short while. The
time evolution kernel is defined in terms of eigenvectors of the configuration space variable as

U(t1, x1; t2, x2) = ⟨t1, x1 | t2, x2 ⟩ = ⟨x1 |exp[−iH(t1 − t2)]|x2⟩ (1.120)

where |x1⟩ and |x2⟩ are eigenvectors of x at a fixed time and H is the explicitely time-independent
Hamiltonian of the system. Now let |n⟩ denote the complete set of eigenvectors of the Hamilto-
nian, i.e.,

H |n⟩ = En |n⟩ . (1.121)

Since H is hermitian these kets can be taken to be orthogonal and normalised. That means we
have

1 =
∑

n

|n⟩ ⟨n| , ⟨n |m⟩ = δnm, (1.122)

and they are time-independent since H is time-independent in the here used Heisenberg picture.
With help of (1.122) we can write the time evolution kernel in the form

U(t1, x1; t2, x2) =
∑

n

exp[−iEn(t1 − t2)]φn(x1)φ
∗
n(x2) with φn(x) = ⟨x |n⟩ . (1.123)

In quantum field theory we shall be interested in expectation values of time-ordered operator
products with respect to the ground state of the system, i.e., the energy eigenstate for the
lowest energy eigenvalue. The existence of a lower bound of the energy spectrum is necessary
for physical reasons. In the case of quantum fields this ground state has the meaning that there
are no particles around and therefore it is called the vacuum.
Now we like to show how to calculate the vacuum expectation values of time-ordered operator
products with help of the time evolution kernel by application of path integral methods. Here
we will apply the external current formalism the first time. It will lead us to the Feynman rules
for perturbation theory in a quite straightforward manner. Now let us introduce the Lagrangian

LJ = L+ xJ. (1.124)

Herein J is an external force applied to the system. We restrict the influence of this external
perturbation to a finite interval in time:

J(τ) = 0 for τ /∈ [t, t′]. (1.125)

From that we get for T < t < t′ < T ′ together with the composition rule for the time evolution
kernel

UJ(T
′, x′;T, x) =

∫
dy1dy2U(T ′, x′; t′, y1)UJ(t′, y1; t, y2)U(t, y2;T, x) (1.126)
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where UJ and U are the kernels with and without the influence of the external force respectively.
Now from (1.123) we have

U(t, y2;T, x) =
∑

n

φn(y2)φ
∗
n(x) exp[−iEn(t− T )]. (1.127)

Now if we have a Hamiltonian which is bounded from below, we can multiply the sum by
exp(−iE0T ) and analytically continue the kernel to the upper complex plane. So we obtain

lim
T→i∞

exp(−iE0T )U(t, y2;T, x) = φ0(y2)φ
∗
0(x) exp(−iE0t). (1.128)

With the same calculation for the other non perturbed kernel in (1.126) but with T ′ → −i∞ we
get the desired result

Z[J ] :=
〈
t′, 0

∣∣ t, 0
〉
J
= lim

T ′→−i∞,T→i∞
UJ(T

′, x′;T, x)
exp[−iE0(T ′ − T )]φ0(x′)φ∗

0(x)
. (1.129)

The whole discussion shows that it would have been enough to rotate the time axes clockwise with
a little angle δ. So we can take the limit in (1.129) as T → ∞ exp(−iϵ) and T ′ → −∞ exp(−iϵ).
Another way, which we shall prefer in the context of path integrals, is to introduce a small
positive definite imaginary part into the Lagrangian, for instance we take imϵx2/2.
Since for t′ → ∞ and t→ −∞ a constant factor in Z[J ] is not of interest, we take as boundary
conditions such paths for which

lim
τ→±∞

x(τ) = 0. (1.130)

This assures that the action integral along the whole time axis exists. Then we conclude from
(1.129) the path integral formula for the Z-functional:

Z[J ] = N

∫
Dx exp

[
i

∫ ∞

−∞
dt

(
L+ Jx+

imϵ

2
x2
)]

. (1.131)

At the very end of the calculation the expression is understood to be taken for ϵ → +0. The
quantum field theoretical analogue of this functional will play a crucial role in the following
calculations.

1.11 Bosons and Fermions, and what else?

Section in preparation!
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Chapter 2

Nonrelativistic Many-Particle Theory

In this chapter we sketch shortly the many particle theory for the nonrelativistic case, which
is done to show that field quantisation is nothing else than many-particle theory in Fock space
representation.

2.1 The Fock Space Representation of Quantum Mechanics

First we like to describe many-particle states with a fixed number of identical bosons or fermions.
At first we have to think about the correct Hilbert space for this problem.
Each single particle state can be spanned by generalised momentum-spin eigenstates. Since
the momentum and spin operators for different particles commute the basis kets for the many
particles are given by the tensor products of the n single particle basis states. Thus the first
guess for the Hilbert space for the many-particle states is

Hn = H ⊗ . . .⊗ H︸ ︷︷ ︸
n times

. (2.1)

Unfortunately this Hilbert space is too big if the n particles are indistinguishable. This assump-
tion is understandable if one thinks about basic quantum mechanic considerations about the
nature of particles. In classical mechanics we can label the particles by their initial positions and
momenta and then we know the position of each individual particle over there whole trajectory.
But in quantum mechanics there is no trajectory in the classical sense. Thus the only label of
particles are its intrinsic quantum numbers, as are the spin sort (0, 1/2, . . .), mass, charge num-
bers etc. Thus if we have indistinguishable particles there is no possibility to find an individual
particle along the time evolution.
In other words the multi-particle product states have to be unchanged (up to a phase which
we choose arbitrarily to be 1) under permutation of the single particle quantum numbers of a
complete compatible set of single particle observables. Thus each state in the n-particle Hilbert
space has to build a one-dimensional representation of the permutation group Sn. These are
either the trivial representation (such particles are called bosons) or the alternating representation
(such particles are called fermions). The latter representation is defined by that it just multiplies
the state with the sign of the permutation applied to the one-particle states contained in the
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Chapter 2 · Nonrelativistic Many-Particle Theory

n-particle product state. Thus we have

|q1, q2, . . . , qn⟩± =

{
1
N

∑
P∈Sn

∣∣qP (1)

〉
⊗ . . .⊗

∣∣qP (n)

〉
for bosons

1
N

∑
P∈Sn

sign(P )
∣∣qP (1)

〉
⊗ . . .⊗

∣∣qP (n)

〉
for fermions.

(2.2)

Herein qk is the complete set of single-particle quantum numbers (for instance (p⃗k, σk) with p⃗k ∈
R3, σk = −s,−s + 1, . . . , s. N is a (state dependent) normalisation constant which normalises
the states to δ-functions as usual in quantum mechanics.
Thus the correct Hilbert space for n indistinguishable particles is given by the span of all this
symmetrised or anti-symmetrised products of single particle states. In the following we denote
the bosonic or fermionic n-particle Hilbert space by H +

n or H −
n .

Now sometimes it is more convenient to describe a system of many particles without fixing
the numbers of particles contained in the system. As we shall see in the next chapter this
is necessary to describe relativistic particles consistently. The physical reason is well-known
nowadays, namely the possibility to create and annihilate particles. In the nonrelativistic theory
the particle numbers are fixed1, as we shall see later in this chapter.
The appropriate Hilbert space is given as the orthogonal sum over all n-particle bosonic or
fermionic Hilbert spaces:

H ± = H0 ⊕ H1 ⊕ H ±
2 ⊕ · · · (2.3)

This space is called the Fock space of many particle states with a non-fixed number of particles.
Clearly there is also a Hilbert space which describes the possibility that there is no particle at all.
This Hilbert space is by definition one-dimensional and this state is therefore called the vacuum.
Now we come to a nice feature of the Fock space, namely the possibility to define so called
creation operators. Both are defined as linear operators by their operation on the above given
symmetrised or anti-symmetrised product states. They map a n-particle state to a n+1-particle
state. We define these operators by

a†(q) |q1, . . . , qn⟩± = |q, q1, . . . , qn⟩± . (2.4)

Thus a†(q)2 adds one particle in the state |q⟩ to the n-particle state leading to a n+ 1-particle
state. It is therefore called a creation operator.
Now we want to calculate the hermitian conjugate of the creation operator. This is most conve-
niently done by noting that the identity operator on the Hilbert space can be written as

1 =
∞∑

n=0

1

n!

∑

q1,...qn

|q1, . . . , qn⟩± ⟨q1, . . . , qn|± . (2.5)

Multiplying this identity from the left with a†(q) we obtain by definition (2.4):

a†(q) =
∞∑

n=0

1

n!

∑

q1,...qn

|q, q1, . . . , qn⟩± ⟨q1, . . . , qn|± . (2.6)

From this we find the adjoint

a(q) =

∞∑

n=0

1

n!

∑

q1,...qn

|q1, . . . , qn⟩± ⟨q, q1, . . . , qn|± (2.7)

1This is only true for elementary particles, not for quasiparticles (like phonons in condensed matter physics).
2It is written as a†, not as a simply by convention in literature.
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and by using the fact that the states used are orthonormalised we find

a(q) |q1, . . . , an⟩± =
n∑

j=1

(±1)j−1δ(lj , l)
∣∣∣l1, . . . , l̂j , . . . , ln

〉
. (2.8)

With help of (2.8) and (2.4) we obtain the important commutator relations

[a(l),a†(k)]∓ = δ(l, k), [a(l),a(k)]∓ = 0, [a†(l),a†(k)]∓ = 0. (2.9)

Now we can write any operator in terms of creation and annihilation operators which shows that
these are a complete set of generating operators of the algebra of observables of our many body
system. To show how the prove for this works, we calculate this representation for the two most
simple cases, namely one-particle and two-particle-operators.
In the n-particle subspace of the Fock-space a one-particle operator is defined to be of the form

O(n) =

n∑

j=1

1⊗ · · · ⊗ o︸︷︷︸
jth place

⊗1 · · ·1 :=

n∑

j=1

oj . (2.10)

It is important that this operator is symmetric under all interchanges of the positions of the
one-particle operator o because otherwise one could use it to distinguish a part of the identical
particles from another part in the sample. This would contradict our understanding of identical
particles!
Further it is clear that a one-particle operator is defined on the Fock space by

O =
n∑

n=1

O(n). (2.11)

On the unsymmetrised Fock space the operator can be written as

O(n) =

n∑

j=1

∑

k,l

|k1⟩ ⊗ · · · ⊗ |kn⟩ ⟨k1| ⊗ · · · ⊗ ⟨kn|oj |l1⟩ ⊗ · · · ⊗ |ln⟩ ⟨l1| ⊗ · · · ⊗ ⟨ln| . (2.12)

Now we introduce the symmetrisers and anti-symmetrisers:

S± =
1√
n!

∑

P∈Sn

P (±)P. (2.13)

Herein we have set P (−) = σ(P ) and P (+) = 1 for P ∈ Sn. The operator P interchanges
the one-particle states of a direct product of n one-particle Hilbert space vectors given by the
permutation P ∈ Sn and is further defined on the n-particle space to be a linear operator.
Thus the symmetriser or anti-symmetriser maps the unsymmetric product space to the boson or
fermion Fock space. It is a simple exercise to show that S± is a hermitian projection operator,
i.e., (S±)2 = S± and S±† = S±. With help of this operator we can show for the operator to be
defined on the n-particle subspace of the boson or fermion Fock space by

O
(n)
± = S±O(n)S± =

n∑

j=1

∑

k,l

|k1 . . . kj . . . kn⟩± okj lj ⟨l1 . . . lj . . . ln| . (2.14)
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Here we have used the one-particle matrix elements okl = ⟨k |o| l⟩. With help of (2.4) and
summing over n we find on the whole Fock space3:

O± =
∑

kl

okla
†(k)a(l). (2.15)

This has a simple interpretation: The one-particle operator destroys a particle in state l and
creates a particle in state k. The “weight” with which this happens is given by the one-particle
matrix element okl.
We give now a very simple example for this formalism. As the one-particle basis we chose the
generalised position-spin basis |x⃗σ⟩. As a typical one-particle operator we take the momentum
of the particle. The one-particle matrix element is given by

〈
x⃗, σ

∣∣p̃
∣∣x′, σ′

〉
= −i

∂

∂x⃗
δσσ′δ(3)(x⃗− x⃗′), (2.16)

which is already known from elementary quantum mechanics. For a reason we will give in the
next section below the creation and annihilation operators for this basis will be denoted by
ψ(x⃗, σ). This operators are called field operators. We shall see that these operators can be
obtained directly by a canonical quantisation formalism for Schrödinger’s equation4.
Thus by inserting (2.16) into the general formula (2.15) we find

p̃± =

∫ ∑

σ

d3x⃗ψ†(x⃗σ)
1

i

∂

∂x⃗
ψ(x⃗, σ). (2.17)

3making use of the representation of the identity operator (2.5)
4In the ancient days of quantum mechanics this formalism was called “second quantisation”. Hereby the physi-

cist had in mind that there was the first quantisation procedure which quantised Hamiltonian classical mechanics
by making the canonical variables hermitian operators. As we try to show in this chapter this is a misleading idea
since the field quantisation is nothing else than many particle quantum mechanics for indistinguishable particles
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Canonical Field Quantisation

In the 19th century the physicists changed their point of view about the fundamental forces (as
far as they were known in these days) dramatically. Before, the paradigm of a fundamental force
law was Newton’s 1/r2 behaviour of gravitation, which was extremely successful in describing the
motion of the planets around the sun. This law was the description of an instantaneous action
at a distance. The force caused by the masses of the bodies attracting each other depends only
on the distance of these bodies in space. Changing the relative position of the bodies affects the
force without any delay in time.
On the other hand there was Maxwell’s theory of electromagnetism, which introduced a new
type of dynamical quantities into physics, namely fields. This description showed that the forces
are not acting instantaneously when the sources of this forces change their position, but the
forces need a certain time to propagate from one point in space to another. The main physical
phenomenon in this context is the propagation of waves. In the case of electromagnetic waves
that included the propagation of light, known to be a wave phenomenon a for a long time.
In this chapter we shall give an introduction to field quantisation and its meaning in terms of
the operator formalism. This will be done using the most primitive examples, namely on free
scalar particles and scalar real ϕ4-theory. For the rest of our lectures we shall use the more
convenient path integral formalism and functional methods. The main goal of this chapter is to
get an understanding of the physical meaning of field quantisation as a many-particle theory.
In the beginning we shall recapitulate some facts about the special-relativistic space-time struc-
ture in terms of the Poincaré group. Then we shall investigate the unitary representations of
this group, which are important in physics. Equipped with these fundamentals we can introduce
the action functional for fields in the Lagrangian as well as in the Hamiltonian formulation and
prove the classical part of Noether’s theorem.
Having done the classical part we can quantise the free theory.
The chapter ends with a short introduction to perturbation theory from the operator point of
view applied to ϕ4 theory.

3.1 Space and Time in Special Relativity

In 1905 Einstein wrote his famous article about “electrodynamics of moving bodies”. It was
a revolution in our knowledge about space and time. His approach to special relativity was
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to take the problems of electrodynamics and Galilean invariance seriously and to give up the
Newtonian picture of space and time. He simply postulated that on one hand the velocity of
light is independent of the velocity of the source the light comes out (which was an empirical fact
at this time) and on the other hand there is no possibility to distinguish between two coordinate
frames which are in relative motion with constant velocity. With these two postulates he could
investigate what it means to measure time and space intervals and the transformation laws from
one inertial frame to another equivalent one.
Nowadays we are in the convenient position that we have Minkowski’s famous four-dimensional
space-time geometry at hand. Together with the Ricci formalism for tensor algebra and calculus
we can formulate relativity in a straightforward mathematical manner. Space and time build
together a four-dimensional real vector space. The vectors are given by their components with
respect to a coordinate system and are denoted by xµ with the upper index running from 0 to 3.
On this space we define the Minkowski inner product as the symmetric indefinite bilinear form

xtĝy = gµνx
µyν with ĝ = (gµν) = diag(1,−1,−1,−1). (3.1)

Herein a summation over a pair of indices, one upper and one lower, is understood. The upper
index t on a column vector means the row vector with the same components (transposition of a
matrix).
The physical meaning of the components is that x0 = ct, where c is the velocity of light. In
the following we set c = 1 which is convenient in relativistic physics. The structure of space
and time and so the kinematics of special relativity is now fixed by the statement that a linear
transformation, i.e., the transformation from one inertial system to another, is defined as the set
of linear matrices acting on the column vectors (xµ) which leave the Minkowski inner product
invariant. That means that L̂ is such a transformation matrix if and only if

∀x, y ∈ R4 : (L̂x)tĝL̂y = xtĝy. (3.2)

Since this has to hold for all pairs of vectors x and y we can conclude that L̂ is an “allowed”
transformation matrix if and only if

L̂tĝL̂ = ĝ. (3.3)

All linear transformations fulfilling this restriction are called Lorentz transformations and build
a group of transformations (prove this as an exercise!). This group is called O(1, 3), i.e., the
orthogonal group with respect to an inner product with one positive and one negative eigenvalue
of its defining symmetric matrix.
Since all points in our four-dimensional space-time are indistinguishable the physical laws are
also invariant under a translation in time and space. Together with the Lorentz group these
translations build the inhomogeneous Lorentz group or the Poincaré group. The main task
addressed with our investigation of these groups is to find the mathematical structures which are
invariant under the action of this group. Fortunately there are some further restrictions on the
physical laws (like causality) which restrict the possible physically important representations of
this symmetry. Because of this it is important to know the structure of the Poincaré group quite
well.
But at first let us give a physical meaning to the Lorentz group. Since this group leaves the
Minkowski inner product invariant there are three distinct classes of vectors, namely:

• (xµ) time-like ⇔ xµx
µ > 0,
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3.1 · Space and Time in Special Relativity

• (xµ) light-like ⇔ xµx
µ = 0,

• (xµ) space-like ⇔ xµx
µ < 0.

These three classes of vectors are invariant under Lorentz transformations. They can be visualised
by using a 1 + 2-dimensional space-time (cf. Fig. 3.1)

Forward light cone

Backward lightcone

Lightlike vector

Timelike vector

Spacelike vector

Figure 3.1: 1 + 2-dimensional space-time

Now we think about the physical meaning of this space-time. It is clear that the geometry of
this space-time is different from that of the more familiar Euclidean spaces used in geometry.
The reason is, of course, the indefiniteness of the scalar product. From elementary classical
electrodynamics we know that the free plain waves are a solution of the Maxwell equations, i.e.,
the equations of motion for free electromagnetic waves (e.g. light). The propagation of the waves
is described by its phase factor which is of the form (here setting c the velocity of light):

exp(−iωt+ i⃗kx⃗) = exp(−ikx) with x0 = ct. (3.4)

The physical meaning is evidently a plane wave propagating in space along the direction of k⃗.
The Maxwell equations are solved by waves with such phase factors if k2 = 0 which leads to the
dispersion relation ω = |⃗k|/c. In our covariant language that means that a free electromagnetic
wave has a light-like four-vector as the wave vector.
Now in relativistic physics there is no causal signal or event which can travel faster than the
light. In more geometrical language this means that two events can only be causally related
if their relative four-vector is time-like. If x and y are such events this means (x − y)2 > 0.
Now we say that x has happened later than y if x0 − y0 > 0, i.e. if x − y is located within the
forward light-cone. We can say the forward (backward) light-cone defines the future relative to
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the origin. All the space-like points are such points which can happen simultaneously from the
point of view of an appropriate coordinate frame.
We shall come back now to the Lorentz transformation itself. If we have a transformation
that leaves the zero-components of four-vectors invariant, this transformation is of the form
D̂ = diag(1, d̂) where d̂ is a 3 × 3-matrix. This matrix fulfils the condition |d̂x⃗| = |x⃗| for all
three vectors x⃗. One can easily show that from this we can conclude that for all three vectors
x⃗ and y⃗ this transformation has to have the property to leave the three dimensional Euclidean
scalar product invariant: (d̂x⃗)(d̂y⃗) = x⃗y⃗. So for the matrix d̂ we have d̂td̂ = d̂d̂t = 1. Such
matrices are called orthogonal matrices. These matrices describe rotations or the composition of
a rotation and a reflection. All these matrices together build a linear group, called O(3), i.e. the
group of orthogonal transformations of the Euclidean space R3. The pure rotations are given by
orthogonal matrices with det d̂ = +1 and form a subgroup of O(3), namely the so called special
orthogonal group SO(3).
From this reasoning it follows that the whole Lorentz group has O(3) and SO(3) as subgroups.
Now we come to another subgroup. As explained above the four-dimensional space-time contains
a “causal structure”: Namely events which are causally connected are in the light-cone, i.e. its
relative vector is time-like. The direction of time is given by the sign of the zero-component of
the relative vector, namely if it is in the forward or backward light-cone. Now a physical change
of the frame, i.e. the change of the coordinate system of R4 by a Lorentz transformation, should
not change the time direction of causally connected events. Now a Lorentz transformation maps
a time-like vector to a time-like vector, because it does not change the Minkowski product. So
the time-like basis vector of the original frame e0 is mapped by the Lorentz transformation to
the time-like vector e′0 of the new frame. In order to be in the forward light-cone, defined by the
direction of e0, the applied Lorentz transformation L̂ should have a positive matrix element L0

0.
Now from (3.3) we have |L0

0| ≥ 1.
So we have L0

0 ≥ 1 for such Lorentz transformations which do not change the direction of time.
They are called orthochronous Lorentz transformations. It is clear that these transformations
build a subgroup of the whole Lorentz group called the orthochronous Lorentz group O(1, 3)↑.
This can be proved by the following intuitive argument: Since an orthochronous Lorentz trans-
formation maps all time-like vectors in the forward (backward) light-cone to time-like vectors
which remain in the same light-cone, this is also the case for compositions of such transformations
and their inverses.
From (3.3) we can also conclude that det L̂ = ±1 for all Lorentz transformations L̂. Now it is clear
that the matrices with determinant 1 form a subgroup of all linear coordinate transformations
in R4 called the special linear group SL(4,R). Since the intersection of two subgroups of a
bigger group builds again a subgroup of this group the Lorentz transformations with determinant
1 build a subgroup of the whole Lorentz group, namely the special Lorentz group SO(1, 3)
also called proper Lorentz group. With the same argument we see that also the intersection
SO(1, 3)↑ = O(1, 3)↑ ∩ SO(1, 3) is a subgroup of the whole Lorentz group. It is called the proper
orthochronous Lorentz group, which is the part of the Lorentz group, which is connected to the
identity of the group (this is shown in appendix B).
Now let us investigate what is the meaning of a transformation acting on both the time and the
space indices. For this purpose it is enough to find the general form of a transformation keeping
x2 and x3 constant. This is enough since all three space-like basis vectors are equivalent in this
context.

44



3.1 · Space and Time in Special Relativity

So we write

(Lµν) = diag(l̂, 1, 1) with l̂ =

(
a b
c d

)
. (3.5)

Now since L̂ is assumed to be in SO(1, 3) ↑ we have the following restrictions on the submatrix
l̂:

a ≥ 1, det L̂ = ad− bc = 1, a2 − c2 = 1, b2 − d2 = −1, ab− cd = 0. (3.6)

The three last conditions are derived from (3.3). The first of these together with the first
inequality we use to parameterise

a = coshλ, c = − sinhλ. (3.7)

From the last condition we conclude

b/d = c/a = − tanhλ (3.8)

and since det l̂ = 1 we have

d coshλ+ b sinhλ = 1 ⇒ d(coshλ− sinhλ tanhλ) = 1 ⇒ d = coshλ, b = − sinhλ. (3.9)

So we find finally

l̂ =

(
coshλ − sinhλ
− sinhλ coshλ

)
. (3.10)

This applied to the four-vector x gives

x′ =




x0 coshλ− x1 sinhλ
−x0 sinhλ+ x1 coshλ

x2

x3


 (3.11)

which shows that we describe the change of the frame of reference from one coordinate system
to another equivalent one which moves with constant velocity along the x1 axes relative to each
other. The origin of the primed system is given by x⃗′ = 0 and is thus moving with respect to the
other system with velocity:

v = c
x1

x0
= c tanhλ = cβ. (3.12)

Here again we set c for the velocity of light. This is an important physical conclusion of this
calculation: The relative velocity of two inertial frames can not be greater than the velocity of
light. Since we can express the hyperbolic functions with help of tanh, we have

coshλ =
1√

1− β2
, sinhλ =

β√
1− β2

. (3.13)

Inserting this into (3.12) we find the more familiar form of this physically most important sort of
proper Lorentz transformations, namely the so called Lorentz boosts. In our case we have found
the boost in 1-direction:

x′0 = ct′ =
x0 − βx1√

1− β2
, x′1 =

x1 − vt√
1− β2

. (3.14)
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In appendix B we prove the theorem that each proper orthochronous Lorentz transformation
can be obtained by composition of a boost in 1-direction and rotations in the original frame
and the boosted frame. This should not be too surprising from intuition. It shows the physical
meaning of proper orthochronous Lorentz transformations: This matrix group gives the correct
relativistic transformations from one inertial frame to another.
It is easy to show that all boosts in 1-direction form a subgroup (exercise: show this by multiply-
ing two matrices of the form (3.10) and application of the addition theorem for the hyperbolic
functions). But this is not the case for Lorentz boosts in different directions. Two boosts in
different directions applied after each other always give a proper orthochronous Lorentz trans-
formation but containing rotations in addition to a boost.
The most famous physical implication of this is the magnetic moment of the electron: In the
early days of quantum mechanics, when the physicists calculated the spin-orbit coupling in
atomic physics, they miscalculated the electromagnetic moment by a factor 1/2! The reason was
that they had to transform from the rest frame of the electron, where it was easy to calculate
the magnetic field induced by the motion of the nucleus, back to the rest frame of the nucleus.
Thomas has shown that one has to use the Lorentz transformation rather than the Galilean
transformation, even for the relatively slow motion of electrons around a nucleus in an atom.
This rather complicated calculation yields the correct result 2 for the gyro magnetic factor of the
electron (which is valid up to small radiative corrections, which we shall explain in the context
of quantum electrodynamics (QED) later). We shall obtain this result immediately from the
calculation of a relativistic electron in a homogeneous external magnetic field in lowest order
perturbation theory, a calculation much simpler than Thomas’s original one. That was the first
success in Dirac’s relativistic hole theory, the most important precursor of our today’s view of
relativistic quantum electrodynamics!

3.2 Tensors and Scalar Fields

In physics we have to look for structures which are consistent with the space-time structure chosen
to describe nature. In our case the space-time is not too complicated, since the Minkowski space
is a flat space with an indefinite metric as we have described above.
In classical physics the question, which structures are the right ones is relatively straightfor-
ward. The mathematical objects used to describe nature should have a definite behaviour un-
der Lorentz transformations (at least proper orthochronous Lorentz transformations). Since
the Lorentz transformations are linear transformations the most simple covariant quantities are
scalars, vectors, and tensors of higher rank. A tensor is defined by its components with respect to
a given coordinate system and their transformation rules under Lorentz transformations. So far
we know how to transform a vector, namely like the space-time vectors, xµ → Lµνx

ν , where we
have used the contravariant vector components (with upper indices). The covariant components
have lower indices and are defined with help of the Minkowski metric to be xµ = gµνx

ν . It is
clear that with the same matrix one can raise the indices again, now written as xµ = gµνxν with
gµν = (g−1)µν = diag(1,−1,−1,−1).
A tensor of rank k is a quantity with k indices (upper or lower) whose components transform
under Lorentz transformations like a product of vector components. It is clear that gµν is a
tensor of rank 2 which is invariant under Lorentz transformations due to their defining property
(3.3): g′µν = LµρL

ν
σg

ρσ = gµν . This property ensures that summation over an upper and an
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lower index of a tensor yields again a tensor. This operation is called the contraction of these
two indices.
The covariant vector components transform as

x′µ = gµνx
′ν = gµνΛ

ν
ρx

ρ = gµνg
ρσΛνρxσ. (3.15)

From ĝΛ̂tĝ = Λ̂−1, which follows immediately from (3.3) one finds

x′µ = xν(Λ
−1)νµ. (3.16)

By definition it is clear that the product of two tensors with ranks k and l, defined by the
products of their components, results in a tensor of rank k + l. The most simple example is the
scalar product itself. Two vectors xµ and yµ build together the tensor Tµν = xµyν of second
rank. Now the contraction of the tensor Tµµ = Tµνgµν gives the invariant Minkowski product
of the two vectors.
The next simple quantities are tensor fields, especially scalar or vector fields. They are functions
of the space variables obeying certain transformation properties. For instance, in the case of a
tensor field of second rank the transformation law under a Lorentz transformation is given by

T ′µν(x′) = LµρL
ν
σT

ρσ(x) = LµρL
ν
σT

ρσ(L−1x′) with x′µ = Lµρx
ρ. (3.17)

The analogous transformation property holds for tensors of any rank. The most simple case is
that of a tensor field of rank zero, i.e., a scalar field:

ϕ′(x′) = ϕ(x) = ϕ(L−1x′) with x′µ = Lµρx
ρ. (3.18)

Under translations all fields behave like scalar fields.
An infinitesimal translation in space and time is thus given by

ϕ′(x)− ϕ(x) = ϕ(x− δa)− ϕ(x) = −δaµ ∂

∂xµ
ϕ(x) := δaµipµϕ(x). (3.19)

ϕ′(x′) = ϕ(x) = ϕ(x′ − δa) = ϕ(x′)− δaµ
∂

∂x′µ
ϕ(x′) := δaµipµϕ(x

′). (3.20)

Hence the generators of these transformations, which are the operators of energy and momentum,
are given by

pµ = i∂µ. (3.21)

Now for a free particle energy and momentum are definite quantum numbers. So we look for
eigenstates of energy and momentum:

i∂µϕp(x) = pµϕp(x) ⇒ ϕp(x) = Np exp(−ipµx
µ). (3.22)

N is a normalisation constant which will be fixed in a convenient way when we develop the
quantum field theory.
With help of the four-momenta we can build a scalar operator m2 = pµp

µ. For a causal
propagation of the waves described by the fields the momentum p has to be time-like. So we
have m2 ≥ 0. Here we shall concentrate on the case m2 > 0. Since m2 is a scalar it commutes
with generators of Lorentz transformations as well as with energy and momentum operators.
Thus it is represented by a number in any irreducible representation of the Poincaré group. So it

47



Chapter 3 · Canonical Field Quantisation

is a definite quantum number of the system, called the mass. If we think about wave functions of
quantum mechanics this is the mass of the particles described by the wave function. The particle
at rest has an energy fulfilling the condition E2 = m2. So there are plane-wave solutions for the
free particle with a negative energy. This is a big problem we have to solve since the Hamilton
operator should be bounded from below.
Otherwise one could always find an energy state which is lower than any given other one by just
adding more particles in a negative-energy state. Then the whole system could never be stable.
We could produce as much energy as we like and could construct a perpetuum mobile of first
kind which is claimed not to exist.
We shall see that there is an elegant solution in terms of how to interpret the free-particle states
in terms of a quantum field theory. In the case of a scalar field the mass is the only intrinsic
quantity describing the particles. There can only be intrinsic degrees of freedom like electric
charge which will be defined later.
The fields with a definite mass are given by the wave equation for free particles, namely

(pµp
µ −m2)ϕ = (−□−m2)ϕ = 0 with □ = ∂µ∂

µ =
∂2

∂t2
−∆. (3.23)

This is the Klein-Gordon equation for free particles.
So a general field with definite mass and three momentum consists of a part with a positive and
one with a negative energy eigenvalue

ϕ(x) = N+ exp(−iωp⃗t+ ip⃗x⃗) +N− exp(+iωp⃗t+ ip⃗x⃗) with ωp⃗ =
√
p⃗2 +m2. (3.24)

From a physical point of view we cannot see the meaning of the negative energy states which
is a problem since in the case of interacting fields we need the complete set of plane waves to
describe the time evolution of the system. So starting with a state without negative energy parts
time evolution of interacting particles most probably will mix in such states.
The (modern) interpretation of this ambiguity is to say that there does not exist a one-particle
picture of relativistic quantum mechanics like in the case of the nonrelativistic theory in terms
of the Schrödinger equation. Nowadays we know the physical reason since in accelerators there
are produced a lot of particles. So we have to use a theory to describe these phenomena correctly
which has not a fixed number of particles. As we have seen for the nonrelativistic case, quantum
field theory fulfils exactly this idea.
Here is a short historical remark at place: In the old days of quantum mechanics relativity (at
least special relativity) was a well established theory. So it is not surprising that the physicists
started from the very beginning to seek for a relativistic generalisation of quantum mechanics as
it was formulated by Schrödinger (which was in these days thought to be the most convenient for-
mulation of quantum mechanics). Since the heuristic concept to find wave equations by assuming
a dispersion relation due to the energy momentum relation of the underlying classical mechanics
(that was known as the correspondence principle), it is easy to imagine that very quickly the
physicists found the Klein-Gordon equation. Really it was found by Schrödinger just before he
developed his nonrelativistic equation! But the problem were the negative energy eigenstates and
the fact that nobody could find a positive definite scalar product with a current-conservation
law which settles the time evolution to be unitary as is needed for conserving the probability
(i.e. the normalisation of the wave packets). So the pioneers of quantum mechanics concluded
that there is not such a simple relativistic one-particle quantum mechanics as is Schrödinger’s
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nonrelativistic one. On the other hand in these days the only known “elementary particles” were
electrons and protons both with spin 1/2 (as was known since the famous work by Goudsmit and
Uhlenbeck). So P.A.M. Dirac came to the conclusion that the correct wave equation has to take
into account the spin of the “elementary particles”. The same time he liked to solve the problem
with the negative energy states. So since the Klein Gordon equation was of second order in both
time and space derivatives and the successful Schrödinger equation had a time derivative only in
first order, he had the ingenious idea to seek a first-order relativistic equation. Since the equation
has to be covariant the space derivatives had to be of first order too. As you might guess what he
found by that intuitive reasoning was the famous Dirac equation. We shall derive it in the next
chapter by studying the systematic representation theory of the Poincaré group (first done by E.
P. Wigner in 1939). The Dirac equation indeed did solve one of the two problems, namely that
of a positive definite scalar product. But already there were the negative energy eigenstates and
they could not be omitted by the same reason as for the scalar case. But now Dirac had another
ingenious idea: Since electrons are fermions they can occupy each single-particle quantum state
with one and only one particle. So he concluded that the world we live in is given by filling all
the negative-energy states with electrons! Since there is an energy gap of 2mec

2 = 1022 MeV
no electrons of that Dirac sea can come to our positive-energy world except in cases of hard
scattering processes where one can create a pair with an electron and an in these days unknown
partner, the “anti-electron”, which was realized to have the same mass and spin as the electron
but an opposite sign of electric charge. This lead Dirac to the prediction (!) of the existence of
antiparticles.
Nowadays we have another sight of these facts, which will be given later in detail: The formalism
of quantum field theory gives us the possibility to reinterpret the negative energy states to be
antiparticles with positive energy (Feynman-Stueckelberg interpretation). Together with fixing
the ground state energy of the now bounded from below Hamiltonian to be zero there is no longer
any need for a Dirac sea occupied completely by infinitely many electrons! The advantage of this
approach comes from the fact that nowadays there are known hundred kinds of bosons: If the
Hamiltonian for them was not bounded from below all the bosons must crash into this infinitely
low energy state (at least at zero temperature) and as far as I know there would not be any chance
of stable bosons. There is another more physical reasoning against the sea interpretation also for
fermions: Since we know that our space-time is much more complicated than in special relativity
namely due to general relativity (Wheeler gave it the nice name “geometrodynamics”). This the-
ory of space and time at large scales (there are models of the whole universe like the cosmological
standard model with the big bang as the beginning) tells us that the energy-momentum tensor
of the matter and fields enters Einstein’s equations as source terms for the field of gravity. But
gravity is not a field as those we are taking into account in this course! It is nothing else than the
curvature of the four-dimensional space-time. Since the Dirac sea should give an infinitely big
energy density our universe would look completely different from our experience. From this yet
not completely formulated quantum theory of the curved space-time itself it follows that we are
on the save side with our Feynman-Stueckelberg interpretation which renormalises the vacuum of
the free theory by introducing normal-ordering which is also necessary to give the field-operator
products introduced in one of the next sections in the canonical quantisation approach a unique
meaning.
Now let us come back to the theory and the most simple case of a scalar field. It is important to
realize that the Klein Gordon equation can be formulated by an action functional in the same
way as one can formulate Newton’s point mechanics with help of an action functional. Here
we think of the fields as infinitely many dynamical degrees of freedom, labelled by x⃗. Thus the
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Lagrangian is defined as a space integral over a Lagrange density:

L(t) =

∫
d3x⃗L (ϕ, ∂µϕ). (3.25)

Exercise

To give a very intuitive idea what is meant by this, look at a spring with masses equidistantly
connected to it. This masses can move as transversal waves. Find the equation of motion of such
a system! After doing this think the masses to be smeared out over the whole spring. You will
end with a string and the wave equation for its motion. This is indeed a very intuitive picture
of what is meant by a system with infinitely many degrees of freedom!
Then the action is given by integrating (3.25) over a finite time interval (t1, t2).

S[ϕ] =

∫
d4xL (ϕ, ∂µϕ). (3.26)

In order to be invariant under Lorentz transformations the Lagrange density, in the context of
quantum field theory widely called Lagrangian, it is suffcient if it is a scalar field built by ϕ and
its gradient.
Now the equation of motion for the field is given by the stationarity condition of the action
functional. One immediately finds by applying the tools shown in appendix A that the functional
derivative and with it the stationarity condition is given by

δS

δϕ
=
∂L

∂ϕ
− ∂µ

∂L

∂(∂µϕ)
= 0. (3.27)

Now we like to find relativistically invariant equations of motion for fields which are intended to
describe particles in the same way as the Schrödinger field does for nonrelativistic particles. We
shall find that this fails and that this problem can be solved by thinking about the field equations
as operator equations of motion in the sense of a many-particle theory, described in terms of a
quantum field theory we have found in the previous chapter from the particle point of view for
the nonrelativistic case. There this was only a convenient description for a many-particle system
which could as well be formulated in an equivalent way with help of Schrödinger wave functions
for a fixed number of particles. As we shall see soon, this is not the case for the relativistic realm,
since there is always the possibility to create and annihilate pairs of particles and antiparticles.
Thus the number of a certain sort of particles is not conserved but only other quantities like the
electric charge. So in the relativistic case the Fock space of a non-definite number of particles is
not only a convenient but a physically necessary concept to describe relativistic particles!
Nevertheless at first we stay for a little moment at the classical point of view and find a covariant
equation of motion for the scalar field. In the next chapter we shall do this in a more formal and
more complete way. Here, we give a simple heuristic argument to find the free particles’ equation
of motion. This equation of motion should be derivable from a Lagrangian which is quadratic
in the field and depends only on the field and its gradient. It should also be a scalar field. Now
the only scalar one can build out of the gradient of the field is ∂µϕ∂µϕ. So a good candidate for
the Lagrangian of the free real scalar field is

L =
1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2. (3.28)
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Using (3.27) we obtain the Klein-Gordon equation for the real scalar field:

□ϕ+m2ϕ = 0 with □ = ∂µ∂µ = ∂2t −∆. (3.29)

Now we can interpret this equation with help of the meaning of the gradient operator known
from nonrelativistic quantum mechanics to be the momentum operator: pµ = i∂µ. So the Klein-
Gordon equation gives the relativistic relation between energy and momentum of a free particle,
namely E2 = p⃗2 +m2.
To find a consistent definition of physical quantities we now prove Noether’s theorem.

3.3 Noether’s Theorem (Classical Part)

As shown above, the classical field theory is defined by an action functional S[ϕ]. The physical
fields are given by the condition of stationarity of S

δS

δϕ
= 0, (3.30)

which is the equation of motion for the fields. The action functional is given as the four-
dimensional integral of the Lagrange density, which is a function of the fields ϕ and their gradients
∂µϕ:

S[ϕ] =

∫
d4xL (ϕ, ∂µϕ). (3.31)

The only constraint on the field is that it must vanish at infinity of four-dimensional space such
that S exists.
Calculating the functional derivative with help of the techniques shown in appendix A shows
that the stationarity condition (3.30) gives the Euler-Lagrange equations for the fields:

δS[ϕ]

δϕ
=
∂L

∂ϕ
− ∂µ

∂L

∂ (∂µϕ)
= 0. (3.32)

Now we look at a rather general class of symmetry transformations which are described by the
operation of a Lie group on the fields and space-time variables. The only assumption we want
to make is that the action of the group on the space-time variables is independent on the fields.
Then the operation of an infinitesimal transformation can be described by

x′µ = xµ + δxµ, ϕ′(x′) = ϕ(x) + δϕ(x). (3.33)

The field variation δϕ(x) contains the operation of global and local internal symmetries of the
fields as well as the action of the Lorentz group on the fields. Now we have to calculate the
change of the action under the change of such an operation:

δS[ϕ] =

∫
d4x′L (ϕ′, ∂′µϕ

′)−
∫

d4xL (ϕ, ∂µϕ). (3.34)

In the first integral we have to change the variables of integration to the original space-time
variables. Up to first order in δx the Jacobian of the transformation is given by

det

(
∂x′µ

∂xν

)
= det (δµν + ∂νδx

µ) = 1 + ∂µδx
µ. (3.35)
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This can be seen easily using the definition of a determinant as the sum over permutations of
matrix elements. In first order in δx only the product of the diagonal elements is important. All
other products appearing in the definition of the determinant contain at least two factors δx.
Now we have to take into account that variation and differentiation of the fields do not commute
since we are varying the space-time variables as well as the fields:

δ(∂µϕ) = ∂′µϕ
′(x′)− ∂µϕ = ∂ν(ϕ+ δϕ)

(
∂x′µ

∂xν

)−1

− ∂µϕ = ∂µ(δϕ)− (∂µδx
ν)∂νϕ. (3.36)

Taking (3.35) and (3.36) together with (3.34) we obtain after integrations by parts

δS[ϕ] =

∫
d4x

[
δS[ϕ]

δϕ(x)
δϕ+ ∂µ

(
(∂νϕ)

∂L

∂(∂µϕ)
− δµνL

)
δxν
]
= 0. (3.37)

The vanishing of the variation of the action functional for all fields (not only for solutions of
the equations of motion!) is the definition for symmetry transformations. Now the identical
vanishing of the integral for all fields can only be true if the integrand is a four-divergence.
A little calculation concerning the derivative in the second term gives

−
∫

d4x
δS[ϕ]

δϕ(x)
(∂νϕ)δx

ν . (3.38)

Now the infinitesimal operation of the group can be written in the form

δϕ(x) = τa(x, ϕ)δη
a, δxµ = −Tµa (x)δηa, (3.39)

where τ and T are bases of the Lie algebra of the group in the representation on the fields
and space-time variables respectively. The δη are real parameters independent on x and ϕ. All
together we draw the conclusion that the integrand of (3.37) has to be a four-divergence:

[
δS[ϕ]

δϕ(x)
τa +

δS[ϕ]

δϕ(x)
(∂νϕ)T

ν
a

]
δηa = −∂µjµa δηa. (3.40)

For the solutions of the field equations, i.e., such fields which fulfil the stationarity condition
(3.30) we have

∂µj
µ
a = 0 (3.41)

since the generators of the Lie group T a and τa are linearly independent.
This is Emmy Noether’s Theorem:
For each generator of a symmetry group of the action functional there exists a current jµa with
vanishing four-divergence. These currents are called the Noether currents of the symmetry.
Now we have to find the explicit expressions for the currents. That means we have to express
the vanishing of the four-divergence and the constraint on the group to be a symmetry of the
action with help of the Lagrange density rather than with help of the action functional. Using
(3.37 we find

−δηa∂µjµa = ∂µ

[(
∂νϕ

∂L

∂(∂µϕ)
− δµνL

)
δxν − ∂L

∂(∂µϕ)
δϕ

]
+ δL + L ∂µδx

µ. (3.42)

So we conclude that the group operation is a symmetry of the action, if there exists a field Ω
such that

∃Ωµa(ϕ, x) : δL + L ∂µδx
µ = −∂µΩµaδηa, (3.43)
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and then the Noether currents are given by

δηajµa = −
(
∂νϕ

∂L

∂(∂µϕ)
− δµνL

)
δxν +

∂L

∂(∂µϕ)
δϕ+Ωµaδη

a. (3.44)

Now we show that Noether’s theorem is the local formulation of a conservation law. This
can be done by integrating the vanishing four-divergence over an arbitrary four-dimensional
volume V which has a boundary ∂V built by three dimensional space-like hypersurface of the
four-dimensional space-time. Hereby a hypersurface is called space-like if all its normal vectors
are time-like. Integrating (3.41) over this volume and applying the four-dimensional version of
Gauss’s integral theorem we obtain ∫

∂V
jµadSµ = 0. (3.45)

Now a set of space-like hypersurfaces parameterised by f(x) = τ = const (with f an arbitrary
scalar field with time-like gradients) defines an invariant measure of time τ . Now we assume that
the four-volume V is bounded by the two hypersurfaces S1 : f(x) = τ1 and S2 : f(x) = τ2:

Qa(τ1) =

∫

S1

jµa dSµ =

∫

S2

jµa dSµ = Qa(τ2). (3.46)

This means that the integral over the space-like hypersurface is a quantity constant in time and
that the Qs are independent of the special choice of the space-like hypersurface. For convenience
we may use the hypersurface x0 = t in a given reference frame:

Qa =

∫
d3x⃗ j0a(x). (3.47)

The Qa are called the Noether charges of the symmetry group.
Now we look at space-time translations. The four Noether charges of this group are the total
energy and momentum of the fields. An infinitesimal translation in space and time is defined by

δϕ(x) = 0, δx = −δa = const ⇒ τa(x, ϕ) = 0, Tµa (x) = δµa , δηa = −δaa. (3.48)

It is easy to see that the symmetry condition is fulfilled with setting Ωµ ∼= 0. Then, with help of
(3.40), we obtain the corresponding Noether currents Θµ

a:

Θµ
a =

(
∂L

∂(∂µϕ)

)
∂aϕ− δµaL . (3.49)

This is the so called canonical energy momentum tensor, which has no direct physical meaning
because it is not unique as we shall show in a moment. On the other hand, the Noether charges
are unique physical quantities, namely total energy and momentum of the field system:

Pν(t) =

∫
d3x⃗Θ0

ν . (3.50)

The Noether currents can be changed with an arbitrary four-divergence without changing the
Noether charges. With the jµa defined above there are equivalent Noether currents given by

j′µa = jµa + ∂νk
νµ
a (3.51)
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Since the divergence of this currents should vanish, we just have to take the kµνa antisymmetric
with respect of µ and ν, which is a rather weak assumption.
As we shall see, in the case of electrodynamics the canonical energy-momentum tensor cannot be
interpreted as density of energy and momentum in all cases of physical interest. For instance in
electrodynamics this tensor is not gauge invariant, but we shall see that we can define a physical
energy-momentum tensor (the so called Belinfante tensor) which is gauge invariant and gives
the well-known expressions for energy and momentum density in form of the familiar Poynting
vector.
The spatial components of the physical energy-momentum tensor have the physical meaning of
a tension. This can be seen by derivation of the total momentum (3.49) with respect to time
and using its conservation. In the case of electrodynamics the space components of the physical
energy momentum tensor is Maxwell’s tensor of tension.
Now we apply Noether’s theorem to the case of Lorentz transformations. An infinitesimal Lorentz
transformation acts on the fields and space-time coordinates as follows:

δϕ(x) =
1

2
δωµν σ̂

µνϕ(x), δxµ = δωµνx
ν , (3.52)

where σ̂µν = −σ̂νµ are the six generators of the representation of the SL(2,C) which is the
covering group of the SO(1, 3). Because we have ∂µδxµ = 0 the Lorentz invariance (which means
that the Lorentz transformations are a symmetry group of the action) is the constraint on the
Lagrange density to be a scalar field (seen as a function of x). The six Noether currents are then
given by

Jρ,µν = xµΘρν − xνΘρµ − ∂L

∂(∂ρϕ)
σ̂µνϕ. (3.53)

Here it is important to anti-symmetrise the currents Jρ,µν with respect to µ and ν since δωµν

is antisymmetric. The µ and ν indices label the six Noether currents. Thus the six Noether
charges are given by

Jµν =

∫

∂V
dSρJ

ρ,µν . (3.54)

Herein V has the same meaning as in (3.45). The three space components coming from the
invariance under rotations build therefore the total angular momentum of the system. By looking
at (3.53) and the meaning of the energy-momentum tensor one sees that the angular-momentum
tensor contains an orbital and a spin part. However, in relativistic physics there is no specific
meaning to distinguish orbital and spin angular momentum. Only the total angular momentum
has a definite physical meaning.
The conservation of the three mixed temporal-spatial components of Jµν originates from the
invariance under boost transformations. So this is the relativistic analogue of the centre of mass
motion in the nonrelativistic case.
We close this section with the construction of a symmetric energy-momentum tensor. This is
important for general relativity since there the energy-momentum tensor is necessarily symmetric.
We shall see in the next chapter that in the case of electrodynamics the tensor can be chosen to
be gauge-invariant, which is important to show that energy and momentum densities are sensible
physical quantities in this case.
We start with (3.53) and the fact that it is conserved,

0 = ∂ρJ
ρ,µν = Θµν −Θνµ − ∂ρ

∂L

∂(∂ρϕ)
σ̂µνϕ, (3.55)
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which shows that the canonical energy-momentum tensor is in general not symmetric in the
indices µ and ν.
Now we make the ansatz

Θµν = Tµν + ∂ρω
ρµν , (3.56)

where ωρµν is an arbitrary tensor field which is antisymmetric in the indices ρ and µ.
We try to choose ωρµν such that Tµν is a symmetric tensor. Since it differs from the canonical
energy-momentum tensor only by a total divergence it yields the same total energy and mo-
mentum for the field configuration. The antisymmetry of ωρµν in ρ and µ makes the divergence
∂µT

µν vanish if ∂µΘµν = 0. This means Tµν is as well a representant of the energy-momentum
density as the canonical energy-momentum tensor Θµν .
Inserting this ansatz into (3.55) shows that it is consistent with setting

∂ρ (ω
ρµν − ωρνµ) = ∂ρ

[
∂L

∂(∂ρϕ)
σ̂µνϕ

]
. (3.57)

The general solution of this equation is given by

ωρµν − ωρνµ =
∂L

∂(∂ρϕ)
σ̂µνϕ+ ∂ση

σρµν := ηρµν , (3.58)

where ησρµν is an arbitrary tensor field which is antisymmetric in σ and ρ as well as in µ and ν.
It is clear that then ηρµν is antisymmetric in µ and ν.
Now using

ωρµν − ωρνµ = ηρµν , ωρµν + ωµρν = 0 (3.59)

we find that with given ηρµν (3.58) is solved uniquely by

ωρµν =
1

2
[ηρµν + ηµνρ − ηνρµ] . (3.60)

It is easy to show by an algebraic calculation that indeed ω fulfills the conditions that we derived
for it above. So we find the theorem, proven first by Belinfante in 1939 [Bel39], that we can
always find a symmetric energy-momentum tensor.
We shall see in the next chapter that by a clever choice of ησρµν which is the only freedom we
have to make the energy-momentum tensor symmetric, makes the energy-momentum tensor of
the electromagnetic field also gauge invariant.

3.4 Canonical Quantisation

Now we like to solve our problem with the particle interpretation and causality raised by the
negative energy states. For this purpose let us consider a free complex scalar field with the
Lagrangian

L = (∂µϕ)
∗(∂µϕ)−m2ϕ∗ϕ. (3.61)

Although there seems to be no solution in terms of a Schrödinger-like theory, i.e., to interpret
the ϕ-field as a one-particle wave function, we try to build a many-particle theory by quantising
the fields.
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For this purpose we need another formulation of the classical field theory, namely the Hamiltonian
one, known from point mechanics and the canonical quantisation as an approach to Dirac’s
operator formulation of quantum mechanics in terms of the algebra of observables.
This approach has the disadvantage to destroy manifest Lorentz invariance since we have to
introduce canonical momentum densities by the definition

Π =
∂L

∂(∂0ϕ)
, Π∗ =

∂L

∂(∂0ϕ∗)
. (3.62)

Now let us look at the variation of the action,

S[ϕ] =

∫
d4xL ⇒ δϕ

δS

δϕ
=

∫
d4x

[
∂L

∂ϕ
δϕ+ δ(∂tϕ)Π + (∇δϕ) ∂L

∂(∇ϕ)

]
, (3.63)

where the nabla symbol ∇ acts only on the spatial components of x. This is what is meant by
saying that the formalism is not manifestly covariant since we have now fixed the reference frame
by splitting in space and time components.
But now we can proceed in the same way as we would do in the case of point mechanics: We
introduce the Hamiltonian density

H = Π∂tϕ− L . (3.64)

Varying it with respect to the fields we find

δH = δΠ∂tϕ+Πδ∂tϕ+ cc.− δL = δΠ∂tϕ− ∂L

∂ϕ
δϕ− δ(∇ϕ) ∂L

∂(∇ϕ) + cc. (3.65)

This shows that the natural variables for H are Π, ϕ, ∇ϕ and their conjugate complex counter-
parts. The Hamiltonian is defined by

H =

∫
d3x⃗H . (3.66)

With help of (3.67) we find for the functional derivative of H, where t is to be taken as a
parameter,

δH

δϕ
=
∂H

∂ϕ
−∇ ∂H

∂(∇ϕ) ,
δH

δΠ
=

H

∂π
(3.67)

and using the definition of H together with the equations of motion (3.32), we find the Hamilton
equations of motion

∂tΠ = −δH
δϕ

, ∂tϕ =
δH

δΠ
. (3.68)

For an arbitrary observable, which is a functional of ϕ and Π and may depend explicitly on t,
we find

∂tO =

∫
d3x⃗

[
δO

δϕ(t, x⃗)

δH

δΠ(t, x⃗)
− δO

δΠ(t, x⃗)

δH

δϕ(t, x⃗)

]
+ ∂tO := {O,H}pb . (3.69)

Particularly we have the following fundamental Poisson brackets:

{ϕ(t, x⃗),Π(t, y⃗)}pb = δ3(x⃗− y⃗), {Π(t, x⃗),Π(t, y⃗)}pb = 0, {ϕ(t, x⃗), ϕ(t, y⃗)}pb = 0. (3.70)

It should be kept in mind that the Poisson brackets are only defined for functionals at one instant
of time. That means that a Poisson bracket makes only sense if the quantities entering have equal
time arguments.

56



3.4 · Canonical Quantisation

Now we can use the recipe of canonical quantisation. The fields become operators and build
together with the unit operator the algebra of observables. As we know from the nonrela-
tivistic case, we can quantise fields with help of commutators describing bosonic particles or
anti-commutators describing fermionic particles. We shall see soon that in the relativistic case,
assuming some simple physically motivated axioms, we can quantise the scalar field only in terms
of bosons. The direct translation of the Poisson bracket rules in commutation rules are the fields
in the Heisenberg picture, which we shall give capital Greek symbols. Then the canonical com-
mutation relations read

1

i
[Φ(t, x⃗),Π(t, y⃗)] = δ(3)(x⃗− y⃗),

1

i
[Φ(t, x⃗),Φ(t, y⃗)] =

1

i
[Π(t, x⃗),Π(t, y⃗)] = 0. (3.71)

The classical Lagrangian for the free case is given by (3.61). Here ϕ and ϕ∗ have to be seen to
represent two independent real field degrees of freedom. Now we like to quantise these free fields.
The first step is to define the canonical field momenta:

Π(x) =
∂L

∂[∂tϕ(x)]
= ∂tϕ

∗(x), Π∗(x) =
∂L

∂[∂tϕ∗(x)]
= ∂tϕ(x). (3.72)

The canonical non-vanishing commutation relations (3.71) for these field operators therefore read

Φ(t, x⃗)
↔
∂ tΦ

†(t, y⃗) = iδ(3)(x⃗− y⃗), (3.73)

where the symbol
↔
∂ t is defined as

f(t, x⃗)
↔
∂tg(t, y⃗) = f(t, x⃗)∂tg(t, y⃗)− [∂tf(t, x⃗)]g(t, y⃗). (3.74)

The physical field operators have to fulfill the equations of motion, i.e.

(□+m2)Φ = 0. (3.75)

In terms of a Fourier decomposition the field can be written as

ϕ(x) =

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

[A+(p⃗) exp(−iω(p⃗)t+ ip⃗x⃗) +A−(p⃗) exp(+iω(p⃗)t+ ip⃗x⃗)]

with ω(p⃗) = +
√
p⃗2 +m2,

(3.76)

where the normalisation of the fields will be explained later on. Now the second part does not
look physical since it seems to describe a particle with a time-like momentum in the negative
light-cone, i.e., a particle which moves in the “direction of the past”, which is evidently not
consistent with causality. We can reinterpret this term with by using a creation operator of
another sort of particles with help of A−(p⃗) = b†(−p⃗) and substitution of p⃗→ −p⃗ in the integral
of the “negative-frequency” piece,

ϕ(x) =

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

[
a(p⃗) exp(−ipx) + b†(p⃗) exp(ipx)

]
p0=ω(p⃗)

. (3.77)

This is the solution of the problem of negative energy states, the so called Feynman-Stueckel-
berg interpretation. This trick is made possible, because we have introduced a multi-particle
description with help of the field quantisation, where the annihilation of a negative energy state
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corresponding to the motion of the particle backward in time can be seen as the creation of a
state of positive energy moving forward in time with a momentum in the opposite direction. This
reinterpretation is not possible with c-number fields. This is the first place we see explicitely
that the relativistic quantum theory is necessarily a multi-particle theory. Now we define

φq⃗(x) =
1√

2ω(q⃗)(2π)3
exp[−iω(q⃗)t+ iq⃗x⃗]. (3.78)

A simple direct calculation shows that

i

∫
d3x⃗φ∗

q⃗(t, x⃗)
↔
∂ tΦ(t, x⃗) = a(p⃗), i

∫
d3x⃗φ∗

q⃗(t, x⃗)
↔
∂ tΦ

†(t, x⃗) = b(p⃗). (3.79)

With help of the canonical commutation relations (3.73) we find
[
a(p⃗),a†(q⃗)

]
= δ(3)(p⃗− q⃗),

[
b(p⃗),b†(q⃗)

]
= δ(3)(p⃗− q⃗). (3.80)

All other commutators between the a- and b-operators vanish. These relations show that the
free complex scalar field describes two distinct sorts of particles and that the Hilbert space,
the annihilation and creation operators operate in, is the Fock space of a- and b-particles. For
example the one-particle states are given by

|ap⃗⟩ = a†(p⃗) |0⟩ , |bp⃗⟩ = b†(p⃗) |0⟩ , (3.81)

where |0⟩ is the vacuum of the theory uniquely defined by a(p⃗) |0⟩ = b(p⃗) |0⟩ = 0 for all p⃗ ∈ R3.
We now want to calculate the total energy and momentum operators. We just remember that
due to Noether’s theorem for the classical field theory these quantities are given by

Pν =

∫
d3x⃗Θ0

ν =

∫
d3x⃗

[
∂L

∂(∂tϕ)
∂νϕ+

∂L

∂(∂tϕ∗)
∂νϕ

∗ − δ0νL

]
, (3.82)

which was obtained by using (3.49) and (3.50) from translation invariance of the action.
Now we take instead of the c-number fields their operator counterparts in a very naive way. Here
arises the problem of operator ordering since the operators multiplied at the same space-time
point do not commute. Let us start with three-momentum with just an arbitrary ordering of the
operators:

P⃗ =

∫
d3x⃗[Π(x)∇ϕ(x) +∇ϕ†(x)Π†(x)]. (3.83)

Using the plain wave representation of the field operators (3.77) we find after some algebra

P⃗ =
1

2

∫
d3p⃗ p⃗ [a†(p⃗)a(p⃗) + a(p⃗)a†(p⃗) + b†(p⃗)b(p⃗) + b(p⃗)b†(p⃗)]. (3.84)

Now na(p⃗) = a†(p⃗)a(p⃗) is the operator for the number of a-particles per momentum volume with
momentum p⃗ (and the same is true for the analogous expression for the b-particles).
Now we fix the ordering of the fields at the same space-time point by the definition that the
vacuum expectation value of the momentum should vanish, because if there is no particle the
total momentum should be zero. This cancels the infinite vacuum expectation value of the terms
with the creation operator on the right side. This is the first time we have “renormalised” a
physical quantity, namely the vacuum expectation value of the three-momentum.
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This definition of the vacuum expectation value can be defined by the prespription, just to
change the order of the creation and annihilation operators in operator products such that all
annihilation operators come to the right and all creation operators to the left. The order of the
annihilation or creation operators among themselves is not important since they commute. This
is called normal ordering and is denoted by enclosing the field operators which are intended to
be normal ordered in colons. One should keep in mind that this normal-ordering operation on
field-operator products in space-time is by no means a trivial procedure since the fields are a
sum of annihilation and creation operators in contrast to the nonrelativistic case, where we have
only annihilation operators in the mode decomposition of the field operator. So the final result
for the total momentum operator is

P̃ =

∫
d3x⃗e⃗a : Θ

0a(x) :=

∫
d3p⃗ p⃗[na(p⃗) + nb(p⃗)]. (3.85)

Herein the field operator ordering in the canonical energy-momentum tensor is well-defined with
help of the normal-ordering colons.
Applying this procedure to the zero component of the total four-momentum, which is the total
energy of the system, we find the canonically quantised Hamiltonian density which has to be
normal ordered as the momentum operator to get rid of the operator-ordering problem and to
ensure that the vacuum expectation value of the energy vanishes:

H =

∫
d3x⃗ : H :=

∫
d3p⃗ ω(p⃗)[na(p⃗) + nb(p⃗)]. (3.86)

Since the density operators are positive semi-definite, the Hamiltonian is bounded from below
(it is a positive semi-definite operator), and the vacuum state is the state with the lowest energy.
So we have found a physically sensible interpretation for the free quantised scalar field, if we
can show that this scalar field obeys the equation of motion of quantum mechanics. For this
purpose one has simply to show that the equations of motion for the Heisenberg picture leads to
the correct equations of motion for the field operators, namely

∂tϕ(x) =
1

i
[ϕ(x),H(t)] , (3.87)

which is simply proven by inserting the plain-wave expansion for the field operator (3.77) and
(3.86) by use of the commutator relations for the annihilation and creation operators.
Now we have another additional symmetry for our free-field Lagrangian (3.61). This is the
invariance under global phase transformations of the fields, given by

ϕ′(x) = exp(−ieα)ϕ(x), ϕ′∗(x) = exp(+ieα)ϕ∗(x), x′ = x with α ∈ [0, 2π]. (3.88)

This is the most simple example for an internal symmetry, i.e., a symmetry of the internal
structure of the fields which has nothing to do with the symmetries of space and time. It is
called a global internal symmetry since the transformation is the same at all space-time points,
because the transformation law is independent of space and time variables. We shall see that the
assumption of a local internal symmetry, which is called a “gauge symmetry” has far reaching
important implications for the structure of the theory. Since the standard model is a gauge
theory, these type of quantum field theories are the most successful theory in elementary particle
physics. Quantum electrodynamics, which we shall study in detail in Chapter 6 is the local gauge
theory of the here shown global phase invariance.
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Now we apply Noether’s theorem to this symmetry. At first we take the infinitesimal version of
(3.88):

δϕ = −ieδαϕ, δϕ∗ = +ieδαϕ∗, δx = 0 ⇒ δL = δd4x = 0 ⇒ Ωµ = 0. (3.89)

The conserved Noether current from this symmetry is then immediately given by (3.44):

jµ(x) = −ieϕ∗
↔
∂
µ

ϕ. (3.90)

In the case of a real field, which means ϕ∗ = ϕ this current vanishes identically. This is under-
standable since in the real field case there is no phase invariance!
The quantised version is again given a unique meaning by normal-ordering:

jµ = −ie : ϕ†(x)
↔
∂
µ

ϕ(x) : . (3.91)

The corresponding conserved quantity is given by integration over the three-dimensional space
(see eq. 3.47) and a simple calculation with use of (3.77) yields

Q =

∫
d3x⃗ j0(x) = −e

∫
d3p⃗ [na(p⃗)− nb(p⃗)] , (3.92)

which shows that the a-particles and b-particles have the same electric charge e with opposite
signs. It should be emphasised that it is alone this phase symmetry which makes this pair
of particles special, namely to be particle and the corresponding antiparticle. Without this
symmetry there would be no connection between the two independent sorts of particles we have
called a and b-particles.
At the same time this shows that the normalisation of the plain waves is chosen such that we have
the simple representation na = a†a (and analogous for the b-particles) for the density operators.
Eq. (3.92) shows that not the particle or antiparticle number are conserved for themselves, but
only the difference, the net-particle number, which we thus have reinterpreted as the charge-
quantum number.
Now we have described the most important physical symmetries and the related quantities for
the most simple case of a relativistic quantum field theory. There are more general mathematical,
but also very important topics left out. They are shown from a more general point of view in
Appendix B, which should be read at the end of this chapter. It describes systematically all
representations of the Poincaré group (more precisely we should say its covering group), which
have been found to be important in physics so far.

3.5 The Most Simple Interacting Field Theory: ϕ4

Now we have studied a lot of quantities of the free scalar field. But such fields are a little boring
since we never can observe the corresponding particles because they do not interact with any
measurement apparatus. But the developed mathematical tools are very important since we have
seen in Section 1.9 on the example of nonrelativistic potential-scattering theory that the initial
and final states are asymptotically free states fulfilling the free equations of motion. We note that
it is not possible to interpret interacting relativistic quantum fields as particles so easily since
this interpretation for the free fields rested on the plane-wave mode decomposition in terms of
creation and annihilation operators of the field operator and the definition of a vacuum state as
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the lowest-energy state. Such a decomposition is generally not possible for interacting quantum
fields. Thus, the particle interpretation of the quantum-field theoretical formalism makes only
sense in terms of aymptotically free particles.
In this Section we shall discuss the most simple interacting quantum field theory. It is not of
much importance in the sense of a real physical model but an ideal playground to learn all
important mathematical methods used for quantum field theory. We use it here as the most
convenient example to derive the Feynman rules from the operator formalism of quantum field
theory. That was first done by F. Dyson in 1949 for quantum electrodynamics [Dys49b, Dys49a].
But for this very important theory the path integral technique is much more convenient, so that
we use it in only in Chapter 6 to treat QED with many physically important examples for low
order perturbation theory. Here we use the operator technique for the much simpler case of
ϕ4-theory to learn all concepts in the operator formalism, which is quite useful when using the
path integral formalism too.
The classical ϕ4 theory is the theory of a single real scalar field with the Lagrangian

L =
1

2
(∂µϕ)(∂

µϕ)− m

2
ϕ2

︸ ︷︷ ︸
L0

− λ

4!
ϕ4. (3.93)

Herein L0 is the free Lagrangian. The ϕ4 term is called the perturbation. We now use the
interaction picture, which is defined such that the time evolution of the operators is generated
by the free Hamiltonian. Then the time evolution of the states is necessary generated by the
perturbation (see Section 1.1).
The fields, which are the set of fundamental operators generating the algebra of observables, are
now self-adjoint. In this case the antiparticles are the same as the particles. The interaction-
picture field operators obey the free field equations of motion. Thus the plane-wave decomposi-
tion in terms of annihilation and creation operators is given by

ϕ(x) =

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

[
a(p⃗) exp(−ipx) + a†(p⃗) exp(ipx)

]
p0=ω(p⃗)

. (3.94)

The free Hamiltonian and the perturbation potential are given by

H0(t) =

∫
d3x⃗ : Π(x)∂tϕ(x)− L 0 :, V(t) =

λ

4!

∫
d3x⃗ : ϕ4 : (3.95)

where we have again applied the normal-ordering description to give the local operator products
a precise meaning.
Now we want to solve the problem of finding the S-matrix elements for scattering processes. In
principle that is the same as we did for the case of potential scattering in the nonrelativistic
quantum theory.
In the remote past we think about the system as prepared in the distant past an initial state of
asymptotically free particles |i⟩ and ask for the transition amplitude to a given final state |f⟩
of also asymptotically free particles in the distant future. These states need to be connected
by a time evolution operator, which we obtain in the same manner as we did for the potential
scattering problem. In the interaction picture the state |i⟩ of the system is prepared at the time
ti → −∞ and then evolves with time due to (1.30):

|i, t⟩ = Tc exp

[
−i

∫ t

ti

dτV(τ)

]
|i, ti⟩ . (3.96)

61



Chapter 3 · Canonical Field Quantisation

For the scattering operator we find

S = Tc exp

[
−i

∫
dtV(t)

]
= Tc exp

[∫
d4x

−iλ

4!
: ϕ4(x) :

]
. (3.97)

So the unitary operator S maps the initial state from the remote past, i.e. the in-state, to the
final state in the ultimate future, i.e. to an out-state. So up to an indefinite phase factor one
obtains the S-matrix elements by “sandwiching” the S-operator with free multi-particle states
which can in turn be written as operating with creation and annihilation operators to the vacuum
state:

|i⟩ = |p⃗1p⃗2 . . . p⃗ni⟩ =
ni∏

k=1

a†(p⃗k) |0⟩ , ⟨f | =
〈
q⃗1q⃗2 . . . q⃗nf

∣∣ = ⟨0|
nf∏

k=1

a(q⃗k). (3.98)

Thus the S-matrix element for a process with ni particles with given momenta p⃗k in the initial
state scattered to the final state with nf particles with certain momenta q⃗k is given by

Sfi =

〈
0

∣∣∣∣∣∣

nf∏

j=1

a(q⃗j)S

n1∏

k=1

a†(p⃗k)

∣∣∣∣∣∣
0

〉
. (3.99)

So our problem of calculating S-matrix elements is formulated as the calculation of vacuum
expectation values. Perturbation theory is then the expansion of the S-operator given by (3.97):

S = 1+
−iλ

4!
Tc

∫
d4x1 : ϕ

4(x1) : +
1

2!

(−iλ

4!

)2

Tc

∫
d4x1d

4x2 : ϕ
4(x1) :: ϕ

4(x2) : + · · · . (3.100)

The small parameter of the expansion is the coupling constant λ.
Now the task is formulated: To calculate the S-matrix elements in perturbation theory we
need rules to evaluate vacuum expectation values of annihilation an creation operators times
time-ordered products of normal-ordered interaction operators. The final result will be the
Feynman-diagram rules. To obtain them there is some work to be done.

3.6 The LSZ Reduction Formula

The first step is to reduce the problem to that of calculating vacuum expectation values of time-
ordered products. This has been achieved by Lehmann, Symanzik and Zimmermann and is one
of the most important results of axiomatic quantum field theory [LSZ57, LSZ55]. On the one
hand it shows that the mathematical meaning of the asymptotic limits ti → −∞ and tf → ∞ is
to be seen as a so-called weak limit, which means that first one has to take vacuum expectation
values for the matrix elements and then take the limit. On the other hand it shows for practical
purposes that all is done if one can calculate the so called n-point Green’s functions of the
theory, at least in a certain approximation. Our aim is the perturbation theory for calculating
this functions. The LSZ reduction formula is deduced most easily with help of the Heisenberg
picture. From now on we denote the Heisenberg picture field operators by capital Greek letters.
The exact n-point function is defined as

iG(n)(x1, x2, . . . , xn) = ⟨0 |TcΦ(x1)Φ(x2) . . .Φ(xn)| 0⟩ . (3.101)
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3.6 · The LSZ Reduction Formula

Since in the Heisenberg picture the states are constant in time, the time evolution of the field
operators is generated by the full Hamiltonian, which means that they obey the equation of
motion

(□x +m2)Φ(x) = − λ

3!
: Φ3(x) : . (3.102)

Now we use the asymptotic condition that in the remote past and future the Heisenberg operators
become a free in-field or out-field, respectively. This means

w-lim
t→−∞

Φ(x) =
√
Zϕin(x), w-lim

t→∞
Φ(x) =

√
Zϕout(x), (3.103)

where w-lim is the symbol for the above explained weak limit and
√
Z is a normalisation constant.

Now an S-matrix element is given by (3.98-3.99). For deduction of the reduction formula it is
more convenient to reformulate it step by step out of the overlap

Sfi = ⟨q⃗1 . . . q⃗k; out | p⃗1 . . . p⃗l; in⟩ . (3.104)

Using the asymptotic condition (3.103) together with the definition of the free field wave functions
(3.78) we can write with help of (3.79):

Sfi =
〈
q⃗1 . . . q⃗k; out

∣∣∣a†in(p⃗1)
∣∣∣ p⃗2 . . . p⃗l; in

〉
=

= −iZ−1/2 lim
t→−∞

∫
d3x⃗φp⃗1(x)

↔
∂ t ⟨q⃗1 . . . q⃗k; out |Φ(x)| p⃗2 . . . p⃗l; in⟩ . (3.105)

Now we can write for an arbitrary function

lim
t→∞

f(t)− lim
t→−∞

f(t) = lim
tf/i→±∞

∫ tf

ti

dt
d

dt
f(t). (3.106)

So we find

Sfi =
〈
q⃗1 . . . ; out

∣∣∣a†out(p⃗1)
∣∣∣ p⃗2 . . . ; in

〉

︸ ︷︷ ︸
disc.

+

+ iZ−1/2

∫
d4x∂t

[
φp⃗1(x)

↔
∂ t ⟨q⃗1 . . . ; out |Φ(x)| p⃗2 . . . ; in⟩

]
. (3.107)

Here we have applied the asymptotic condition (3.103) again. The matrix element in the first
line is a δ function times a reaction with one particle less in the out state, which can be seen
immediately when we let act the out-creation operators to the out-bra as an out annihilation
operator. This is called a disconnected part. It corresponds to the situation that one particle is
not scattered in the reaction. This is not a very interesting part of the S-Matrix. So we treat
only the connected part further. For this we do the time derivatives under the integral:

Sfi = disc.+ iZ−1/2

∫
d4xφq⃗1(x)[(q

0
1)

2 + ∂2t ] ⟨q⃗1 . . . ; out |Φ(x)| p⃗2 . . . ; in⟩ . (3.108)

Now we use the on-shell condition q21 = m2 and the fact that we can integrate by parts with
respect to the spatial coordinates (which is not allowed for the time coordinates due to the non-
vanishing asymptotic boundary conditions!). With help of these manipulations we obtain the
result for the first reduction:

Sfi = disc.+ iZ−1/2

∫
d4x1φp⃗1(x1)[□x1 +m2] ⟨q⃗1 . . . ; out |Φ(x1)| p⃗2 . . . ; in⟩ . (3.109)
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The next step is done the same way as before. But now we have to be careful with the operator
ordering. As an example look at the out-state with momentum q⃗1. Since we like to act with
the corresponding in-state to the in-ket by using (3.106) again and this is given for t→ −∞ we
have to time-order the Heisenberg field operators. With this ordering we can do all calculations
we have done in the first reduction step. This calculations are repeated until there is no in-
and out-state left but the vacuum expectation value of the time-ordered Heisenberg operator
product, which is the exact n-point Green’s function defined above (3.101). The final result is

Sfi = disc.+ (iZ−1/2)n+l
∫ k∏

a=1

φ∗
q⃗a(ya)

l∏

b=1

φp⃗b(xb)
k∏

c=1

(□yc +m2)
l∏

d=1

(□xd +m2)×

× ⟨0 |TcΦ(y1) . . .Φ(yk)Φ(x1) . . .Φ(x1) . . .Φ(xl)| 0⟩︸ ︷︷ ︸
iG(k+l)(y1,...,yk,x1,...yl)

. (3.110)

This is called the LSZ reduction formula where “LSZ” stands for the physicists Lehmann,
Symanzik and Zimmermann who found this theorem when investigating the mathematical mean-
ing of the asymptotic condition [LSZ57, LSZ55]. It describes the connection between the n-point
functions (3.101) and the S-matrix elements. The formula tells us to truncate the n-point func-
tions with help of the Klein-Gordon operators and multiplying it with free wave functions φ∗ for
the out- and φ for the in- states. The name truncated Green’s functions will be explained when
we have introduced the formulation in terms of Feynman diagrams!

3.7 The Dyson-Wick Series

Now we want to describe how to calculate the Green’s functions order by order perturbation
theory. For this we need the transformation from the Heisenberg to the interaction picture and
vice versa. We shall show that the transformation from one general picture to another is given
by a common time dependent unitary operator for the states and the operators.
As shown in Section 1.1 an operator, which is not explicitly time dependent, has the time
dependence

O(j)(t) = A(j)(t, t0)O
(j)(t0)A

(j)†(t, t0). (3.111)

Herein j, running over 1 and 2, labels the two pictures which are assumed to coincide at t = t0.
So we have immediately

O(1)(t) = B(12)(t, t0)O
(2)(t)B(12)†(t, t0) with B(12) = A(1)(t, t0)A

(2)†(t, t0). (3.112)

In this way we have a unitary operator transforming the operators of the second picture to the
operators of the first one. The same argument leads to a unitary operator transforming the states
from the second to the first picture:

∣∣∣ψ(1), t
〉
= B′(12)(t, t0)

∣∣∣ψ(2), t
〉

with B′(12) = C(1)(t, t0)C
(2)†(t, t0). (3.113)

Now we have to prove that the picture transformations are the same for both the states and the
operators, i.e. we have to show that

B′(12) = B(12) ⇔ A(1)†C(1) = A(2)†C(2). (3.114)
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3.7 · The Dyson-Wick Series

So in an arbitrary picture we define

U(t, t0) = A†(t, t0)C(t, t0). (3.115)

By using (1.10) and (1.12) we have

i∂tU(t, t0) = A†H[f(t), t]A(t, t0)U(t, t0) = H[f(t0), t]U(t, t0). (3.116)

Herein f stands for a complete set of fundamental operators generating the algebra of observables.
Since by definition the pictures coincide for t = t0 the operator U obeys the same equation of
motion for all pictures and the same initial condition U(t0, t0) = 1, U is the same for all pictures,
i.e., it is a picture independent operator which proves (3.114).
We apply this to the Heisenberg and interaction picture. Since in the Heisenberg picture the
states are constant in time, we have

|Ψ, t⟩ = |Ψ⟩ ⇒ C(H)(t, t0) = 1 (3.117)

and in the interaction picture the time evolution of the states is generated by the interaction
part of the Hamiltonian:

|ψ, t⟩ = Tc

[
−i

∫ t

t0

dτV(I)(τ)

]
|ψ, t0⟩ . (3.118)

So we have for the picture transformation operator

BHI = C(H)C(I)† = C(I)† (3.119)

and
Φ(x) = C(I)†(t, t0)ϕ(x)C(I)(t, t0). (3.120)

Since the Heisenberg field operators are defined to obey the asymptotic condition, the two pictures
coincide for t0 → −∞, so we define

C(t) = C(I)(t,−∞) = Tc exp

[
−i

∫ t

−∞
dτV(I)(τ)

]
. (3.121)

Now with this relation we go into (3.101):

iG(n)(x1, x2, . . . , xn) =
〈
0
∣∣∣TcC†(t1)ϕ(x1)C(t1)C

†(t2)ϕ(x2)C(t2) · · ·C†(tn)ϕ(xn)C(tn)
∣∣∣ 0
〉
.

(3.122)
Now from the composition rule for the time evolution operator we have

iG(n)(x1, . . . , xn) =
〈
0
∣∣∣TcC†(t1)ϕ(x1)C(t1, t2)ϕ(x2)C(t2, t3) · · ·C(tn−1,tn)ϕ(xn)C(tn)

∣∣∣ 0
〉
.

(3.123)
Introducing a time instant t > max(|t1|, . . . , |tn|) we can write

iG(n)(x1, . . . , xn) =
〈
0
∣∣∣C†(t)TcC(t, t1)ϕ(x1)C(t1, t2) · · ·C(tn,−t)C(−t)

∣∣∣ 0
〉
. (3.124)

Since the Heisenberg vacuum coincides for t → −∞ with the free one and is stable under time
evolution we have

lim
t→∞

C(−t) |0⟩ = |0⟩ , lim
t→∞

C(t) |0⟩ = |0⟩ ⟨0 |S| 0⟩ , (3.125)

where the vacuum vacuum transition element is just a phase factor. Inserting these relations to
(3.124) and taking t→ ∞ we find

⟨0 |S| 0⟩ iG(n)(x1, x2, . . . , xn) =

〈
0

∣∣∣∣Tcϕ(x1)ϕ(x2) · · ·ϕ(xn) exp
[
−i

∫
dτV(I)(τ)

]∣∣∣∣ 0
〉
. (3.126)
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3.8 Wick’s Theorem

Now we obtain the perturbation series, also known as the Dyson Wick series, by expanding the
exponential in (3.126). It is a (formal) expansion in orders of interactions, i.e., in powers of
the coupling constant(s). To evaluate this in practice we prove Wick’s theorem which expresses
time-ordered products in terms of normal-ordered products and vacuum expectation values of
time-ordered products of operator pairs.
It is clear that this can be done by using the commutation relations of field operators. By use of
the plane-wave expansion (3.77) we find indeed a c-number

[ϕ(x),ϕ(y)] =

∫
d3p⃗

(2π)32ω(p⃗)
{exp[ip(y − x)]− exp[ip(x− y)]} . (3.127)

We note that it is a Lorentz-scalar function, because we can write

d3p⃗

2ω(p⃗)
= d4p Θ(p0)δ(p2 −m2). (3.128)

Obviously d4p and the “on-shell δ distribution” are Lorentz invariant. Further the support of the
δ distribution is any time-like momentum on the mass shell, p2 = m2 > 0, and thus the sign of
p0 is invariant under orthochronous Lorentz transformations. Thus we can write a time-ordered
product of interaction-picture field operators with help of the commutator functions as a sum of
normal-ordered products. Our aim is to apply this on time-ordered products as they appear in
the S-Matrix.
More precisely we can say we need the reformulation of a time-ordered operator product with
interaction operators which are composed out of local normal-ordered field operator products
coming from the interaction part of the Hamiltonian. In the case of ϕ4 theory these products
are of the form

Tcϕ(x1) · · ·ϕ(xn) : ϕ4(y1) : · · · : ϕ4(yk) : . (3.129)

This problem is solved by Wick’s theorem.
We start with the definition of the contraction of a pair of operators to be

TcUV = U•V•+ : UV : . (3.130)

The two dots at the left summand of the expression on the right hand side of the equation is
what is called a contraction of two operators. The contraction is a c-number, i.e., it is an operator
proportional to the unit operator. To prove this we split the field operator in a creation and an
annihilation part:

ϕ(x) = ϕ+(x) + ϕ−(x) (3.131)

with

ϕ+(x) =

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

a(p⃗) exp(−ipx)

∣∣∣∣∣
p0=ω(p⃗)

,

ϕ−(x) =
∫

R3

d3p⃗√
2ω(p⃗)(2π)3

a†(p⃗) exp(+ipx)

∣∣∣∣∣
p0=ω(p⃗)

.

(3.132)
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With this notation we obtain from the definition of time and normal-ordering respectively

Tcϕ(x1)ϕ(x2) =: ϕ(x1)ϕ(x2) : +Θ(t1 − t2)
[
ϕ+(x1),ϕ−(x2)

]
+

+Θ(t2 − t1)
[
ϕ+(x2),ϕ−(x1)

]
.

(3.133)

The commutators are indeed c-numbers as shown in eq. (3.127). Since the vacuum expectation
value of the normal-ordered product vanishes, a much more convenient equivalent definition is
thus

ϕ(x)•ϕ•(y) = ⟨0 |Tcϕ(x)ϕ(y)| 0⟩ = i∆F (x− y). (3.134)

The scalar function ∆F is the Feynman propagator for scalar fields and will be calculated below
in terms of its Fourier transform. Now we start with our proof of Wick’s theorem by stating a
simple lemma. Let U, V . . .X be field operators with arbitrary time arguments and Z a field
operator with a time earlier than any of the times in the former ones. Then we shall prove the
following formula

: UV · · ·XY : Z = : UV · · ·XY•Z• : + : UV · · ·X•YZ• : + · · ·
+ : U•V · · ·XYZ• : + : UV · · ·XYZ : . (3.135)

Since arbitrarily ordered products obey the distribution law of algebra we can assume without
loss of generality that all operators are pure annihilation or creation operators.
The statement is trivial, if Z is an annihilation operator since then the left hand side is a
normal-ordered product and all contractions on the right hand side vanish, so that in this case
the equation is indeed valid.
Now we assume Z to be a creation operator. Since one can change the order of the operators
under the normal-ordering sign without changing the meaning we assume that U · · ·Y is normal-
ordered. Now it is trivial to multiply the product from the right with an arbitrary number of
creation operators without changing the normal-ordering on both sides of the equation. So
we can assume that all operators except Z are annihilation operators. Then we have just to
interchange Z until it comes to the very left of the product to obtain the normal-ordering of the
whole product. The commutators are identical with the contractions, because it is assumed that
Z is a time argument less than all other time arguments in the product, and the annihilation
operators commute and are thus normal-ordered. So the lemma is proved.
Now we are ready for proving Wick’s theorem: A time-ordered product of field operators with
different time arguments can be transformed into a sum of normal-ordered products multiplied
with c-number contractions as follows:

TcUV · · ·XYZ = : UV · · ·XYZ :︸ ︷︷ ︸
normal-ordered product without contractions
+ : U•V•W · · ·XYZ : + : U•VW• · · ·XYZ : · · ·︸ ︷︷ ︸

sum of all normal-ordered products together with one contraction

+
...

+ U•V••W••• · · ·X•••Y••Z• + · · ·︸ ︷︷ ︸
sum over all possible total contracted operator pairs

.

(3.136)
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It is clear that in the case that we have a product with an odd number of operators in the last
line there is just one operator left, in the case of an even number of operators the last line is the
product of contracted pairs, which is a c-number.
The proof of the theorem is not difficult and as the reader may have guessed is done by induction.
There is indeed nothing to prove if there is just one field operator in the game. It is clear that
for two operators the formula is identical with the definition of the contraction of an operator
pair (3.130). So suppose the theorem is true for a product with k operators. Now we multiply
the formula from the right with an operator Ω with a time earlier than all the times in the other
operators. Then the left hand side stays time-ordered, and on the right hand side one can apply
the lemma proved above. The result is evidently Wick’s theorem for (k + 1) operators.
If Ω has not the most early time argument of all operators, just take the operator with the earliest
time out of the product and apply Wick’s theorem to the k remaining operators. Then when
multiplying with the out-taken operator from the right, which has now the earliest time argument,
the argument given above holds showing that Wick’s theorem for time-ordered products of field
operators with different time arguments hold.
Now it is easy to see that Wick’s theorem holds for products containing normal-ordered local
products of field operators. Due to normal-ordering one does not have to contract normal-ordered
operators, because such contractions vanish.
One should realize that nothing will change in the case of fermionic field operators if we include
the following sign conventions to the time and normal-ordering and to contractions: The time
and normal-ordering of a given field operator products includes the sign of the permutation
needed to reorder the operators into the corresponding sequence of the ordering prescription. In
the case of contractions one has to multiply by the sign needed to bring the field operators in
the contracted pairs together. The order of the two operators in the pair is the same as in the
original product as it is understood above for the bosonic case too.

3.9 The Feynman Diagrams

Now we have all the techniques in our hands to evaluate the perturbation series for the n point
Green’s functions. But as one can imagine this is not an easy task even for the here discussed
vacuum theory, where we have to take vacuum expectation values of time-ordered products.
There remain only the totally contracted parts of the right hand side of Wick’s theorem (vacuum
expectation values of an odd number of fields is always vanishing). Fortunately there is a very
nice tool at hand, namely the Feynman diagrams. These give not only a systematic technique
for calculating the perturbation series but also very suggestive physical pictures of the scattering
processes. We have explained this interpretation in the case of non-relativistic potential scattering
in Section 1.9.
To derive the diagram rules we start with the expression (3.126) and expand the exponential
inserting the ϕ4 interaction, V(I)(t) =

∫
d4x : ϕ4(x) :

iG(n)(x1, . . . , xn) ⟨0 |S| 0⟩

=

〈
0

∣∣∣∣∣Tcϕ(x1) · · ·ϕ(xn)
∞∑

k=0

1

k!

(−iλ

4!

)k ∫
d4y1 · · · d4yk : ϕ4(y1) : · · · : ϕ4(yk) :

∣∣∣∣∣ 0
〉
.

(3.137)
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Now we apply Wick’s theorem (3.136). In our case of vacuum quantum field theory we have
to sum over all fully contracted expressions leaving out those which contain contractions over
normal-ordered operator pairs. Although this can be done for low orders by hand, it is a quite
complicated combinatorial business. he finding of all contractions of a given order for the n-point
Green’s function can be systemised with help of the diagrammatic rules invented by Feynman
[Fey49] for QED (before Dyson’s field theoretical derivation). In this chapter we want to find
the rules for ϕ4-theory.
Each interaction contains four normal-ordered field operators. The diagrammatic element, which
describes this, is a so-called vertex, drawn as a point representing the space-time variables en-
tering the normal-ordered field operators with four legs standing for the field factors contained
in the interaction. A contraction is depicted as the link between two space-time points. The

y
x

Figure 3.2: Diagrammatic elements for ϕ4-theory. The vertex contains an inner space-time point
entered by four legs representing the four fields in the interaction. An outer point is attached to
one leg representing the field operator with this external point as its argument.

contraction of two operators at the same space-time point, a so called tadpole diagram, makes the
whole expression to vanish, because it represents the contraction of two field operators coming
from one interaction term of the Hamiltonian and these are normal ordered by definition.
Now we can give the Feynman rules in the space-time representation.
For calculating the contributions of the Dyson Wick series to the n-point function

G(n)(x1, . . . , xn) ⟨0 |S| 0⟩ (3.138)

of kth order draw all topologically distinct diagrams with n external space-time points x1, . . . , xn
containing k vertices with inner space-time points y1, . . . , yk.
To find the analytical expression depicted by a certain diagram

1. Write down a factor −iλ/4! for each vertex.

2. Link the legs of the vertices and external field operators together to obtain the given
diagram. At the same time count the number of ways you can do this. Hereby the factor
1/k! in the series is cancelled by the permutations of the vertices. So one can count the
possible links to obtain the desired diagram with fixed vertices. Multiply the whole diagram
with this number.

3. For each line connecting two space-time points (internal or external) multiply with a free
Feynman propagator

iDF (x1 − x2) = ⟨0 |Tcϕ(x1)ϕ(x2)| 0⟩ . (3.139)

4. Integrate over all internal space-time points.

Now we have a nice tool for calculating the n-point functions in perturbation theory. Before we
give examples for this we have to find out what is about the vacuum to vacuum transition factor.
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This is given by

⟨0 |S| 0⟩ =
∞∑

j=0

1

j!

∫
d4y1 · · · d4yj

〈
0
∣∣Tc : ϕ4(y1) : · · · : ϕ4(yj) :

∣∣ 0
〉
. (3.140)

In diagrammatic language this is the sum over all diagrams without external points, the closed
diagrams. One has to take into account that in this case the 1/j! is not cancelled completely.
Thus one has to count the possibilities of pairing the fields to contract them without fixing the
vertices. It comes out that there is always a factor 1/j left compared to diagrams with external
points.
Now we define diagrams of the first class to be such which do not contain any vacuum subdiagram.
A vacuum subdiagram is a diagram which does not contain at least one of the external points.
Now we can write the kth-order term of the Dyson Wick series as the sum over all first class
diagrams times the vacuum subdiagrams with together k vertices. The result is

iG(n)(x1, x2, . . . , xn) ⟨0 |S| 0⟩ =
∞∑

k=0

1

k!

k∑

j=0

(
k

j

)
×

×
〈
0

∣∣∣∣∣Tcϕ(x1) · · ·ϕ(xn)
∫

d4y1 · · · d4yj
(−iλ

4!

)j
: ϕ4(y1) : · · · : ϕ4(yj) :

∣∣∣∣∣ 0
〉(1)

×
〈
0

∣∣∣∣∣Tc
∫

d4y1 · · · d4yk
(−iλ

4!

)k−j
: ϕ4(yj+1) : · · · : ϕ4(yk) :

∣∣∣∣∣ 0
〉
.

(3.141)

The binomial is the combinatorial number of possibilities to pick j interaction factors out of k
connected with external points, denoted by ⟨· · ·⟩(1). Now we interchange the order of the two
summations

iG(n)(x1, x2, . . . , xn) ⟨0 |S| 0⟩ =
∞∑

j=0

1

j!

∞∑

k=j

1

(k − j)!

〈
0

∣∣∣∣∣Tc
∫

d4yj+1 · · · d4yk
(−iλ

4!

)k−j
: ϕ4(yj+1) : · · · : ϕ4(yk) :

∣∣∣∣∣ 0
〉

×
〈
0

∣∣∣∣∣Tcϕ(x1) · · ·ϕ(xn)
∫

d4y1 · · · d4yj
(−iλ

4!

)j
: ϕ4(y1) : · · · : ϕ4(yj) :

∣∣∣∣∣ 0
〉(1)

.

(3.142)

Now substituting k′ = k − j in the inner sum and renaming the integration variables of the
vacuum to vacuum diagrams one sees that this expression factorises such that the vacuum to
vacuum expectation value on the left side of the equation can be cancelled:

iG(n)(x1, x2, . . . , xn) =
∞∑

j=0

1

j!

×
〈
0

∣∣∣∣∣Tcϕ(x1) · · ·ϕ(xn)
∫

d4y1 · · · d4yj
(−iλ

4!

)j
: ϕ4(y1) : · · · : ϕ4(yj) :

∣∣∣∣∣ 0
〉(1)

.

(3.143)

So one has only to sum over all diagrams, connected and disconnected, where all sub-diagrams
are connected to at least one external point. From Wick’s theorem we know that only G(n) with
n even are different from 0.

70



3.9 · The Feynman Diagrams

To complete the Feynman rules, we only have to calculate the Feynman propagator (3.139).
With help of the unit-step function we can rewrite it as

iDf (x1 − x2) = Θ(t1 − t2) ⟨0 |ϕ(x1)ϕ(x2)| 0⟩+Θ(t2 − t1) ⟨0 |ϕ(x2)ϕ(x1)| 0⟩ . (3.144)

Using (3.94) we find after a little calculation

iDF (x1 − x2) =

∫
d3k⃗

2ω(k⃗)(2π)3
{exp[−ik(x1 − x2)]Θ(t1 − t2) +

+ Θ(t2 − t1) exp[−ik(x2 − x1)]}k0=ω(k⃗). (3.145)

Now it is easy to show with help of the residue theorem that we can write this as

iDF (x1 − x2) = i

∫
d4k

(2π)4
exp[−ik(x1 − x2)]

k2 −m2 + iϵ
. (3.146)

For this purpose one has to close the path of the p0 integration running along the real axes with
an infinite half circle in the upper plane for t1 < t2 or in the lower half plane for t2 < t1 (the half
circles are then negligible because the contribution coming from them is exponentially damped).
This is depicted in figure 3.3.

ω(~p)− iǫ

−ω(~p) + iǫ

Re p0

Im p0

Figure 3.3: The p0-plane for the evaluation of the Fourier integral (3.146). The poles of the
integrand are shown. The path of integration is to be closed in the upper half plane for t1 < t2
and in the lower one for t2 < t1. In this way the iϵ-description in the p0 plane gives the correct
causal boundary conditions for the Feynman propagator which is defined by the time ordering
of the field operators, i.e., the Θ-functions in (3.145).

This Fourier representation for the Feynman propagator shows that it is a Lorentz-scalar translation-
invariant field. Its explicit form in space-time representation is involved and not needed further
on, since we shall now derive the Feynman rules in four-momentum representation. For this
purpose we introduce the Fourier transform of the n-point Green’s function as

G(n)(x1, . . . , xn) =

∫
d4p1
(2π)4

· · · d
4pn

(2π)4
exp


i

n∑

j=1

pjxj


 G̃(n)(p1, . . . , pn). (3.147)

Because of four-momentum conservation, i.e., space-time translation invariance, there is an
energy-momentum conserving δ-function contained in G̃:

G̃(n)(p1, . . . , pn) = (2π)4δ(4)(p1 + · · ·+ pn)G
(n)(p1, . . . , pn). (3.148)
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We have used the same symbol G(n) for both the space-time as well as for the momentum
representation of the n-point Green’s function. There is no danger to mix these functions up
since it is clear from the context and by assigning the arguments which one is meant.
Putting in this definition to the Feynman rules, writing all Feynman propagators in the Fourier
representation (3.146) one realises that the integration over the internal vertex point yj gives a
factor ∫

d4yj exp(−iyjqj) = (2π)4δ(4)(qj), (3.149)

where qj is the sum of all momenta flowing into the vertex. These momenta can come from
propagators (in which case one has to integrate over them) as well as from the external momenta
flowing into the whole diagram. All the integrations over the external xk yield momentum
space propagators for the external lines, containing the over-all energy-momentum conserving δ
distribution as given in (3.147) at any order of perturbation theory separately.
Now we write down the Feynman rules in momentum space. The diagrams are the same as
in the space-time representation. Each vertex stands for −iλ/4!. Each propagator line carries
an internal momentum kj or an external momentum pj and represents a factor iDF (kj) =
i/(p2 −m2 + iϵ). The calculation of the symmetry factor for the diagram is the same as in the
space-time representation.
For calculating the G(n)(p1, . . . , pn) the incoming momenta have to be conserved, which means
p1 + · · · + pn = 0. Further on one has to fulfill momentum conservation at each vertex. Then
there is just to integrate over the internal momenta with

∫
d4k/(2π)4 which are not yet fixed by

momentum conservation. They are all related with closed loops within the Feynman diagram.
As the most simple nontrivial example let us give the expression for the diagram shown in figure
3.4 which is a second order two loop contribution to the two point function:

iG
(2)
2 (p,−p) =

(−iλ

4!

)2

· 4 · 4!
∫

d4k1
(2π)4

d4k2
(2π)4

i

k21 −m2 + iϵ

i

k22 −m2 + iϵ
×

× i

(k1 + k2 + p)2 −m2 + iϵ

(
i

p2 −m2 + iϵ

)2

. (3.150)

k1

k2 −pp

k1 + k2 + p

Figure 3.4: second order two-loop Contribution to the 2-point Green’s function in ϕ4 theory.

Here for the first time we encounter a very serious problem which made quantum field theory look
pretty obscure to the physicists for many years. The integral given in (3.150) is divergent from
integrating over all R4 for both loop momenta, k1 and k2. The divergence orginates from the
high-momentum region. This can be seen by a simple power-counting argument: The integrand
is of order k−4

1 and the four-volume element is of order k31, so that the already the k1-integral
alone, keeping k2 fixed for this consideration, is logarithmically divergent. The experience shows
that the most diagrams with loops are divergent for high momenta. This is known as ultraviolet
divergence or UV divergence. If there are particles with zero masses there are also infrared
divergences or IR-divergences, i.e., divergences for small momenta.
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On the other hand we have seen that there is the problem of normalisation in the LSZ reduction
formalism. We shall see in Chapter 5, how to get rid of the divergent integrals and solve the
normalisation problem in the reduction formula. Here we just give the idea of this so called
renormalisation program of quantum field theory: The first step is to find a way to make the
integrals finite in a way which keeps the symmetries of the procedure unchanged. This is called
the regularisation. The regularised integrals of the theory contain a parameter (for instance ϵ),
where the physical case is given for some limit of this parameter (e.g. ϵ → 0). In this limit the
results are divergent.
On the other hand there is a certain class of quantum field theories, called renormalisable which
can be made finite by assuming that the parameters entering the Lagrangian (like masses, cou-
pling constants, wave function normalisation factors etc.) are not the physical observed quantities
but the so-called bare quantities. Since we do not observe free particles but the fully interacting
ones, we can never see the bare parameters but only the physical ones. A theory is now called
renormalisable if one has a finite set of conditions on the n-point Green’s functions defining the
physical parameters of the theory at certain points in momentum space, and these conditions
can be fulfilled by adding counter terms to the Lagrangian which are of the same form as the
given ones, making the theory finite for ϵ → 0. Then the infinities are absorbed by the bare
quantities which cannot be observed. The physical parameters are to be found by fitting to
observed measurements like cross sections, and at the end all quantities have to be expressed in
terms of these finite physical parameters.
Although this concept does not look very convincing at the first glance it is very successful in
describing the subatomic world. The most precise single theory is QED, which predicts quantities
like the anomalous magnetic moment of the electron or the radiative corrections to the energy
levels of the Hydrogen atom (the so-called Lamb shift) with a phantastic precision of several
significant digits.
Also our theoretical picture about “elementary particles”, i.e., the Standard model of elementary
particles is a quantum field theory (more precisely a gauge theory) where there is up to now no
experimental result which is against this theory. To the contrary, the standard model proves to
describe all data at any available bombarding energy of leptons and protons to an astonishing
high accuracy, including the radiative corrections of the electroweak interaction. As I edit these
notes (November 2012), all the particles and their properties predicted by consistency arguments
of the theory, are found (except of the famous Higgs boson, for which however very strong
evidences have just been found at the Large Hadron Collider (LHC) at CERN very recently).
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Chapter 4

Relativistic Quantum Fields

In this chapter we shall exploit the work we have done in appendix B and use it to construct the
quantum field theory for fields of higher spin. In chapter 3 we have treated from a more physical
point of view the scalar field. From this we learnt the concepts we try to extend to the more
general case. These concepts can be summarised in the following axioms

1. A system consisting of elementary particles can be described by local quantum fields.
The Hilbert space is given as the Fock space with asymptotic one particle states building
a irreducible representation of the universal covering group of the proper orthochronous
Poincaré group P↑

+.

2. The Hamiltonian of the system is bounded from below, and it exists a normalisable ground
state. This is called “the vacuum” further on and denoted by |0⟩.

3. Let O1(x) and O2(x) operators, which represent local observables (e.g. energy-momentum
density, charge density etc.). Then they commute at space-like separated points, i.e.

[O1(x),O2(y)] = 0 for (x− y)2 < 0. (4.1)

This assumption is called the microcausality condition.

4. The Hamiltonian can be formulated as an integral over a normal-ordered Hamiltonian
density H (x).

At first we shall construct the representation spaces of P↑
+ in terms of one-particle configuration

space wave functions with spins ≤ 1. These will be formulated as appropriate c-number fields
which are restricted to the representation states by deriving certain equations of motion and
constraints. It will come out that we can find in this way the free particle wave functions which
can be also described with help of a Lagrangian density.
After this we are using the method of canonical field quantisation to construct the Fock space
of states. It is well known that there are problems with quantising fields with constraints, such
that it is more convenient to use formal path integral and functional methods for quantising this
kind of theories.
The first part of the the chapter has the aim to prove the two most general theorems of local
relativistic quantum field theory namely the connection between spin and statistics, i.e., the fact
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that particles with half-integer spins are fermions and particles with integer spins are bosons,
and the CPT theorem which tells us that a theory with the above mentioned features has to
be also invariant under the transformations which simultaneously reflects space and time and
interchanges particles with their corresponding antiparticles.
It should be emphasised that both theorems are connected only in the way that the CPT
needs the assumption that fields building a tensor representation of SO(1, 3)↑ are quantised as
bosons and such which build a “half integer” representation of the covering group SL(2,C) are
quantised as fermions. This assumption for the proof of the CPT theorem is consistent with the
spin-statistics theorem while the latter is logically independent from the former.

4.1 Causal Massive Fields

In appendix B we have constructed the one particle irreducible Hilbert spaces which are consistent
with relativistic invariance. This means that these spaces build irreducible representations of the
proper orthochronous Poincaré group.
Now we want to find the configuration space representation of these Hilbert spaces, i.e. the
representation in L2 with the functions defining the free fields.
At first we have to find the momentum eigenfunctions with definite mass and spin which build a
complete set for the given irreducible Hilbert space. The momentum operators are immediately
found by the fact that they generate translations:

ϕ′σ(x
′) = ϕσ(x), x

′ = x+ δx⇒ pµ = i∂µ. (4.2)

From this we have the eigenstate of p in H (m, s,+)

ϕpσ(x) = N exp(−ipx)uσ(p). (4.3)

The fact that p2 = m2 is described in configuration space by the field equation

p2ϕpσ(x) = m2ϕpσ(x) ⇒ (□+m2)ϕpσ(x) = 0. (4.4)

Thus we have the simple result that each field component has to obey the Klein-Gordon equation
we have found by the same (but a little bit more hand-waving presented argument in chapter
3 for the scalar field which is of course a special case included here as the L2-representation for
H (m, s = 0,±).
Since we are in the space with positive energy the momenta fulfil the on-shell condition in the
form

p0 = +
√
m2 + p⃗2 := ω(p⃗). (4.5)

The transformation law under Lorentz transformations is given with help of the representation
D(s) of the SU(2) which is the little group of the standard momentum p0 = (m, 0, 0, 0) (see
appendix B):

U(L̂)ϕpσ(x) = D
(s)
σσ′ [K̂(L̂, p)]ϕpσ′(L̂−1x). (4.6)

In our space with definite mass m we have

ϕpσ(x)
↔
□ϕp′σ′(x) = ∂µϕpσ

↔
∂µϕp′σ′(x) = 0. (4.7)
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As discussed in connection with Noether’s theorem in chapter 3 we know that this implies that

Fσσ′(p, p′) =
∫

d3x⃗N∗(p′)N(p)u∗σ′(p′)uσ(p) exp[iω(p⃗′)− ip⃗x⃗]
↔
∂t exp[−iω(p⃗) + ip⃗x] =

= −(2π)3i2ω(p⃗)u′σ(p⃗)
∗uσ(p⃗)|N(p)|2δ(3)(p⃗− p⃗′)

(4.8)

is a SO(1, 3)↑-invariant quantity. Since it is positive definite, it is the invariant scalar product
on the Hilbert space H (m, s,+). The same is true with an additional sign for the corresponding
space with negative energy H (m, s,+). As in nonrelativistic quantum theory N(p) is defined
up to an unimportant phase factor by the assumption that the generalised energy-momentum
eigen-solutions are normalised to a δ function in the continuous independent quantum numbers
p⃗ and a Kronecker-δ with respect to the discrete spin projection quantum numbers σ.
Since we have treated the scalar fields in a more intuitive way in chapter 3 we can go further
and apply our representation theory on the fields with s ≥ 1/2. The reader is invited to do the
scalar case in our more systematic way as a simple exercise!

4.1.1 Massive Vector Fields

We start with s = 1 since this is the most simple case besides the scalar field to get the idea of
the whole story.
But it is clear from our discussion that all types of fields can be built as field products of
spinors since all representations are given by tensor products of spinors (eventually reduced to
its irreducible parts). This makes it possible to restrict the rest of the chapter to the spin-1/2
Dirac fields explained below without loss of generality in respect to the transformation properties
of the fields under the Poincaré groups.
But now we treat first the case of H (m, 1,+). The standard momentum for the little group is
again chosen to be p0 = (m, 0, 0, 0)t. The little group is the s = 1 representation of SU(2) which
is equivalent to the fundamental SO(3)-representation for the rotation group. We will use this
representation.
We shall not apply the complicated method of constructing the representation out of the little
group representation. For p0, i.e., if the particle is at rest we define uk(p0) = ek. Then the
operation of the little group on the field for this p0 is given by the rotations which leave the 0-
component invariant. For the general case of arbitrary on shell momenta the polarisation vectors
uk can be determined by puk(p) = pµu

µ
k = 0. Thus these are three space-like vectors transverse

to the four-momentum.
In configuration space the fields are thus determined by the on-shell condition and the transver-
sality constraint

−□Aµ = m2Aµ, ∂µA
µ = 0. (4.9)

The scalar product is given with help of (4.8) together with the space-like character of the uk
〈
A1
ν

∣∣A2
µ

〉
= −i

∫
d3x⃗A(1)∗

ν

↔
∂ 0A

(2)
ν . (4.10)

4.1.2 Massive Spin-1/2 Fields

We start to describe Dirac spinors which are defined in the direct sum (1/2, 0)⊕(0, 1/2) of the two
fundamental SL(2,C) representations. This are the most often needed spinor fields and the Weyl
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spinor fields can be obtained by restriction of the field on one summand of this representation.
In appendix B it is shown that we can look on this as the irreducible representation space for
the O(1, 3)↑ which contains the parity operator but this topic is treated in a later section in
this chapter. In this section we concentrate on the fields itself and develop a rather convenient
notation for calculations with spinors.
Since the space of Dirac spinors is given by the direct sum of SL(2,C) representations the Dirac
spinors are four-component quantities of the following form

ψ =

(
ξα

ηβ̇

)
, α, β ∈ {1, 2} (4.11)

where ξα and ηβ̇ are Weyl spinors of the two different kinds which are explained in detail in
appendix B.1. Here we just note how to raise and lower indices of the Weyl spinors

ξα = ϵαβξ
β, ηα̇ = ϵα̇β̇η

β̇, ξβ = ϵαβξα, η
β̇ = ϵα̇β̇ηα̇, (4.12)

where ϵαβ is the skew symmetric symbol in two dimensions:

(ϵαβ) = (ϵαβ) =

(
0 1
−1 0

)
. (4.13)

In appendix B we have also shown how to represent a four vector as mixed second rank spinor.
Now we want formulate this with help of the Pauli matrices. Let p a four-vector. Then the
unique mapping to a mixed second rank spinor is given as

(pαβ̇) =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
= p01 + σ⃗p⃗. (4.14)

Herein σ⃗ are the generators of SU(2), i.e., the three linearly independent 2×2 hermitian traceless
matrices, given here in the standard form where σ3 is diagonal. These matrices are known as
the Pauli-matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.15)

With help of (4.12) we find
(pαβ̇) = ϵ(pαβ̇)ϵt = p01− p⃗σ⃗. (4.16)

Now the action of the momenta on the dotted and undotted Weyl spinors is given by

pαβ̇ηβ̇, pβ̇αξ
α (4.17)

respectively. Together with (4.14) and (4.16) this reads for acting on the Dirac spinor (4.11) in
matrix representation

pµγ
µ =

(
0 p01 + p⃗σ⃗

p01− p⃗σ⃗ 0

)
. (4.18)

Herein the left hand side is a formal Minkowski product of the four-vector p with the 4 × 4
matrices (operating on the Dirac spinors) γµ. These are given by

γ0 =

(
0 1
1 0

)
, γm =

(
0 −σm
σm 0

)
. (4.19)
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One proves immediately by direct calculation the anti commutator relations of the γ-matrices:

{γµ, γν} = 2gµν . (4.20)

This is known in mathematics as the Clifford algebra of R(1,3). With help of this we find

/p
2 =

1

2
pµpν {γµ, γν} = p2, (4.21)

where we have used the Feynman slash /p = pµγ
µ for convenience. Since we have /p2 = p2 we

obtain an invariant equation for projecting the spinors to H (m, 1/2,±):

i/∂Ψ = mΨ, (4.22)

where we have set the phase factor of the energy-momentum eigenfunctions to be exp(±ipx) for
Ψ ∈ H (m, 1/2,±) which is convenient for the Feynman-Stueckelberg formalism when quantising
the theory.
This is the Dirac equation. Taking energy-momentum eigen-solutions of this equation for the
standard vectors p0 = (±m, 0, 0, 0)t for the positive and negative energy eigenvalues respectively
we obtain the coefficient functions

u+(p0, 1/2) = N




1
0
1
0


 , u+(p0,−1/2) = N




0
1
0
1


 ,

u−(p0, 1/2) = N




−1
0
1
0


 , u−(p0,−1/2) = N




0
1
0
−1


 .

(4.23)

Here we have introduced the notation u±(p, σ) which will be used from now on, with p the energy-
momentum eigenvector fulfilling the on-shell condition in the form p0 = ±ω(p⃗ and σ = ±1/2 the
eigenvalue of the spin-3-component in the rest frame of the particle.
Since the little group is given by the rotations leaving the zero component of the four-vectors
unchanged the spin operator is given by

S̃ =
1

2

(
σ⃗ 0
0 σ⃗

)
. (4.24)

Applying these matrices to the solutions (4.23) of the Dirac equation we find that they are
simultaneously eigenvectors of S3 with eigenvalues ±1/2.
In appendix B we have shown that one obtains the solution for general momenta (±ω(p⃗), p⃗)t on
the mass shell by applying the appropriate boost Λ(p) to the solutions to the solution for the
standard vectors p0. For this purpose we show that all boosts lay in the image of the exponential
function exp sl(2,C) → SL(2,C). Taking n⃗ = p⃗/∥p⃗∥, i.e. the direction of the boost Λ(p), the
boost transformation in the Dirac spinor space is given by

B(n⃗, λ) =

(
exp

(
λ
2 n⃗σ⃗

)
0

0 exp
(
−λ

2 n⃗σ⃗
)
)
, (4.25)
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where λ is the boost parameter which is related with the relative velocity β of the two frames
by β = tanhλ.
Clearly it is enough to prove this claim for Weyl spinors. To this end we realize by direct
calculation the following properties of the Pauli matrices

{σa, σb} = 2δab, tr σ⃗ = 0 ⇒ tr(p0 + p⃗σ⃗) = 2p0, tr[(p⃗σ⃗)σ⃗] = 2a⃗. (4.26)

Let T denote a boost transformation which operates by definition on the second rank spinor
(4.14) is given by

p′0 + p⃗′σ⃗ = T (p0 + p⃗σ⃗)T † (4.27)

and for a infinitesimal transformation T = 1 + δ we have up to first order in δ:

δ(p0 + p⃗σ⃗) = δ(p0 + p⃗σ⃗) + (p0 + p⃗σ⃗)δ†. (4.28)

On the other hand an infinitesimal boost with velocity δv⃗ is given by

p′0 = p0 − p⃗δv⃗, p⃗′ = p⃗− p0δv⃗. (4.29)

Comparing this with (4.28) we have the properties

σ⃗δ + δ†σ⃗ = −δv⃗, δ + δ† = −σ⃗δv⃗. (4.30)

Using (4.26) we find immediately that this is fulfilled by the choice

δ = −1

2
σ⃗δv⃗. (4.31)

Since the boosts in an arbitrary fixed direction is a one-parameter subgroup of SO(1, 3)↑ this
gives (4.25) by adding the representations.
Together with the definition of Λ(p) (B.63) and (B.66) we have

u(p) = B[Λ(p)]u(p0), (4.32)

where u(p0) stands for one of the four possible solutions of the Dirac equation which is the
same time an eigenfunction of the momentum operator with eigenvalues given by the standard
momentum p0 and u(p) for the same with eigenvalues given by arbitrary on-shell momentum p.
With help of (4.26) we obtain by applying the series expansion of the exponential function

exp

(
λ

2
n⃗σ⃗

)
= cosh

(
λ

2

)
+ n⃗σ⃗ sinh

(
λ

2

)
. (4.33)

Using the addition theorems for the hyperbolic functions together with β = tanhλ we find the
relation between this functions and the physical boost parameter

cosh

(
λ

2

)
=

√
1 + coshλ

2
=

√
1 + γ

2
, sinh

(
λ

2

)
=

√
coshλ− 1

2
=

√
γ − 1

2
, (4.34)

where we have used the usual abbreviations

γ =

√
1

1− β2
, β =

∥p⃗∥
ω(p⃗)

. (4.35)
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Thus putting this together we find

cosh

(
λ

2

)
=

√
ω(p⃗) +m

2m
, sinh

(
λ

2

)
=

√
ω(p⃗)−m

2m
(4.36)

and now applying (4.25) together with (4.19) we find as the desired result

u(p) =

√
1

2m[m+ ω(p⃗)]
(m+ pµγ

µγ0)u(p0). (4.37)

Thus a general spin 1/2 field in the orthogonal sum of the Hilbert spaces H (m, 1/2,±) in
configuration space is given by

ψ(x) =

∫
d3p⃗√

(2π)32ω(p⃗)

[
Aσ+(p⃗)u

σ
+(p) exp(−ipx) +Aσ−(p⃗)u

σ
−(−p) exp(ipx)

]
p0=ω(p⃗)

. (4.38)

The normalisation of the eigen-spinors of momentum is chosen in an invariant way by

ū+(p, σ)u+(p, σ
′) = 2mδσσ′ , ū−(−p, σ)u−(−p, σ′) = −2mδσσ′ with ū = u†γ0, (4.39)

which will be convenient for the quantised fields. The spinor invariance of this form follows
directly from the definition (4.11) of the Dirac spinors and the transformations properties of the
dotted and undotted representations.
Since the u±(p, σ) are solutions of the Dirac equation in momentum space we find together with
the normalisation (4.39)

pµū±(±p, σ)γµu±(±p, σ) = ±2p2 = ±2m2 ⇒
ū±(±p, σ)γµu±(±p, σ) = ±2pµ

}
with p0 = ±ω(p⃗). (4.40)

Thus we find for the invariant scalar product in our case the following form in configuration
space

⟨ϕ |ψ ⟩ =
∫

d3x⃗ϕ̄(x)γ0ψ(x). (4.41)

The projection operators on the subspaces H (m, 1/2,±) is given by the projection operators

P±(p) =
m∓ /p

2m
, (4.42)

which can directly be generalised from the solution for standard momentum (4.23).

4.2 Causal Massless Fields

Since there is nothing new to say about massless scalar fields compared to their massive coun-
terpart, we come immediately to the important case of a massless vector field, which is realized
in nature by the gauge bosons of the standard model especially the photon.
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4.2.1 Massless Vector Field

As we know from the discussions in appendix B the little group in the massless case is isomorphic
to ISO(2). We chose the standard vectors for both cases H (0, λ,±) as p0 = (±1, 0, 0, 1)t. Then
the little group is generated by the rotations around the 3-axis and two independent null rotations.
This null rotations correspond to the translations in the isomorphic mapping of the little group
to ISO(2) and has to be represented trivially in the physical representations since there is no
particle known which has a continuous number of intrinsic degrees of freedom.
Since the Casimir operator p2 has eigenvalue zero in the case of massless fields we have

□Aµ(x) = 0. (4.43)

If we represent the whole little group trivially we have a scalar field and the vector field is given
as the gradient of this scalar field.
Since we want to give a representation with helicity λ = 1 we impose the constraint

∂µA
µ = 0 (4.44)

which was enough to fix the field to be of spin one in the massive case. We shall show now
that this constraint is not enough to ensure the field to be of helicity one. This can be seen
by calculating the fields with λ = 1 and λ = −1 and operating with the null rotations on this
fields. One finds at Eig(p, p0) that the null rotations are not represented trivially but, using the
parameterisation (B.90)

A′µ(p0) → Aµ(p0) + (RebA1 − ImbA2)pµ0 . (4.45)

We find that the null rotations are trivially represented if and only if Aµ ∝ pµ but this corresponds
to the λ = 0, i.e., the scalar representation.
In other words we don’t find a function Hilbert space which is complementary to λ = 0 realized
with vector fields.
Instead we have necessarily to construct the Hilbert space as a quotient vector space. We show
that it is given algebraically by

H (0, 1,±) = {Aµ|□Aµ = 0, ∂µA
µ = 0}/{Aµ| ∂µAν − ∂νAµ = 0}. (4.46)

At first we find that on this space the null rotations are trivially represented. From the action
on the momentum eigenspace with eigenvector p0 we learnt that this null rotations are given by
A′
µ = Aµ + ∂µχ with an appropriate scalar function χ. But since [∂µ, ∂ν ] = 0 on the space of

continuously differentiable functions, which is a dense subspace in L2, the transformed field A′
µ

is identified in the quotient vector space (4.46).
It is also important to notice that the definition of the quotient space can be expressed in the
form

H (0, 1,±) = {Aµ|□Aµ − ∂ν∂
µAν = 0}/{Aµ| ∂µAν − ∂νAµ = 0}. (4.47)

The reason for that is that the equation

□Aµ − ∂ν∂
µAν = 0 (4.48)

is invariant under the transformation

A′
µ = Aµ + ∂µχ (4.49)

82



4.2 · Causal Massless Fields

with an arbitrary smooth scalar function χ and for any solution one can find a scalar field χ such
that

∂µA
′µ = 0. (4.50)

This means we can express the fact that we want to construct a field equation for a massless
spin-1-field such that the null-rotations contained in the little group are represented trivially and
project out the Spin-0-components by using the field equation (4.48) for a representative of the
vector field in the quotient space. This equation is invariant under the gauge transformation
(4.49) which ensures the triviality of the representation of the null-rotations and taking this
modulo the pure gauge fields which are gradients of (massless) scalar fields. This ensures in
addition that the spin-0-component vanishes.
As our analysis shows, both conditions together ensure also the masslessness of the represen-
tation because there is always a representative A′

µ of each Aµ (connected to Aµ by a gauge
transformation (4.49) such that ∂νA′ν = 0. This means that a massless spin-1-field is necessarily
described as a gauge field, i.e. a theory which is invariant under transformations which operates
on the vector field in the form (4.49). The application of the gauge transformation to other fields
contained in the theory has to be chosen appropriately in order to leave the action invariant.
The necessity of gauge invariance for massless vector fields together with Poincaré invariance
restricts the possibility for building theories of such fields with other fields drastically. This is
a very important guide to build theories for the strong and electro-weak interactions within the
standard model of elementary particles and is called gauge principle. There the gauge group is
extended to non-abelian groups. We shall come back to these important ideas in chapter 7.
To finish the proof that this quotient space is indeed the correct representations space for the
helicity 1 representation of P↑

+ we show that in this quotient space the scalar product (4.10),
given above for the massive case, is positive definite also for the massless case. To this end we
have to show that for a real massless transversal vector field Aµ which is a eigenvector for p with
light-like eigenvalue p which fulfils

⟨A |A⟩ =
∫

d3x⃗Aν∂tA
ν = 0 (4.51)

fulfils ∂µAν − ∂νAµ. To this end we use the momentum representation of the invariant scalar
product

⟨A |A⟩ = −
∫

d3p⃗

(2π)32ω(p⃗)
A∗
ν(p⃗)A

ν(p⃗) with ω(p⃗) = ∥p⃗∥. (4.52)

Since p is light-like and pA = 0 the real as well as the imaginary part of Aν(p) is light-like
or space-like (it is a nice exercise to show that a four-vector which is orthogonal to a light-
like vector is space-like or light-like. In the latter case it is proportional to the given light-like
vector!). From this we learn that the invariant scalar product is positive semi-definite also for
the light-like case. If it vanishes than we have necessarily A∗(p)A∗(p) = 0 since the integrand is
positive semi-definite. This means that real and imaginary part of A(p) are light-like and since
this vector is orthogonal to the light-like momentum p, it is necessarily proportional to p, i.e.,
Aν(p) = pÃ(p). In momentum space this means Aν(x) = ∂νÃ(x) and thus the field equivalent
to zero in the quotient space (4.46). Q.E.D.
Thus we have obtained the correct physical space for representing the Hilbert space as the
quotient space (4.46). Since R(1,3) is a simply connected space two vector fields A′

µ and Aµ are
identified in this space if and only if ∃χ : □χ(x) = 0, A′

µ − Aµ = ∂µχ. This is a restricted form
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Chapter 4 · Relativistic Quantum Fields

of gauge invariance, namely under gauge transformations with gauge fields χ which respect the
Lorentz condition ∂µAµ = 0 which is expressed in form of the constraint □χ = 0.
At last we want to give the fields of helicity 1 and −1. As shown in appendix B to this end
we need the Pauli-Lubanski vector. To calculate it we first look for the generators of SO(1, 3)↑-
transformations:

A′µ(x′) = (δµν + δωµν)A
ν(x) = (δµν + δωµν)A(x

′σ)− δσρρx
ρ =

= Aµ(x′)− i

2
δωρσ(M

ρσ)µνA
ν(x′).

(4.53)

Comparison of the first with the second line of this equation shows that the generators of the
SO(1, 3)↑-transformations in the spin one representation of fields are given by

(Mρσ)µν = i [(xρ∂σ − xσ∂ρ)δµν + gµρδσν − gµσδρν ] . (4.54)

For the Pauli-Lubanski vector we have

(Wµ)αβ = iϵαβνµ∂
ν = ϵαβνµp

ν . (4.55)

So from (B.98) we see that the states of helicity λ = ±1 are given by the constraint

ϵµνρσ∂
ρAσ = λ(∂µAν − ∂νAµ) = λFµν , (4.56)

i.e., a massless vector field has helicity 1 (−1) if its Faraday tensor Fµν is self-dual (antiself-dual).
One can show that these are the right (left) circular polarised wave solutions of the free Maxwell
equations.

4.2.2 Massless Helicity 1/2 Fields

The case of massless helicity 1/2 fields can be found immediately by setting m = 0 in the
corresponding massive case. The projector on the positive or negative energy eigenstates are
given by the projectors (4.42). The standard vectors of the little group are chosen to be p0 =
(±1, 0, 0, 1).
The only thing we have to show is that the null rotations are represented trivially. To this end
we use the fact that the Dirac equation (4.22) for m = 0 separates in equations for the two Weyl
spinors, namely

(p0 − p⃗σ⃗)ξ = 0. (4.57)

This is the so called Weyl equation. Now we look on the subspace Eig(p, p0) of H (0, 1/2,+).
The Weyl equation is then given by

(1− σ3)ξ+ = 0, (4.58)

which is solved by ξ2 = 0. The space of solutions is one-dimensional and is due to (B.90) not
changed by null rotations (which means for α = 0). So indeed the null rotations are represented
trivially in our representation. It shows also that this spinor has helicity λ = +1/2. It remains
as an exercise for the reader to show that the analogue calculations for the dotted spinors give
helicity λ = −1/2.
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4.3 Quantisation and the Spin-Statistics Theorem

Now we want to quantise the fields above. We have to fulfil the postulates given in the beginning
of this chapter. The one-particle wave functions are in general not the solution of the problem to
quantise relativistic particles. The reasons are explained already in chapter 3: A mathematical
reason is that we cannot restrict the fields to the Hilbert spaces of positive energy since the
interactions “scatter” the wave functions from the positive energy space to the negative one which
means that the Hilbert spaces are in general given as the orthogonal sum of the positive and
the negative energy space leading to a closed Hilbert space under time evolution. The physical
reason is nowadays obvious since the production and annihilation of particle antiparticle pairs
are a well known fact. Thus the relativistic quantum mechanics is necessarily a many-particle
theory.
To quantise the theory we take the case of scalar particles as a guideline. There we have found
the following “recipes” to solve the problems of the negative energy states and the zero point
energy:

• The negative energy states are identified with the anti-causal propagation of particles which
can be reinterpreted as the causal propagation of an antiparticle with positive energy. This
is known as the Feynman-Stueckelberg formalism.

• To renormalise the vacuum to energy 0 we have to normal-order the local operators repre-
senting densities of additive observables. This densities are expressed with help of the fields
by quantising the corresponding Noether currents of symmetries of the classical action.

Since we have done this quantisation procedure for scalar fields in great detail in chapter 3 we
come immediately to the important case of Dirac fields.

4.3.1 Quantisation of the spin-1/2 Dirac Field

As shown in section 4.1. in the massive case these fields are completely determined by the Dirac
equation which is is the field equation of motion

i/∂µψ = mψ. (4.59)

Since there are no constraints necessary to obtain the spin-1/2 field the theory is completely
determined by the action, which is given by the Lagrangian

L = ψ̄(i/∂ −m)ψ. (4.60)

From this we read off the canonical energy-momentum (3.49) tensor

Θµ
ν = ψ̄iγµ∂νψ − δµνL . (4.61)

We like now to quantise this theory. For this purpose we need the total energy of the field
configuration to be sure to fulfil postulate 2, namely that the energy is bounded from below.
The Hamiltonian is given with help of (4.51):

H =

∫
d3x⃗Θ0

0 =

∫
d3x⃗ψ̄γ0(iγ⃗∇+m)ψ. (4.62)
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For fields fulfilling the free Dirac equation (4.59) we can write this in the shorter form

H =

∫
d3x⃗ψ̄i∂tψ. (4.63)

Now we use the fact that there are known only bosons and fermions in nature which means that
the multi-particle Fock space states are totally symmetric or antisymmetric respectively under
exchange of single-particle states contained in this multi-particle states. In chapter 1 we have
given a nice path integral argument for this.
Since in the case of free fields the Lagrangian is bilinear in the field operators the local observables
are represented by bilinear forms of field operators too. Thus the microcausality condition (4.1)
can be fulfilled for bosonic as well as fermionic quantisation. This can be seen from the simple
formula

[AB,X] = A [B,C] + [A,B]C = A {B,C} − {A,B}C. (4.64)

From nature we know that spin-1/2 particles. Thus we try to quantise the Dirac fields as a
fermionic field, i.e., we introduce particle annihilation operators a(p⃗, σ) and antiparticle annihi-
lation operators b(p⃗, σ) fulfilling the anti-commutator relations
{
a(p⃗1, σ1),a

†(p⃗2, σ2)
}
= δ(3)(p⃗1 − p⃗2)δσ1σ2 ,

{
b(p⃗1, σ1),b

†(p⃗2, σ2)
}
= δ(3)(p⃗1 − p⃗2)δσ1σ2 , (4.65)

with all other anti-commutators vanishing.
Now we express the field operators in terms of the energy-momentum eigenstates (4.23):

ψ(x) =

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

[
a(p⃗, σ)u+(p, σ) exp(−ipx) + b†(p⃗, σ)u−(−p, σ) exp(ipx)

]
p0=ω(p⃗)

,

(4.66)
where we have incorporated the Feynman-Stueckelberg formalism.
Since from (4.40) we have

ū±(±p, σ)γ0u±(±p, σ) = u†±(±p, σ)u±(±p, σ) = 2ω(p⃗) (4.67)

we find by inserting this ansatz the equal-time anti-commutator relation
{
ψ(t, x⃗),ψ†(t, y⃗)

}
= δ(3)(x⃗− y⃗)1̂, (4.68)

where 1̂ is the 4× 4 unity matrix in the Dirac-spinor space.
The Hamiltonian can also be calculated in a straightforward way. With application of normal-
ordering the quantised form of (4.63) reads

H =
∑

σ

∫
d3p⃗ω(p⃗)[Na(p⃗, σ) +Nb(p⃗, σ)], (4.69)

where the normal-ordering implies signs from interchanging two fermionic field operators due
to the anti-commutators used for fermionic quantisation. This change of sign is crucial for
the energy to be positive definite. Thus we have a very important result: The spin-1/2 field
is necessarily to be quantised in terms of fermions to get a positive definite energy for the free
particles. We shall show below that the observables built with help of the invariant bilinear forms
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of the field operators, especially the energy and momentum densities, fulfil the requirement of
micro causality.
The number operators are given as usual defined by

Na(p⃗, σ) = a†(p⃗, σ)a(p⃗, σ), Nb(p⃗, σ) = b†(p⃗, σ)b(p⃗, σ). (4.70)

The momentum operator is given by

pk =

∫
d3x⃗Θ0

k =
∑

σ

∫
d3p⃗ pk[Na(p⃗, σ) +Nb(p⃗, σ)]. (4.71)

At last we calculate the electrical charge which is given by the Noether charge of the symmetry
under U(1) transformations

δψ = iqψδα, δψ̄ = −iqψ̄δα, δx = 0 with q, δα ∈ R. (4.72)

The Noether current is given by (3.44):

jµ = qψ̄γµψ. (4.73)

Its quantised version is given with help of normal-ordering

jµ = q : ψ̄γµψ : (4.74)

leading to the operator representing the electric charge

Q = q

∫
d3x⃗ : ψ̄γ0ψ := q

∑

σ

∫
d3p⃗[Na(p⃗, σ)−Nb(p⃗, σ)] (4.75)

which shows that the a-particles have electric charge +q and the b-particles −q. Thus from
the anti-commutator relations we find that particles and antiparticles have the same quantum
numbers except for the electric charge which has opposite sign.
Now we want to show that the microcausality condition is fulfilled. To this end we calculate the
anti-commutator of the Dirac field operators for arbitrary space-time points:

{
ψ(x1), ψ̄(x2)

}
=
∑

σ1,σ2

∫

R3

d3p⃗1√
2ω(p⃗1)(2π)3

∫

R3

d3p⃗2√
2ω(p⃗2)(2π)3

[
a(p1, σ1)u+(p1, σ1) exp(−ip1x1) + b†(p1, σ1)u−(−p1, σ1) exp(+ip1x1),

a†(p2, σ2)ū+(p2, σ2) exp(ip2x2) + b(p2, σ2)ū−(−p2, σ2) exp(−ip2x2)
]
+
.

(4.76)

Using the anti-commutator relations for the creation and annihilation operators (4.65) we find

∑

σ

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

{
u+(p, σ)ū+(p, σ) exp[ip(x1 − x2)]+

+ u−(−p, σ)ū−(−p, σ) exp[−ip(x1 − x2)]
}
.

(4.77)

Herein we have to calculate the matrix

2ρ̂+(p, 0) =
∑

σ

u+(p, σ)ū+(p, σ) (4.78)
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which is two times the polarisation matrix for particles. We know that this matrix can only
depend on the on-shell momentum p. Further we know that u is a solution of the free Dirac
equation in momentum representation (4.22) with the upper sign on the right hand side.
By direct calculation we verify

γ0γµγ0 = γµ† (4.79)

and together with (4.22) we find
ū+(p, σ)(/p−m) = 0. (4.80)

The end of the story is that the polarisation matrix fulfils the equation

(/p−m)ρ̂+(p, 0) = ρ̂+(p, 0)(/p−m) (4.81)

which has the unique solution
ρ̂+(p, 0) = N(/p+m) (4.82)

where the normalisation constant N is given with help of our normalisation convention (4.39)

2 tr ρ̂+(p, 0) =
∑

σ

ū+(p, σ)u+(p, σ) = 4m⇒ N =
1

2
. (4.83)

So our final result is
ρ̂+(p, 0) =

1

2
(/p+m). (4.84)

In the same line of arguing one obtains for the polarisation matrix for unpolarised antiparticles

ρ̂−(p, 0) =
1

2

∑

σ

u−(p, σ)ū−(p, σ) =
1

2
(/p−m). (4.85)

With help of this we can calculate the non-vanishing anti-commutator between the field operators
at arbitrary space-time points. To this end we use again (4.66) and the anti-commutator relations
(4.65). The result is {

ψ(x1), ψ̄(x2)
}
= (i/∂1 −m)i∆−(x1 − x2), (4.86)

where ∆− is given by

i∆−(x) =
∫

d3p⃗

(2π)32ω(p⃗)
[exp(−ipx)− exp(ipx)]. (4.87)

This can be written as

i∆−(x) =
∫

d4p

(2π)4
sign p02πδ(p2 −m2) exp(−ipx). (4.88)

This is an odd solution of the Klein-Gordon equation and invariant under SO(1, 3)↑ transforma-
tions, i.e., a Lorentz-invariant function.
To show the microcausality condition it is convenient to write the time-dependent part out:

i∆−(x) =
∫

d4p

(2π)4
2πδ(p2 −m2){exp[−iω(p⃗)t]− exp[iω(p⃗)t]} exp(ip⃗x⃗). (4.89)
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Since the integrand vanishes for t = x0 = 0 and we can transform any space-like vector x with
x2 < 0 with help of a SO(1, 3)↑- transformation to a vector x′ with x′0 = 0 this means together
with the Lorentz invariance of ∆−

∆−(x) = 0 for x2 < 0. (4.90)

Applied this to (4.86) we find that the anti-commutator of the Dirac field operators on space-like
related space-time points vanishes. Together with (4.64) this shows that the operators represent-
ing observables which are given as bilinear forms of the Dirac operators fulfil the microcausality
condition.
The same time we have found the restriction for interaction terms that these have to be built
with a even number of Dirac-field operators in order to fulfil the microcausality condition.

4.4 Discrete Symmetries and the CPT Theorem

Now we come to the important investigation of discrete symmetries. From space-time we know
the reflections of space (parity) and time reflections (time reversal).
Since we have shown that there are necessarily to each sort of particles its corresponding an-
tiparticles (for sake of simplicity we include the case that the antiparticles may be identical with
the particles (e.g. the real particles), we can exchange the particles and the antiparticles and
look whether the system is invariant under this transformation. In the following we will clarify
this idea. But it is clear that this transformation which is called charge conjugation builds the
group Z2, i.e., Ĉ2 = 1 and that a charge-neutral system (it might be an elementary particle also
denoted as strictly neutral systems or a bound state like the positronium or hydrogen atom) can
be even or odd under charge conjugation.
We will show the famous CPT theorem which states that any Lorentz-invariant theory, i.e., a
theory which is invariant under SO(1, 3)↑-transformations is automatically invariant under the
combined discrete transformation which reverses time, reflects space and interchanges particles
with antiparticles, in short notation the CPT transformation. There is no necessity for C, P or
T alone to be a symmetry transformation. We know since the famous experiment by Wu that
the weak interaction violates the P invariance and from Kaon decay that also the combined CP
transformation is violated. But there is yet nothing known about a violation of CPT invariance
which would be a strong hint that local relativistic quantum field theory is not the right picture
about nature.

4.4.1 Charge Conjugation for Dirac spinors

We shall consider in this section again only Dirac particles since with help of them we can compose
all other representations with help of Kronecker multiplication and reduction to irreducible parts.
Now let us consider the particle solutions in momentum space u+(p, σ) and look how to transform
them to a corresponding antiparticle solution. From our treatment of antiparticles in terms of
the Feynman-Stueckelberg formalism it is easy to guess that it could have something to do with
complex conjugation. Complex conjugation in the context of Dirac spinors is better done as
the Dirac conjugation ū = u†γ0 which leaves the formalism invariant. As we have shown above
(4.80) u+ fulfils the following equations

(/p−m)u+(p, σ) = 0, ū+(p, σ)(/p−m). (4.91)
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Transposing this equation leads back to a column spinor

(/p
t −m)ūt+(p, σ) = 0. (4.92)

Now we seek a unitary transformation which makes this an equation for an antiparticle wave
function in momentum representation, called the charge conjugated wave function of u and
denoted with uc

uc+(p, σ) = Ĉūt+(p, σ) with (−/p+m)uc+(p, σ) = 0. (4.93)

Comparing this equation with (4.92) we have the condition

γµtĈ = −γµĈ. (4.94)

In our representation of the γ-matrices (4.19) together with the representation (4.15) of the Pauli
spin matrices we have

γµt = (−1)µγµ (4.95)

and a solution of (4.94) for Ĉ is given up to a factor

Ĉ = ηCγ
2γ0, (4.96)

where ηC is an arbitrary factor. From the unitarity condition for Ĉ

Ĉ† = Ĉ−1 (4.97)

we find that |ηC | = 1 which shows that ηC is only a phase factor which may be set to 1. We
have so far

uc+(p, σ) = ηCγ
2γ0ūt+(p, σ). (4.98)

Since σ is the eigenvalue of the spin 3-component in the rest frame of the particle we look for
the action of the spin operator (4.24) on the charge conjugated state for p = p0:

S3u
c
+(p0, σ) = −σuc+(p0, σ). (4.99)

Since S3 = i
[
γ1, γ2

]
this is proven by using the anti-commutator relations of the γ-matrices

(4.20). Choosing ηC = i we have

uc+(p, σ) = u−(p,−σ). (4.100)

At last we want to calculate the action of the unitary charge conjugation operator C in the Fock
space. It is defined to operate on the field operators the same way as the charge conjugation on
the c-number fields:

ψc(x) = CψC† = Ĉψ̄
t
(x). (4.101)

Using (4.100) we find

ψc(x) =
∑

σ

∫

R3

d3p⃗√
2ω(p⃗)(2π)3

[
exp(ipx)u−(p,−σ)a†(p, σ) + exp(−ipx)u+(p,−σ)b(p, σ)

]
.

(4.102)
Comparing the charge conjugated annihilation and creation operators with this we have

Ca(p, σ)C† = b(p, σ), Cb(p, σ)C† = a(p, σ). (4.103)

The action of the charge conjugation operation on the bilinear local or global observables shows
that energy and momentum keep unchanged while the electromagnetic charges as well as the
local electromagnetic currents change sign as one would expect from charge conjugation.
This charge conjugation interchanging particles with their antiparticle counterparts is another
definition (beside the phase invariance of the action) of the connection between these sorts of
particles.
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4.4.2 Time Reversal

Now we come to the time-reversal operation. Mathematically it is nothing else than the time
reflection, i.e., the change t → −t. This looks simple, but this is not the case in physics. The
point is that the time manifold is not simply R but oriented R which means nothing else than
causality, a principle which we have pronounced throughout these whole lectures. On my point
of view there is much confusion about time reversal since it is misunderstood. The point is not
the mathematical theory of the symmetry but the physical interpretation and thus there are
some words at place about it before treating it mathematically.
As we have seen above in the introductory chapters 1 and 2 causality is just an axiom in physics,
i.e., physics as we know would not make sense if we would not assume the existence of causal
natural laws. Causality is not broken by quantum theory but quantum theory is a completely
causal theory, it only modifies the meaning of physically sensible observables, it just defines
what we can know about the system here and now and if we were clever enough to solve the
time-evolution equations for the states and operators exactly it would perfectly tell us what this
possible knowledge tells us about our possible knowledge for later instants of time.
As we have seen in chapter 1 and 2 time is directed in quantum theory. For instance it is expressed
in the fact that we have to use the time-ordering for calculating the (global) time-evolution
kernel out of the (local) generators and this gave us the proper meaning for the propagator in
momentum representation, namely to be retarded in the nonrelativistic and consistent with the
Feynman-Stueckelberg formalism in the relativistic case.
Now we come to the correct interpretation of time-reversal operation. The idea can be seen in any
physical theory, so we look at first on classical Newtonian mechanics. The most simple system is
a point particle moving in an external potential. A “pure state” of such a point particle is given
as a point in six dimensional phase space, namely by giving the position and the momentum
of the point particle at the initial time t0. Now suppose we were able to solve the Newtonian
equation of motion exactly (which is of course the case for many textbook examples). Then we
know the trajectory of the particle in phase space for all instants of time t > t0. Now suppose
we read off the position of the particle in phase space at some instant of time t1 > t0, reverse
it is momentum leaving it at exactly the same position as it was and start now the calculation
again. Then time-reversal invariance means that the particle will be after a time interval t1 − t0
at the time-reversed initial point we started with at t = t0.
Thus the time-reversal operation has to be defined on the states of the system. This can be done
also in quantum mechanics with the statistical operator for the general case or with the state
vectors in Hilbert space for the pure states. Now we remember scattering theory in chapters 1
and 2 where we have defined very carefully the initial and final asymptotic states. Now from
our classical example it is clear that time reversal in quantum mechanics cannot simply means a
unitary transformation of the asymptotic states but we have to take into account the causality
expressed in the orientedness of time. This means that the time-reversal operator takes an
asymptotic final state to an asymptotic initial state and vice versa.
Now to express this idea mathematically we use the S-matrix which defined the causal transition
from the initial to the final state forced by the dynamics of the system which is locally described
by the Hamiltonian and globally by the time-evolution operator. The S-matrix is known if we
have all matrix elements with respect to a complete set of initial and final asymptotic states |i⟩
and ⟨f | which we have denoted with Sfi = ⟨f | i⟩. If we act now with the time-reversal operator
on S which gives the S-matrix for the time-reversed asymptotic states this means to interchange
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initial and final states and thus

Stfi = ⟨Tf |Ti⟩ = Sif = ⟨i | f ⟩ = ⟨f | i⟩∗ = S∗
fi. (4.104)

This means that the time-reversal operator is necessarily anti-unitary rather than unitary.
The treatment of time reversal for the Dirac fields is analogue to that of the charge conjugation in
the last section. The only difference is that we start here in the configuration space representation.
The Dirac equation reads

(i/∂ −m)ψ = 0. (4.105)

The equation for the Dirac conjugated spinor is given by

(i/∂
t
+m)ψ̄t = 0. (4.106)

If time reversal is a symmetry of the free Dirac equation there must be, since it is given by an
anti-unitary operator, a unitary transformation T̂ such that

ψT (x) = T̂ ψ̄t(T̂ x) with T̂ (t, x⃗) = (−t, x⃗) (4.107)

fulfils the Dirac equation. From now on we use the same symbol T̂ for the operation on the Dirac
spinors and the action on space-time vectors. This should not cause any confusion. Changing
the sign of t in (4.106) gives

(−iγ0t∂t + iγ⃗t∇⃗+m)ψ̄t(−t, x⃗) = 0. (4.108)

Multiplying this from the left with T̂ we find that the spinor field (4.107) fulfils the Dirac equation
if T̂ fulfils the equation

T̂ γ0t = γ0T̂ , T̂ γ⃗t = −γ⃗T̂ . (4.109)

In our representation of the Dirac matrices we have

γ0t = γ0, γat = (−1)aγa for a = 1 . . . 3 (4.110)

which shows that we may chose
T̂ = ηTγ

3γ1γ0, (4.111)

where ηT is an arbitrary phase factor. Thus the time-reversed state ψT (x) is given by

ψT (t, x⃗) = T̂ ψ̄(−t, x⃗) = T̂ γ0ψ∗(−t, x⃗) = ηTγ
3γ1ψ∗(−t, x⃗). (4.112)

In our convention (4.23) for the momentum eigen-solutions of the Dirac equation the time-reversal
matrix T̂ acts on these as

uT±(p, σ) = − signσu±(P̂ p,−σ), (4.113)

where P̂ (p0, p⃗) = (p0,−p⃗) which shows that time reversal operates as reflection of the momenta.
We find now the anti-unitary time-reversal operator T operating in the Fock space by the ana-
logue calculation as we have done in the case of charge conjugation but here we have to take
account on the anti-unitarity of T. First we see that T has to fulfil

Tψ(x)T−1 = T̂ ψ̄
t
(T̂ x). (4.114)
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Using the expansion in annihilation and creation operators (4.66) and (4.113) we find by com-
paring the operator valued factors in front of the exponential functions

Ta(p, σ)T−1 = signσ a(P̂ p,−σ), Tb(p, σ)T−1 = signσ b(P̂ p,−σ). (4.115)

Applying this to (4.69) and (4.71) we see that the energy is unchanged under time-reversal trans-
formation while momentum changes sign. With (4.75) we find that the electrical charge operator
Q is unchanged. It is also straight forward to show that we have for the local electromagnetic
current

jµT (x) = P̂ j(T̂ x) with T̂ (t, x⃗) = (−t, x⃗). (4.116)

This is also consistent with our naive understanding of the electromagnetic four-current for a
moving charged medium known from classical electrodynamics as “charge times velocity”.

4.4.3 Parity

Parity can be treated very short since we thought about it in appendix B. This was the reason
why we introduced Dirac spinors in favour of Weyl spinors, namely to have the possibility to
build parity invariant theories.
Using the covering (B.45) of the O(1, 3)↑ and rewriting it in our Dirac spinor convention we find

ψP (x) = P̂ψ(P̂ x) = iγ0ψ(P̂ x). (4.117)

A direct calculation yields
P̂ u±(p, σ) = ±iu±(P̂ p, σ) (4.118)

which shows that the energy and spin of the state is unchanged while the momenta are reflected
by the parity transformation as we expect from the meaning of space reflection.
In the same kind of calculation as we did at length for the case of charge conjugation we obtain
(remembering that P is unitary)

Pa(p, σ)P† = ia(P̂ , σ), Pb(p, σ)P† = ib(P̂ , σ). (4.119)

This shows that the field energy is unchanged and the momentum changes sign, the electromag-
netic charge is unchanged and the three-current changes sign.

4.4.4 Lorentz Classification of Bilinear Forms

As we have seen studying the examples of the energy-momentum vector and the electromagnetic
current density, we can build physical important quantities out of the Dirac spinor field which
have certain tensor structure with respect to SO(1, 3)↑-transformations.
Now the spinor has four linearly independent complex components and thus we can build 4×4 =
16 linearly independent local bilinear forms. These can be written as

BÔ(x) = ψ̄a(x)Ôψb(x), (4.120)

where we preferred to take ψ̄ rather than ψ† as the left argument of the bilinear form since this
makes the definition relativistically invariant.
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Now we can find sixteen linearly independent matrices which have certain transformation prop-
erties under SO(1, 3)↑-transformations. This is important when we construct interaction terms
for the Lagrangian including Dirac spinor fields. Since our discussion has shown that all local ob-
servables have to be built with help of pairs of Dirac spinors, i.e., a monomial contained in the La-
grangian has to contain an even number of spinor field factors in order to obtain local observables
fulfilling the microcausality condition with commutators rather than with anti-commutators.
The matrices are given as

1̂, γ5 = iγ0γ1γ2γ3 =
i

4!
ϵµνρσγ

µγνγργσ, γµ, γµγ5, Σ̂µν =
1

2
[γµ, γν ] . (4.121)

The last matrix we have identified above with the generators of the Dirac spinor representation
of the SL(2,C). Together we have 1 + 1 + 4 + 4 + 6 = 16 matrices which can be shown to be
linearly independent.
With these matrices we can build the following local observables

Sab = ψ̄aψb, Pab = iψ̄aγ
5ψb, V

µ
ab = iψ̄aγ

µψb, = iψ̄aγ
µγ5ψb, T

µν
ab = iψ̄aΣ̂

µνψb, (4.122)

which are scalars, vectors and an antisymmetric tensor with respect to SO(1, 3)↑-transforma-
tions. Herein we have left out the space-time arguments. This is evident from the meaning of
the γ-matrices and the first part of appendix B.
Now we want to classify these objects further with respect to parity transformations. To this

end we write down the Dirac spinor with help of the Weyl-spinors ψ =

(
ξ
η

)
. Since

S = ξ†η + η†ξ, P = i(ξ†η − η†ξ) (4.123)

and due to (4.117) the parity transformation interchanges ξ and η we find that S is unchanged
while P changes sign. Thus S is a scalar and P a pseudo-scalar. From the Dirac equation we
learn that V µ is a vector and Aµ an axial vector or pseudo-vector. Tµν builds an antisymmetric
tensor of second rank which changes sign under parity transformations. A second-rank symmetric
tensor reduces to a scalar since {γµ, γν} = 2gµν .
Here we summarise again the behaviour under parity transformation

SPab = Sab, P
P
ab = −P̂Pab, V P

ab = P̂ Vab, A
P
ab = −P̂Aab, TPab = −P̂ TabP̂ . (4.124)

Herein we left out the space-time arguments of the fields. It is understood that on the right hand
side the space-time arguments have to be taken as the parity transformed ones of the left hand
side: x→ P̂ x = (t,−x⃗).
All these properties hold also true for the normal-ordered field operator counterparts of these
bilinear forms.
But now let us look on charge conjugation. We define

BO =: ψ̄aÔψb : . (4.125)

From (4.96) we learn
ψC = Ĉψ̄

t ⇒ ψ̄
C
= ψtĈ∗ = −ψtĈ. (4.126)

Inserting this into 4.125 we find

BC
O =: ψ̄

C
a Ôψ

C
b := + : ψ̄bĈÔU

†
Cψa :, (4.127)
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where we have used the fact that we can interchange the field operators under the normal product
with an extra sign. Had we used not the field operators but the classical fields we would have
obtained the opposite sign in (4.127). We shall see in the context of the path integral treatment
for fermionic fields that the correct classical field counterparts are not the well known commuting
c-numbers but the anti-commuting Grassmann numbers. This does not play any role concerning
observables since the fermionic fields are not observable at all since they obey not the commutator
but the anti-commutator microcausality condition. As we have seen the reason why the charge
conjugated observable bilinear forms have a changed sign compared to the commuting classical
counterparts is that this transformation is anti-unitary (we had to take a transformation from
ψ to ψ̄ and then a unitary one). Since the same is true for the time-reversal transformation we
have for this case also a sign change compared to the classical commuting fields.
Putting in the different matrices for Ô we find

SCab = Sba, P
C
ab = Pba, V

Cµ
ab = −Vµ

ba, A
Cµ
ab = Aµ

ba, T
Cµν
ab = −Tµν

ba . (4.128)

The time reversal is due to (4.111) given by

ψT = T̂ ψ̄t, ψ̄
T
= −ψ̄T̂ . (4.129)

We have also to take into account that the time reversal includes a change of order of field
operators since it interchanges initial and final states. For the scalar we have for example:

(ψ̄aψb)
T = −(ψ̄bT̂

t)(T̂ †ψa) = ψ̄bψa. (4.130)

For the different bilinear forms we find

STab = STba, P
T
ab = −Pba, V

T
ab = P̂Vba, A

T
ab = P̂Aba, T

T
ab = −P̂ TbaP̂ . (4.131)

4.4.5 The CPT Theorem

Now we show the famous theorem that each local quantum field theory with a SO(1, 3)↑-invariant
real action and being quantised according to the spin-statistics theorem is also invariant under
the discrete transformation which applies instantaneously the time reversal, the parity and the
charge conjugation transformation, shortly denoted as the CPT transformation.
We want to show that the Hamilton density obeys

(CPT)H (x)(CPT)−1 = H (−x). (4.132)

This proves the theorem since then it is clear that the Hamiltonian is unchanged under CPT
transformations because the change of sign in the last equation has no effect on the three-space
integral H =

∫
d3x⃗H (x).

The main message of this theorem is that there is no necessity for the discrete transformations
P , T , C or CP alone from the principle of Poincaré invariance, at least not for local quantum
field theory as we consider here. We shall see that indeed the weak interaction does break these
discrete symmetries. This is directly proven from experiments for parity and CP (β-decay for
parity- and K-meson decay for CP non-conservation) and if one assumes that the elementary
particles are described correctly by a local quantum field theory we know from the CPT theorem
that also the time reversal is not a symmetry of nature.
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Now we like to prove the theorem. We summarise the combined action of the three discrete
transformations by applying (4.124), (4.128) and (4.131) to the bilinear forms (4.122).

SCPTab (x) = Sab(−x), PCPT
ab (x) = Pab(−x), (4.133)

VCPT
ab (x) = −Vab(−x), ACPT

ab (x) = −Aab(−x), TCPT
ab (x) = Tab(−x). (4.134)

Since we can consider all fields as built from the Dirac spinors, with help of the sixteen matrices
(4.121) and reduction to irreducible parts of the representation we see that all real SO(1, 3)↑-
tensors which can be build are even or odd if they have an even or odd rank number. There is
no difference between tensors and pseudo-tensors for the whole CPT transformation. This holds
also true for tensors for which one or more indices are obtained by applying ∂µ. Finally for a
elementary Dirac spinor field we find in our bispinor representation

ψCPT (x) = iγ5ψ(−x). (4.135)

Since only the time-reversal transformation P is anti-unitarian a general even (odd) complex
tensor transforms to it is hermitian conjugate (negative hermitian conjugate) and any complex
valued constants are complex conjugated.
Now any Lagrangian which is SO(1, 3)↑-invariant is build as a contraction of tensors (which may
be built out of spinor bilinear forms described above). Since it has to be the sum of scalars and
pseudo-scalars the sum of all ranks in a monomial contained in the Lagrangian has to be even.
Thus the Lagrangian behaves like any scalar or pseudo-scalar. Since it is assumed to be a real
local quantity we have

L CPT (x) = L (−x). (4.136)

Now the Hamiltonian density is given by

H =: Πrϕ̇r : −L , (4.137)

where the sum over r runs over all fields contained in the theory.
It is easy to show that the canonical field momenta transform under CPT with the negative
conjugate complex phase factor compared to the original fields since the Lagrangian is hermitian.
The time derivative of the field gets only an additional sign compared to the CPT -transformed
field. Thus the canonical commutator relations or anti-commutator relations for tensor and spinor
fields respectively are invariant under CPT transformations and thus together with (4.136) we
have proven (4.132) which completes the proof of the CPT theorem also known as the Pauli-
Lüders Theorem.

4.4.6 Remark on Strictly Neutral Spin–1/2–Fermions

This subsection completes the investigation of the discrete symmetry transformations. Especially
it shows that except for the case of strictly neutral Dirac fermions, which we do not have found
in nature yet, the two inequivalent representation of the parity transformation, one with P̂ 2 = 1
and one with P̂ 2 = −1, are indeed physically equivalent .
We start with the investigation of the so called relative parity of particles and their corresponding
antiparticles which is in principle observable. As we have seen in the beginning of the chapter
the intrinsic properties of particles are most easily observed when looking on them in their
rest system. In our description of C, P and T we have chosen the parity representation with
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P̂ 2 = −1 in the bispinor representation and splitting up the so far used Dirac spinor in it’s Weyl
components explicitely we have

P̂︸︷︷︸
iγ0

(
ξα

ηα̇

)
= i

(
ηα̇
ξα

)
. (4.138)

Using the charge conjugation transformation (4.96) we find that the charge conjugated spinor
transforms in the same way. In the rest frame we have

ξα = ηα̇, ξαC = ηα̇ (4.139)

which is the reduction to a Weyl spinor which is appropriate for the rest frame of the particle.
As we read off from (4.138) these Weyl spinors for the particle and its corresponding antiparticle
are both multiplied with a factor i. This means that the Weyl spinor product ξαξCα changes sign
under parity transformations, i.e., it is a pseudo-scalar. By definition this means that particle
and the corresponding antiparticle have opposite intrinsic parity. As one can show explicitly
in the same way this is also the case if we chose the representation with P̂ 2 = +1. The only
difference is that in this latter case the parity transformation has a 1 instead of the i in 4.138
while the charge conjugated state has −1. But the net effect for the relative intrinsic parity is
the same as before, namely to be of opposite sign. Thus there seems to no physical difference in
the two coverings of the O(1, 3)↑.
Now we look on a particle which is identical with its antiparticle. This means that ψ = ψC . In
bispinor representation this means

ξα = −iηα̇, ηα̇ = −iξ†α. (4.140)

Such spinors are called Majorana–spinors. One can show by direct calculation that this condition
is invariant under CPT if we define the C, P and T transformations as described above. But
with our description where P̂ 2 = −1 this definition is also CP -invariant since particle and
antiparticle transform with the same transformation, while under the other representation with
P̂ 2 = −1 the sign of the charge conjugated state changes under parity transformations. Thus
the different descriptions of parity transformations are physically distinguishable if one can find
a strictly neutral spin 1/2 particle in nature, because then one could investigate if the neutral
particles would be CP -invariant or not. Since up to now there is no strictly neutral spin-1/2
particle observed by experiment there is no physical important difference in the different parity
transformation concepts so far.

4.5 Path Integral Formulation

Now we come to the path integral formulation of relativistic quantum field theory which follows
the same line of arguments as the analogous path integral for nonrelativistic quantum theory as
shown in chapter 1.
Here we derive the path integral formalism for fields from the so far used operator methods. First
we consider a real scalar field ϕ with its operator counterpart ϕ and the conjugated momentum
operator π.
At time t = 0 we define the generalised eigenvectors of the field operators as |φ⟩ with

ϕ(0, x⃗) |φ⟩ = φ(x⃗) |ϕ⟩ . (4.141)
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As in the case of ordinary quantum mechanics these generalised states in the Fock space build a
complete orthogonal set

∫
Dφ(x⃗) |φ⟩ ⟨φ| = 1, ⟨φa |φb ⟩ = δ[φa − φb], (4.142)

where both the integral and the δ-distribution have to be taken in a formal functional sense. One
can think about this as the following limit: First one takes a finite volume in three-space, let
us say a cube, and applies periodic boundary conditions to the fields, then discretises this space
and then does the same calculations as in the quantum mechanical case. After this one goes to
an infinite continuous space. We shall show this procedure later on explicitely if necessary.
The same line of arguments can be done with the canonical field momentum operator:

π(0, x⃗) |π⟩ = π(x⃗) |π⟩
∫

Dπ(x⃗)

2π
|π⟩ ⟨π| = 1

⟨πa |πb ⟩ = δ[πa − πb].

(4.143)

Herein the introduction of the 2π denominator in the measure of the path integral is just for
later convenience. As in ordinary quantum mechanics in the case of position and momentum
operators one can prove from the canonical commutation relations

1

i
[ϕ(0, x⃗),π(0, y⃗)] = δ(3)(x⃗− y⃗) (4.144)

the important overlap between field and momentum eigenvectors as follows

⟨φ |π ⟩ = exp

[
i

∫
d3x⃗π(x⃗)φ(x⃗)

]
. (4.145)

Now we can do the same as in the case of quantum mechanics in chapter 1 to get rid of field
and momentum operators with help of the path integral formalism. The transition amplitude
with respect to the field eigenvectors can be written with help of the Schrödinger picture time-
evolution as

Cba(tf , ti) = ⟨φb |exp[−iH(tf − ti)]|φa⟩ . (4.146)

Of course the result is picture independent! Herein H =
∫
d3x⃗H is the Hamiltonian which is

assumed time-independent, which is the case iff H does not depend explicitely on time (Noether’s
theorem for symmetry under time translation). Now we divide the time interval (ti, tf ) in N
equidistant pieces and insert complete sets of momentum and field eigen-kets as we did in the
path integral formulation in chapter 1:

Cba(tf , ti) = lim
N→∞

∫ N∏

k=1

DπkDφk
2π

⟨φa |πN ⟩×

× ⟨πN |exp(−iH∆t)|φN ⟩ . . . ⟨π1 |exp(−iH∆t)|φ1⟩ ⟨φ1 |φa ⟩ .
(4.147)

Now we assume that H seen as an operator-valued functional of ϕ and π is ordered in a way
that all canonical momenta are on the left of all fields, which is called Weyl ordering. If there
are no derivative couplings in the theory, as for instance in ϕ4-theory, then we can write

⟨πk |exp(−iH∆t)|φk⟩ ∼=∆t→0 (1− iHk∆t) exp[−i

∫
d3x⃗πkφk], (4.148)
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where we have used (4.145) and the abbreviation Hk =
∫
d3x⃗H (πk, φk). Now putting all this

together one obtains

Cba(tf , ti) = lim
N→∞

∫ N∏

k=1

dπkdφk
2π

×

exp



−i∆t

N∑

j=1

∫
d3x⃗[H (πj , ϕj)− πj(φj+1 − φj)/∆t]



 δ(φ1 − φa).

(4.149)

In the continuum limit this may be written as

Cba(tf , ti) =

∫
Dπ

∫ ϕ(tf ,x⃗)=φb(x)

ϕ(ti,x⃗)=φa(x)
Dϕ exp

{
i

∫ tf

ti

d4x

[
π(x)

∂ϕ(x)

∂t
− H (π, ϕ)

]}
. (4.150)

Now we can calculate the vacuum-to-vacuum transition amplitude by using the iϵ description
introduced at the end of chapter 1. As we have shown there explicitely, the iϵ-description projects
out the vacuum state and makes the Green’s function solutions unique which will be used later
on for perturbation theory. It selects out of the possible Green’s functions the causal one, i.e.,
the Feynman Green’s function. In the operator formalism this came out of the proper Fourier
transform of the vacuum expectation value of the time-ordered product of two field operators
which we called a contraction.
All this has not to be repeated here at length, because it is the same story as for the nonrela-
tivistic case in chapter 1. We end with the Feynman-Kac Formula for the calculation of vacuum
expectation values of time-ordered functionals:

⟨0 |TcF [ϕ,π]| 0⟩ = N

∫
Dπ

2π

∫
Dϕ exp {iS[ϕ, π]}F [ϕ, π]. (4.151)

Herein F [ϕ,π] has to be written in Weyl-ordered form, i.e., with all canonical field momenta π
to the left of all fields ϕ to obtain the correct c-number functional. Also we have to take the
action functional in its canonical form S[ϕ, π] =

∫
d4x{∂tϕ(x)π(x) − H [ϕ, π]}. We shall see

that in many cases it is possible to integrate out the canonical field momenta resulting in the
Lagrangian form of the path integral.
Especially we can calculate the generating functional for disconnected Green’s functions by de-
manding

Z[J ] = N

∫
Dπ

2π

∫
Dϕ exp

{
iS[ϕ, π] + i

∫
d4xJ(x)ϕ(x)

}
, (4.152)

where the normalisation constant has to be chosen such that Z[J = 0] = ⟨0 | 0⟩ = 1 holds.
Then according to (4.151) the n-point Green’s function is given by the nth order functional
derivative of Z with respect to J :

iG(n)(x1, x2, . . . , xn) = ⟨0 |Tcϕ(x1)ϕ(x2) · · ·ϕ(xn)| 0⟩ =
1

in
δnZ[J ]

δJ(x1)δJ(x2) · · · δJ(xn)
. (4.153)

Before we come to the calculation of path integrals for physically relevant examples we want
to treat also fermions with the path integral formalism. As the first step we introduce the
generalised eigenvectors of the fermionic field operator ψ by

ψ(ti, x⃗) |ψ⟩ = ψ(x⃗) |ψ⟩ . (4.154)
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But here arises a problem, because the fermionic fields are anti-commuting rather than commut-
ing which means

{ψ(ti, x⃗),ψ(ti, y⃗)} = 0. (4.155)

This means that (4.154) can only be consistent with (4.155) if the ψ(x⃗) are anti-commuting
numbers. The correct mathematical concept was given by Grassmann in the 19th century.
Here we have to define how to calculate with such anti-commuting Grassmann numbers, especially
we have to define how to integrate and differentiate with these objects.
Nevertheless we first have to look on the algebraic properties of the Grassmann numbers. In the
mathematical sense it is an algebra, i.e. a vector space over the number fields R or C with a
multiplication we have to define now. First we look on a finite-dimensional Grassmann algebra.
We start with the G-basis of the Grassmann algebra, which should not be interchanged with the
basis of the vector space the Grassmann algebra is constructed with. The G-basis is a set of n
linear independent basic Grassmann elements gk with k = 1 . . . n. Now we define the product
of basis elements to be anti-commutative, associative and distributive with respect to vector
addition. At the same time it is commutative with the multiplication with ordinary numbers.
Then the algebra is given as the algebraic closure of this structure.
With help of this ideas one can build a basis of the vector space underlying the Grassmann algebra
with help of the basis elements. By definition we include the number 1 as a basis element of that
space. Thus we have

1, gj , gjk = gjgk = −gkgj , gjkl = gjgkgl, . . . , gk1k2...kn = gk1gk2 · · · gkn . (4.156)

Since the product of two gk is anti-commuting in any of the higher products each basic element
can appear at most one time. Two such products which are only different by the interchange of
some elements are the same up to a sign given by the permutation of the one order of indices to
the other. A standard choice for the basis is that we order the indices from left to right. Thus
the dimension of the vector space is

n∑

k=0

(
n
k

)
= 2n. (4.157)

Now we define the integral over the Grassmann numbers to be a linear mapping from the alge-
braic functions A (Gn), where Gn is the Grassmann algebra. We assume also that it should be
translationally invariant. Let us start with the most simple case of the Grassmann algebra G1.
The general algebraic function is

f(g) = α+ βg with α, β ∈ R or C. (4.158)

Using translational invariance and linearity of the integral we find
∫

dgf(g + γ) = (α+ βγ)

∫
dg + β

∫
dgg = α

∫
dg + β

∫
dgg (4.159)

and since this has to hold for all α, β, γ ∈ R or C we have
∫

dg = 0,

∫
dgg ̸= 0. (4.160)

For convenience we chose ∫
dgg = 1. (4.161)
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For a Grassmann algebra of rank n we define
∫
dg1dg2 · · · dgnf(g1, . . . , gn) as the iterated integral

over the basis elements. The only thing we have to do is to define a sign convention for a
monomial. If we like to integrate a monomial over gk we bring at first this element to the very
right and integrate after that over it using the rule defined above:

∫
dgkf(g1, . . . , ĝk, . . . , gn)gk = f(g1, . . . , ĝk, . . . , gn). (4.162)

The hat over gk as the element of f means that f is independent of it. By this sign convention
now the integral over g1 . . . gn is well defined as an iterated integral. At the same time we see,
that also the “differentials” dg1 . . . dgn are anti-commuting.
Since the most general element of A (Gn) is of the form

f(g1, . . . , gn) = α+ βijgigj + · · ·+ ωg1g2 · · · gn. (4.163)

With the definition above we have the simple rule
∫

dg1dg2 · · · dgnf(g1, g2, . . . , gn) = ω. (4.164)

Now if we define analytic functions of Grassmann algebra of finite rank by their formal series
expansion with respect to the basis elements we find that this series breaks down after n sum-
mands. Thus the set of analytic functions of Grassmann numbers is identical with A (Gn). So
we have defined the integral over Grassmann numbers completely by Eq. (4.164).
Now we prove the crucial theorem for the quantum field theory of fermions. Let {ηk, η∗k}n=1...n

the basis of a Grassmann algebra of rank 2n and Â an arbitrary n× n-matrix. Then
∫

dη∗1dη1 · · · dη∗ndηn exp(η∗Âη) = det Â where η = (η1, . . . , ηn)
t, η∗ = (η∗1, · · · , η∗n). (4.165)

To prove (4.164) we have to find the coefficient of η∗1η1 · · · η∗nηn in the series expansion of
exp(η∗)Âη and show that this is det Â. Now the expansion is

exp(η∗Âη) = 1 +Aklη
∗
kηl + · · ·+ 1

n!

n∏

ν=1

Akν lν (η
∗
kνηlν ). (4.166)

Now we rewrite the last summand in this expansion. Since the Grassmann basis elements are
anti-commutative the sum runs over all possible permutations of the indices k and l. Any term
with equal indices is zero. So the summand is

1

n!

∑

k∈Sn

∑

l∈Sn

n∏

ν=1

Ak(ν)l(ν)(η
∗
k(ν)ηl(ν)). (4.167)

Now we have to bring the Grassmann numbers in the lexical order to integrate over them all
using the definition of the integral. The only problem is to get the correct sign. First of all we
change the pairs of Grassmann numbers in a given permutation such that the starred numbers
are in lexical order. Now we have to bring the non-starred numbers to the correct position right
from the starred one with the same index. First we bring η1 to the right of the pair containing η∗1.
This gives no sign change, since η1 commutes with the paired objects it has to be interchanged
with. After this we interchange the non-starred number which was paired with η∗1 previously
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with the next starred number in order to get the correct ordered pair η∗1η1 on the very left. This
procedure gives an additional sign and the rest contains (n− 1) pairs with the starred objects in
lexical order. We have to repeat this procedure with this rest of the product as long as all is in
the correct order. The sign is thus the sign of the permutation of the non-starred objects times
the sign of the starred ones. So our product is

1

n!

∑

k∈Sn

∑

l∈Sn

n∏

ν=1

σ(l)σ(k)Ak(ν)l(ν)(η
∗
1η1) · · · (η∗nηn). (4.168)

But now from the elementary theory of determinants we know that

∑

l∈Sn

n∏

ν=1

σ(l)Ak(ν)l(ν) = σ(k) det Â. (4.169)

This shows that the sum over l is always the same result, namely det Â and the sum over k
cancels the factorial in the denominator. This proves (4.165).
Now we like to define the derivative with respect to Grassmann numbers. There are two sorts
of derivatives called left and right derivatives. The derivative operation is by definition a linear
mapping from A (Gn) to itself and thus it is enough to define the left (right) derivative applied
to a monomial. To obtain the left (right) derivative of a monomial with respect to gk one has
bring gk to the very left (right) of the monomial and cancel it from the product. If gk is not
contained in the monomial the derivative is set to zero. This shows the funny fact that in the
case of Grassmann numbers the integration is the same as right derivative.
Now we want to show another important result. For this we look on a Grassmann algebra of
rank 4n with basis elements g1, · · · , gn and g∗1, · · · g∗n, J1, · · · , Jn and J∗

1 , . . . , J
∗
n. Now we define

a function of the J and J∗ of the following form

f(J∗, J) = exp[C(g∗, g) + J∗g + g∗J ]. (4.170)

If C contains only monomials with an even number of g-elements, then

∂Rf

∂Jk
= g∗kf,

∂Lf

∂J∗
k

= gkf. (4.171)

The proof is simple: Since C contains only monomials with an even number of Grassmann basis
elements it commutes with all basis elements. Thus we can apply Cauchy’s law of multiplication
for (formal) power series to show that the exponential factorises

f(J∗, J) = exp[C(g∗, g)] exp[J∗g] exp[g∗J ]. (4.172)

Let us consider the right derivative with respect to Jk. From the definition of derivatives we have
to apply it only to the right factor. This exponential factorises by the same reason as before. So
we have

∂R exp[g∗J ]
∂Jk

=
∂R

∂Jk

n∏

j=1

exp(g∗jJj) = g∗k

n∏

k ̸=j=1

exp(g∗jJj) = g∗k exp(g
∗J), (4.173)

where we have repeatedly used the fact that gk commutes with functions containing only mono-
mials with an even number of Grassmann basis elements. In the last step we have further used
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the identity g∗k exp(g
∗
kgk) = g∗k. Plugging all this together we have proven the first equation

(4.171). With the same argument we can also show the second one to be true.
We shall also use the simple result

∫
dg1 . . . dgn

∂L/R

∂gk
f(g1, . . . gn) = 0. (4.174)

To see this we have only to remember that integration with respect to gk is the same as to take
the right derivative of gk. In any monomial gk can show up at most one time. If this is the case,
the (left or right) derivative will cancel it and the integration over gk makes the whole monomial
vanish. If gk is not contained in a monomial the (left or right) derivative cancels it. Thus the
net result of the whole procedure is zero in any case as we have claimed.
In conclusion we may say that the “analysis” of Grassmann numbers (which is more algebra
than real analysis) is in great parts analogue to the corresponding operations in real or complex
analysis. The only thing one has to take care of are the signs arising from the anti-commuting
structure of the Grassmann algebra.

4.5.1 Example: The Free Scalar Field

Here we like to derive an important example for the path integral. As we have seen in the
previous chapter in detail from the point of view of the operator formalism, to calculate transition
amplitudes in a perturbative expansion we need the time-ordered n-point functions. Now we can
directly apply what we have learnt in section 1.10. studying the example of 1 + 0-dimensional
ordinary quantum mechanics, namely to write down the generating functionals for time-ordered
n-point functions. The rest of this section is used to calculate this generating functionals for the
case of a free scalar field.
The Lagrangian is

L =
1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2. (4.175)

Now we like to apply the path-integral formula for calculating of the generating functional for
n-point Green’s functions:

Z0[J ] = ⟨0 |exp [i ⟨ϕ1J1⟩1]| 0⟩ = N

∫
Dπ

2π

∫
Dϕ exp[iS[ϕ, π] + i ⟨Jϕ⟩]. (4.176)

Herein we use the abbreviation ⟨f12...n⟩12...k for the integral of a space-time-dependent function
over the space-time variables x1, x2, . . . xk resulting in another space-time-dependent function of
the variables xk+1, . . . , xn.
The canonical field momentum is given by its definition:

π =
∂L

∂(∂tϕ)
= ∂tϕ. (4.177)

Thus the Hamiltonian is

H =
∂L

∂(∂tϕ)
∂tϕ− L =

1

2
[π2 + (∇ϕ)2 +m2] (4.178)

and the canonical action is given by

S[ϕ, π] =

∫
d4x

{
π∂tϕ− 1

2
[π2 + (∇ϕ)2 +m2]

}
. (4.179)
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Herein the canonical momentum π has to be seen independent from the fields ϕ!
But since (4.179) is a quadratical form in π, the π-integration in (4.176) is the value of the
exponential at the momentum for which the exponential becomes stationary (with fixed ϕ) times
a J-independent constant. The stationary point is given by

δS

δπ
= 0 ⇒ π = ∂tϕ (4.180)

and this is the value the momentum has in the Lagrangian formalism. Thus we have (including
the J-independent constant in the overall normalisation N)

Z0[J ] = N

∫
Dϕ exp[iS[ϕ] + i ⟨Jϕ⟩]. (4.181)

It should be clear that this calculation is also valid in the interacting case as long as the interaction
does not contain any derivative couplings and thus no canonical field momenta in the Hamiltonian
formulation. So we can start in these cases with the Lagrangian version of the path integral
formula, which has the advantage of being manifestly covariant. This is not the case in the
canonical formulation, because there we have split explicitly in space and time variables in an
arbitrary fixed reference frame!
Now we can rewrite the action with help of a integration by parts using the boundary conditions
included in the path integral, namely that the fields have to vanish in space-time infinity:

S[ϕ] = −1

2

∫
d4xϕ(□+m2)ϕ. (4.182)

Since this is a quadratic functional in ϕ we can invoke the same trick as we used for integrating
over the field momentum. The path integral is given by the stationary point of the exponential in
(4.181). The corresponding field will be denoted with φ and is given by the equations of motion

δS[φ]

δφ
= −(□+m2 − iϵ)φ = −J. (4.183)

For the path integral we have included a regularisation reading m2 as m2 − iϵ to project out the
vacuum state as explained at length in chapter 1. We find immediately the solution of (4.183)
with help of the Green’s function of the Klein-Gordon equation with the boundary conditions
given by the iϵ-description. We find the same as in chapter 1 in the case of nonrelativistic path
integral formulation that projecting out the vacuum expectation values leads to the uniqueness
of the Green’s function, namely the causal, to use for solving the inhomogeneous equations of
motion:

φ(x) = −
∫

d4x′D(x− x′)J(x′), (4.184)

where D is the Green’s function with the causal boundary conditions, the free Feynman propa-
gator. It can be calculated by taking the Fourier transform of the defining equation

−(□x +m2 − iϵ)D(x− x′) = δ4(x− x′) ⇒ D(x− x′) =
∫

d4p

(2π)4
exp[−ip(x− x′)]
p2 −m2 + iϵ

. (4.185)

This is, of course, the free Feynman propagator we know from chapter 3, where we have obtained
it by calculating the vacuum expectation value of the time-ordered product of two field operators
(i.e. as the contraction in the sense of Wick’s theorem).
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Inserting the solution (4.184) into the action we find for the path integral (again absorbing a
J-independent constant in the normalisation)

Z0[J ] = exp

[
i

2
⟨φJ⟩

]
= exp

[
− i

2
⟨J1D12J2⟩12

]
. (4.186)

Herein we have used the abbreviation D12 = D(x1 − x2) = D(x2 − x1) where the symmetry of
the Feynman propagator can be seen from (4.185) by substituting p → −p. The same time we
have fixed the normalisation constant such that Z0[0] = ⟨0 | 0⟩ = 1.

4.5.2 The Feynman Rules for ϕ4 revisited

Now we are ready to rederive the Feynman rules with help of our functional technique. Here we
like to find the Feynman rules for the disconnected Green’s functions.
Thus we write down again our path integral in the Lagrangian form:

Z[J ] = N

∫
Dϕ exp(iS0[ϕ] + iSI [ϕ] + i ⟨J1ϕ1⟩1). (4.187)

Here we have split the action functional in a free part S0, which is a quadratic functional in ϕ
and an interaction part SI .
Now we factorise the exponential in the free (including the source term) part and the interaction
part. Then we expand the interaction part in powers of SI . Since SI is (for the most fundamental
cases) a polynomial in ϕ and eventually its derivatives each field can be substituted by 1/i(δ/δJ).
Formally we may write this in the form

Z[J ] = N exp

{
iSI

[
δ

iδJ

]}∫
Dϕ exp(iS0[ϕ] + i ⟨J1ϕ1⟩) = N exp

{
iSI

[
δ

iδJ

]}
Z0[J ]. (4.188)

Again we have absorbed all J-independent factors into N . Now we have found Z0[J ] above and
are ready to obtain the Feynman rules for the disconnected n-point Green’s functions in the form

iG(n)(x1, x2, . . . xn) =

(
δnZ[J ]

iδJ(x1)iδJ(x2) · · · iδJ(xn)

)

J=0

. (4.189)

For this we use the explicit form for Z0 to calculate the two-point function up to first order in λ
as an example to find again the Feynman rules we have already derived in chapter 2 with help of
the operator method. To that end we have to perform all the functional derivatives. This could
be done completely analytically, but it is much more convenient to use from the very beginning
a diagrammatical picture for the calculation.
To do so at first we introduce the basic diagrammatical elements, which are in our case dots
(symbolising space-time points), lines (representing propagators), and full blobs with a dot (rep-
resenting external currents with its space-time argument): Now we can write down the generating
functional for the free particles (4.186) as the series of the exponential function (see fig. 4.2).
We have shown the factors 1/2 explicitly.
Now it is very simple to find the rules for calculating the Dyson-Wick series with help of (4.188).
As a very simple example let us calculate the first-order correction to the two-point Green’s
function. At first we have to calculate

∫
d4xδ4Z0[J ]/δJ

4(x) as the first-order correction of the
generating functional. After that we have to differentiate the result again with respect to J(x1)
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= ij(x)
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Figure 4.1: Graphical elements for deriving the Feynman rules

+ · · ·+ 1
2!

(
1
2

)2
Z0[J ] = 1 + 1

2

Figure 4.2: Diagrammatic representation for Z0. All internal space-time points have to be
integrated out

∫
d4x

and J(x2). After all we have to set J = 0 and renormalise the result by dividing through Z[0]
up to the given order (here it is the first-order) in λ.
Now the differentiation with respect to J means truncating a “current-blob” from the diagrams
in fig. 4.2 and to multiply with the correct factor (coming from the rule of differentiating powers
of J).
From this we learn that we have to keep only the terms in the power expansion in fig. 4.2
which contain the same number of external currents as we have to differentiate the expansion to
obtain the searched expression. Indeed, a term which contains less currents than the number of
differentiations is cancelled by the differentiations, one with more currents will have at least one
current left after performing the differentiations and cancels when setting J = 0 at the very end
of the calculation.
In our case we have to keep only the term with six external currents. Then one has to build
δ4/δJ(x)4Z0[J ] with help of the product rule for functional differentiation. The final result is
given by fig. 4.3.
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��
��
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���� + · · ·+6δZ0[J]
δJ(x)4 = · · ·+ 3

Figure 4.3: Contribution to Z in first order perturbation theory with two external currents. The
factor for each diagram is given explicitly and is not contained in the diagram!

The same has to be done to calculate the first-order correction to Z[0] for renormalising the
propagator up to the given order. The result is shown in fig. 4.4.
At the end we find that the vacuum to vacuum amplitude cancels with the same part in the
two-point result shown in fig. 4.3.
The reader should do this graphical calculations on his own. One realizes immediately from
this very simple example that we get the same Feynman rules as in the canonical technique but
now without using Wick’s theorem from the operator technique. Here it is simply the result
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Z[0] = 1− iλ
8 +O(λ2)

Figure 4.4: Contribution to the vacuum-to-vacuum amplitude in first order perturbation theory

of functional differentiation rules. The only difference to the canonical formalism is, that we
have lost the normal ordering of the operators which gave the additional rule, that all tadpole
contributions can be dropped. Now normal ordering was used to fix the vacuum energy for the
free fields to the value 0.
But on the other hand this is not as worse as it looks like, because we have to renormalise the
perturbative results order by order in λ anyway. In general, many diagrams containing at least
one loop are not well defined as we have already seen at the end of chapter 2. We shall solve this
problem of infinities in chapter 6 and appendix C.

4.6 Generating Functionals

Now we shall derive some other formal features for our generating functionals which are important
to obtain the LSZ reduction formula and some important subclasses of diagrams which can be
used as building blocks for higher order calculations. One of such subclasses are the connected
diagrams, which can be used to prove that all vacuum to vacuum amplitudes cancel exactly when
calculating the n-point Green’s functions.
The main advantage is that the number of diagrams to calculate, which are contained in a certain
subclass is much smaller than the number of all diagrams.
We shall also define the effective action, which is shown to be the generating functional for
one-particle-irreducible or 1PI truncated diagrams. These are important building blocks for the
connected Green’s functions. As we shall see they are in a certain sense those diagrams we have
to calculate (including regularisation and renormalisation to get rid of the infinities) at least to
build up all other sorts of diagrams mentioned so far.

4.6.1 LSZ Reduction

As we have already seen in chapter 3 we can get the S-matrix-elements, i.e., the transition
amplitude to find a system in the asymptotic free out-state |f⟩ after a reaction which was
prepared in a asymptotic free in-state |i⟩, by truncating the (disconnected) n-point functions and
multiplication with the appropriate free-particle amplitudes for in- and out-states respectively.
This connection is known as LSZ reduction formula and was proved in section 3.6 with help of
the operator formalism.
Now we shall again prove this important theorem with help of our path integral formalism. We
shall again use ϕ4-theory as an example, which can be extended to more complicated theories
immediately.
Due to eq. (4.150) the only difference between the path integral formula for the generating
functional for n-point functions Z and the generating functional S for S-matrix elements are the
boundary conditions for the fields. In the former case we have ϕ → 0 for t → ±∞ in the latter
we have

ϕ(x) ∼=
t→±∞

φ0(x) (4.190)
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where φ0 is a given free state. This can be written as

φ0(x) =

∫
d3p⃗√

(2π)32p0
[a(p⃗) exp(−ipx) + a(p⃗)∗ exp(ipx)]p0=ω(p⃗)−iϵ . (4.191)

Here the iϵ-description is to project out the in- and out-states with definite momentum for
t→ ±∞.
The generating functional for S-matrix elements is given by

Σ[J, φ0] =

∫ φ0

φ0

Dϕ exp [iS[ϕ] + ⟨ϕ1J1⟩1] . (4.192)

It is clear that we obtain a certain S-matrix element by inserting (4.191) in (4.192) and taking
the functional derivative with respect to a(p⃗) for a in-particle with momentum p⃗ and a∗(p⃗) for a
out-particle with momentum p⃗. It is also clear that one can do the same directly in space-time
by differentiating S[J, φ0] with respect to φ0 for each in- resp. out-field, multiply the result with
the one-particle free in- resp. out-state and integrate over the space-time points.
All this is done in presence of the external source J which has to be set to zero at the very end
of the calculation.
But now we can use the external source to write down the Dyson series for the generating
functional S in the same way as we did for the generating functional Z in (4.188):

Σ[J, φ0] = exp

{
iSI

[
δ

iδJ

]}
Σ0[J, φ0], (4.193)

where S0[J, φ0] is the generating functional for the free particles under influence of an external
source J and SI [ϕ] is the interaction part of the action functional.
Now we substitute

ϕ(x) = ϕ̃(x) + φ0(x). (4.194)

Together with the translational invariance of the path integral measure we obtain

Σ0[J, φ0] =

∫
Dϕ̃ exp

{
iS0[ϕ̃+ φ0 + i

〈
J1(ϕ̃1 + φ01)

〉
1

}
, (4.195)

where ϕ̃ fulfils the homogeneous boundary conditions ϕ̃(x) → 0 for x0 → ±∞. Since for φ0 the
free Klein-Gordon equation holds, integrating the action functional by parts we have:

S0[φ0 + ϕ̃] = S0[ϕ̃]. (4.196)

This leads to
Σ0[J, φ0] = Z0[J ] exp[i ⟨J1φ01⟩1]. (4.197)

Inserting this result into (4.193) we find using

[□x +m2]
δZ0

δJ(x)
= iJ(x)Z0[J ], (4.198)

which is obtained from (4.186) and the fact, that the Feynman propagator is the resolvent of the
Klein-Gordon operator (4.185) on the left hand side in eq. (4.198),

Σ[J, φ0] = exp

[〈
φ0(x)(−□x −m2)

δ

iδJ(x)

〉

x

]
Z[J ]. (4.199)
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From this we obtain the reduction formula by functional differentiating with respect to a(p⃗)
according to the in- and with respect to a∗(p⃗) out-states one likes to have in the S-matrix
element.
Performing the above explained calculation for an arbitrarily given S-matrix element Sfi we
find (up to a phase factor for the wave functions, which is physically irrelevant) again the LSZ
reduction formula (3.110). The difference is that the renormalisation factors Z are now absorbed
in the overall renormalisation of the generating functional Z which is such that Z[J = 0] =
⟨0, out |S| 0, in⟩ = 1.

4.6.2 The equivalence theorem

Now we shall prove a theorem which will become important for the treatment of non-abelian
gauge theories in chapter 7.
Let F1[ϕ] be an arbitrary local functional of ϕ. Suppose we define a modified generating functional
Z ′[J ] by

Z ′[J ] = N

∫
Dϕ exp[iS[ϕ] + i ⟨J1(ϕ1 + F1[ϕ])⟩1]. (4.200)

It is clear that with this definition we create new n-point functions compared to those arising
from (4.187) by taking derivatives with respect to J . Nevertheless, as we shall show now, the
S-matrix elements derived from

Σ′[J, φ0] = exp

[〈
φ01(□1 +m2)

δ

δJ1

〉

1

]
Z ′[J ] (4.201)

are the same as those derived from Σ. It is clear that we can write

Z ′[J ] = exp

(
i

〈
J1F1

[
δ

δJ

]〉

1

)
Z[J ] (4.202)

Since the functional derivatives in (4.201) and (4.202) are commuting we find immediately

Σ′[J, φ0] = exp

(
i

〈
J1F1

[
δ

δJ

]〉

1

)
Σ[J, φ0]. (4.203)

Since the S-matrix elements are generated by Σ[J = 0, φ0] it is clear that also Σ′[J = 0, φ0]
generates the same S-matrix-elements.

4.6.3 Generating Functional for Connected Green’s Functions

From a diagrammatical point of view it is immediately clear that one has to calculate only the
connected Green’s functions, because if the diagram is composed out of two or more connected
diagrams which are not linked together, then the whole expression is given as the product of its
connected parts.
At first we introduce the diagrammatics for the disconnected n-point functions.
Now we call a diagram connected, if it does not split into two or more subdiagrams which are
not connected together. Now we prove the following theorem. For first reading the reader may
omit the proof, because it is rather technical.
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x1

x3

xn

iGn
d (x1, . . . , xn) =

x2

Figure 4.5: Diagrammatic representation for the exact disconnected Green’s functions

Theorem 2 (Connected Green’s Functions). The functional

iW [J ] = ln{Z[J ]} ⇔ Z[J ] = exp{iW [J ]} (4.204)

is the generating functional for connected n-point functions.

G(n)
c (x1, . . . , xn) =

(
1

i

)n( δnW [J ]

δJ(x1) · · · δJ(xn)

)

J=0

(4.205)

Proof. We represent the connected Green’s functions diagrammatically as shown in fig. 4.6.

x3

x2

xn

x1

Figure 4.6: Diagrammatic representation for the exact connected Green’s functions

The main difficulty in proving this theorem is to formulate the diagrammatical statement in
analytical terms. The mathematics is rather simple. Only the use of chain and product rule of
functional differentiating is needed.
At first we have to solve the combinatorial problem to express the fact that the disconnected
n-point Green’s function is given by the sum of all products of connected ones with together n
space-time arguments x1, . . . xn.
In mathematical terms we have to label all disjoint partitions of space-time coordinates. Any
summand entering the sum of products of connected functions can be classified after the number
of contained factors and the space-time points attached to a connected subdiagrams the diagram
is built off.
Thus we define the following quantities

• Pnk : The set of all disjoint partitions of the index set Nn = {1, 2, . . . n} in k subsets.
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• rnkjl: The number of elements in the lth set of the jth partition out of Pnk .

• mnkjl1, . . . ,mnkjlrnkjl
labels the elements contained in the jth partition out of Pnk .

To prove the theorem we define at first the functions with external source J :

iG
(n)
J =

1

in
δnZ[J ]

δJ(x1) · · · δJ(xn)
; G

(n)
cJ =

1

in
δnW [J ]

δJ(x1) · · · δJ(xn)
. (4.206)

The arguments of this functions are always x1, . . . , xn. Now we state that the following equation
holds:

G
(n)
J =

Z[J ]

in

n∑

k=1

ik
∑

Pn
k

∑

j

k∏

l=1

irnkjl−1G
(rnkjl)
cJ (xm1nkjl

, . . . , xmnjklrnkjl
). (4.207)

The first is to understand that this formula is identical to the statement of the theorem. Of
course the n-point Green’s function is given by the sum over all possible products of connected
Green’s functions with together n external points and with each argument x1, . . . , xn one and
only one time appearing as these external points. This is the reason why we had to take the
disjoint partitions of the external points. It is also clear that k = 1, . . . , n, because there is
one disjoint partition with one element, namely the set Nn of the indices itself, and one disjoint
partition with n elements containing all sets with one element. Thus (4.207) is the statement of
the theorem written in analytical form.
Finally we see that the i-factors in (4.207) cancel. Since the partitions have to be defined as
disjoint we have indeed

k∑

l=1

rnjkl = n. (4.208)

The proof is now given easily by induction:

The statement is true for n = 1, because G(1)
J (x1) = Z[J ]G

(1)
cJ (x1) follows directly by differenti-

ating the definition of W (4.204).
Now we suppose the statement is true for n. To perform the induction, we have to do is to
differentiate (4.207) after J(xn+1). Using the product rule for functional derivatives we find:

G
(n+1)
J =

1

i

δG
(n)
J

δJ(xn+1)
=

=
1

in+1

δZ[J ]

δJ(xn+1)

n∑

k=1

ik
∑

Pn
k

∑

j

k∏

l=1

irnkjl−1G
(rnkjl)
cJ (xmnkjl1

, . . . , xmnkjlrnkjl
)+

+
Z[J ]

in+1

n∑

k=1

ik
∑

Pn
k

∑

j

δ

δJ(xn+1)

k∏

l=1

irnkjl−1G
(rnkjl)
cJ (xmnkjl1

, . . . , xmnkjlrnkjl
)

(4.209)

The last step is to understand that with this expression we have taken account of all disjoint
partitions of the set Nn+1 of indices.
Since

δZ[J ]

δJ(xn+1)
= iZ[J ]G

(1)
cJ (xn+1) (4.210)
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the first term in (4.209) is the sum over all disjoint partitions of Nn+1, which are partitions of
Nn with the one-element set {xn+1} added to the partition. Also the factor i is correct for the
one-point Green’s function. Indeed by adding the one-element set to a partition Pnk of the index
set Nn makes a partition of the class Pn+1

k+1 of partitions of the index set Nn+1.
Further holds

δ

δJ(xn+1)
G
rnkjl

cJ (xmnkjl1
, . . . , xmnkjlrnkjl

) = iG
rnkjl

cJ (xmnkjl1
, . . . , xmnkjlrnkjl

, xn+1). (4.211)

In the 2nd part of (4.209) we can use the product rule again. Then we that this procedure
corresponds to making a partition of class P kn+1 of Nn+1 out of a partition of class P kn of Nn by
adding the element (n+ 1) to one of the subsets of the partitions in P kn . The additional factor i
has to be counted with irnjkl .
Now we are finished with our proof because all disjoint partitions of Nn+1 are obtained from
those of Nn by adding the element (n + 1) as a one-element set to a partition of Nn or to add
this element to one of the sets already existing in a partition of Nn.

Q.E.D.

Now the fact, that the vacuum-to-vacuum subdiagrams cancel, is clear too: Since Z = exp(iW )
after performing all the functional derivatives to obtain the n-point Green’s functions in terms
of connected ones, setting J = 0 one has to divide by Z[0] to get the proper normalisation of the
vacuum-to-vacuum amplitude to 1. This cancels Z[0] = exp(iW [0]).
The same holds order by order in perturbation series, because then we apply our theorem to Z0

and we have already shown that one obtains the Dyson-Wick expansion of the exact Green’s func-
tions just by calculating functional derivatives of the free generating functional Z0 = exp(iW [0]).

4.6.4 Effective Action and Vertex Functions

The next subset of diagrams is given by the exact n-point vertex functions. These are defined
as the one-particle irreducible truncated diagrams with n external space-time points. Here a
diagram is called one-particle irreducible or 1PI if it is not possible to disconnect the diagram by
cutting only a single exact propagator line. The diagram is called truncated if all propagators
connecting an internal space-time point with an external one are left out. Thus the external
points are connected with the diagram by at least two propagator lines.
Before we go into the analytical details we should explain why this is a useful subset of diagrams.
The most practical reason is given by the momentum space representation of the Feynman rules.
Due to momentum conservation a diagram which consists of two parts connected only through
one propagator line splits in the product of the two parts times the propagator. This is a direct
consequence of the translation invariance of the theory!
In addition we shall see in the next section that we have a description of the quantum field theory
in form of a variational principle which is close to classical field theory in this sense. For instance
we shall derive Noether’s theorem for the quantum case with help of the effective action which
is introduced in the following theorem. Its proof is also quite involved (but not really difficult)
and may be omitted at the first reading.

Theorem 3 (The Effective Action). By performing a functional Legendre transformation of the
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generating functional W ,

Γ[φJ ] =W [J ]−
∫

d4xφJ(x)J(x) with φJ(x) =
δW [J ]

δJ [x]
, (4.212)

one obtains a generating functional for exact vertex functions.
Especially the functional inverse of the exact connected two-point Green’s function (propagator)
is given by

Γ
(2)
J (x1, x2) = − δ2Γ[φJ ]

δφJ(x1)δφJ(x2)
. (4.213)

In general the proper vertex functions are defined without special sign conventions by

Γ
(n)
J (x1, . . . , xn) =

δnΓ[φJ ]

δφJ(x1) · · · δφJ(xn)
. (4.214)

Proof. The vertex functions are represented diagrammatically as shown in fig. 4.7.

Γ

Figure 4.7: Diagrammatical representation for the vertex functions

The first step is to show, that Γ(2) is the negative functional inverse for the two-point connected
Green’s function. This follows immediately from (4.212),

δΓ =
δW

δJ
δJ − φJδJ − JδφJ = −JδφJ . (4.215)

Thus Γ depends only on φJ and only implicitly on J . From the last equation it follows that

δΓ[φJ ]

δφJ(x)
= −J(x). (4.216)

Because of the definition (4.213) we have
∫

d4y2Γ
(2)
J (x1, y2)G

(2)
cJ (y2, x2) = −

∫
d4y2

δJ(x1)

δφJ(y2)

δφJ(y2)

δJ(x2)
= −δ(4)(x1 − x2), (4.217)

which proves our statement that the two-point vertex function is the negative functional inverse
of the two-point connected Green’s function.
With help of this equation we find

G
(2)
cJ (x1, x2) =

∫
d4y1d

4y2Γ
(2)
J (y1, y2)iG

(2)
cJ (x1, y1)iG

(2)
cJ (x2, y2) (4.218)

which is equivalent to the graphical statement that the two-point vertex function is identical
with the truncated two-point connected Green’s function (keep in mind, that a line with a open
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circle means the full two-point propagator, iG(2)
cJ ). Of course there is no possibility for the exact

two-point connected Green’s function to contain a self-energy insertion, because it is already
fully dressed. The two-point vertex function thus has just to be dressed again with two exact
propagators, as stated by (4.218).
The systematics for an inductive proof starts with the three-point functions. Diagrammatically
it is clear, that also the three-point connected Green’s function cannot be one-particle reducible.
Thus the three-point function should be expressed just by dressing each external point of the
three-point vertex with an exact propagator. This is shown to be true for the analytical statement
by differentiation of (4.218) with respect to J(x3). Using (4.214) we find with help of the chain
rule of functional differentiation

1

i

δΓ
(n)
J [y1, . . . , yn]

δJ(x)
=

∫
Γ
(n+1)
J (y1, . . . , yn, yn+1)iG

(2)
cJ (yn+1, x). (4.219)

With help of this relation we obtain by differentiation of (4.218) and (4.217) bringing all G(3)
cJ to

the left hand side of the equation

G
(3)
cJ (x1, x2, x3) =

∫
d4y1d

4y2d
4y3Γ

(3)
J (y1, y2, y3)

3∏

k=1

iG
(2)
cJ (xk, yk). (4.220)

But this is the statement: To obtain the three-point connected Green’s function one has to dress
the three-point vertex function with exact propagators.
Now the rest is done by induction. Let us first think about the diagrammatical statement of the
theorem. It says that we can calculate the n-point connected Green’s function by summing all
possible diagrams built with help of the vertex functions linked together with the exact connected
two-point Green’s functions (shortly called the exact propagator) with n external points, which
have to be dressed with exact propagators.
In another way we can express this as follows: One has to build the exact Green’s functions with
help of the exact vertices and propagators as in the case of perturbation series diagrams but
taking only diagrams without loops. Now a diagram without loop is called a tree diagram and
in perturbation theory the sum over all tree diagrams contributing to a n-point Green’s function
(connected or disconnected) is called the tree approximation of this function. Thus the short form
of the theorem is: The exact n-point Green’s function is given by the tree-level approximation
using exact vertex functions and exact the Green’s function as building blocks.
As we shall see in the next section, the perturbation series can also be seen as an expansion
in powers of ℏ. A diagram with L loops is of order ℏL−1. The analogue in ordinary quantum
mechanics is known as WKB approximation1.
So let us come back to our proof. Similarly to the proof of the theorem in the last section we
have to classify now our diagrams as built by tree level diagrams of exact vertex functions and
propagators.
Again we can classify the diagrams by the disjoint partitions of the set Nn in k non-empty
subsets. These sets contain the external points which are linked to the 1PI subdiagrams of the
tree diagram. The topology of the diagram is fixed by the number of elements contained in the k
subsets of Nn. A one-element set in a partition simply tells us to dress connect the corresponding
external point with a point of a vertex function. Although this does not classify the topology of

1named after the inventors of the method, Wentzel, Kramers and Brillouin
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the diagram this special case is important as it will become clear when doing the induction from
n′ to n′ + 1 below.
The topological type of a diagram is given by a tuple of natural numbers (n1, n2, . . . , nk), where
nj ≥ 2 is the number of external points connected with the jth (j = 1, . . . , k) 1PI subdiagram
of the tree diagram.
Let us take the four-point connected Green’s function as an example. One has partitions of type
(4) and of type (2, 2). The first one corresponds to the dressed four-point vertex, the second one
to two three-point vertices connected with one internal propagator line and with dressed external
points. This is shown in fig. 4.8.

Γ=

Γ

Γ

+ + exchange

2

4

1

3

2

3

2

3

1

4

1

4

Figure 4.8: The connected four-point function as a tree diagram built out of exact vertex functions
and propagators. By “exchange diagrams” we mean the diagrams with the three point vertices
of the same topology but with interchanged external legs (there are three tree diagrams of this
kind).

Now we have to show that our analytical statement coincides with these diagrammatical rules.
We have seen that it holds for n = 3 and we can show the rest by induction. So we suppose,
that the theorem is correct for all connected n-point functions with n ≤ n′. We have to show
that the theorem then also holds for (n′ + 1)-point functions.
But this can be done diagrammatically, if we find the diagrammatical manipulations correspond-
ing to differentiating the sum of n′-point tree diagram with respect to the external current. The
result are n′ +1-point tree diagrams and, because the theorem is claimed to hold for n ̸= n′, the
result is the complete (n′ + 1)-point functional.
To differentiate an n′-point function one has to use the product rule under the integral and
in the case of differentiating a vertex function the chain rule already given in (4.219). The
diagrammatical meaning of this calculations is as follows:

• If the derivative 1/iδ/δJ is applied to a vertex function, according to (4.219) this generates
a vertex function with one more external point which is dressed by a propagator iGcJ . So
we have again a diagram consistent with our rules. In the description by disjoint partitions
of Nn′+1 this corresponds to adding the new point xn′+1 to one of the sets in Nn′ , which
contain at least two points.

• The derivative is applied to a propagator which connects a vertex point with an external
point. This propagator gives a three-point connected Green’s function which is given as
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the dressed three-point vertex function according to (4.220). Thus the resulting diagram
has one internal propagator line more than the original one. This means making a disjoint
partition of Nn′+1 by adding the element xn′+1 to a one-element set in the partition of Nn′

describing the original diagram.

• The derivative is applied to a propagator, which connects two vertex functions within the
diagram. The result is again a three-point vertex function with one point connected to the
external point xn′+1 and with its two remaining points connected to the rest of the diagram
by propagator lines. This means adding the one-element set {xn′+1} to the partition of
Nn′ corresponding to the original diagram.

Now it is clear, that from claiming the theorem to hold for n = n′ follows, that it also holds for
n = n′+1 since one obtains all disjoint partitions of Nn′+1 out of the partitions of Nn′ by adding
the n′ + 1th point either to a set of the partition of Nn′ or adding the one-element set {xn′+1}
to a partition of Nn′ and these possibilities correspond to product and chain rule of functional
derivative of G(n′)

cJ written as the sum of tree diagrams according to the theorem.
Particularly this shows, that for n = n′+1 there is no propagator which connects two arguments
of the same vertex function if this is true for n = n′, but this has been the assumption of our
induction proof. Of course if there was such a line connecting two arguments of one and the
same vertex, we could cut this internal line without disconnecting the diagram. This shows that
the n-point vertex function is the complete truncated 1PI n-point Green’s function. Q.E.D.

Finally we should say that we have to set J to zero after all derivatives are taken. According to
(4.216) for the vertex functions, seen as functionals of φJ , this means, that we have to insert the
field φ for φJ , which solves the equation of motion

δΓ[φ]

δφ(x)
= 0. (4.221)

Our proof also shows, why Γ as a functional of φ is called the “effective action”: The full connected
n-point Green’s functions are given as the tree-level approximation of the field theory defined by
the effective action as action functional. According to the ℏ-expansion in the next section there is
some analogy of the tree-level approximation of the quantum field theory with the corresponding
classical field theory.
It should also be mentioned that in momentum space it is convenient to define the self-energy Σ
by

Σ(p) = G−1
0 −G−1 = p2 −m2 + Γ(2)(p), (4.222)

fulfilling Dyson’s equation:

G = G0 +GΣG0. (4.223)

This shows that Σ is perturbatively given as the sum over all amputated 1PI diagrams with at
least one loop2.

2Since in the perturbative diagrams a line stands for iG0 any diagram with these properties contributes to
−iΣ.
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4.6.5 Noether’s Theorem (Quantum Part)

In section 3.3 we have seen the important connection between symmetries and conservation laws,
known as Noether’s theorem, for the classical field theory.
Now we can describe the quantum field theory also by a variational principle, but with the
quantum effective action Γ[φ] introduced in the last section, rather than with the classical action
S[φ].
We start from the invariance of the classical action and ask for the consequences for the effective
action of the corresponding quantised theory. For this we suppose, that the path integral measure
of the fields Dϕ is invariant under the symmetry transformation and that it can be written in the
Lagrangian form.
Now we make the substitution ϕ = ϕ′−δϕ in the generating functional (4.152). Since S[ϕ] = S[ϕ′]
and Dϕ = Dϕ′ by assumption we have

Z[J ] = N

∫
Dϕ′ exp{iS[ϕ′] + i

〈
J1ϕ

′
1

〉
1
} exp{iδ ⟨J1ϕ1⟩}. (4.224)

Now J is an auxiliary external current, which we can give arbitrary behaviour under the symmetry
transformation. We shall assume that it transforms as a set of scalar fields under Poincaré
transformations and as a scalar under intrinsic transformations of the fields ϕ.
Now we subtract the original form (4.152) of the functional and expand the expression to linear
order in the infinitesimal transformation:

∫
Dϕδ ⟨J1ϕ1⟩1 exp[iS[ϕ] + i ⟨J2ϕ2⟩] = 0. (4.225)

Now we have defined J to be a set of scalar fields, leading to

δ ⟨J1ϕ1⟩1 =
∫

d4xJ(x)[δϕ(x)− δxµ∂µϕ], (4.226)

as it was shown when proving Noether’s theorem for classical fields in section 3.3.
To understand the meaning of (4.225) better, we write the most general infinitesimal transfor-
mation we want to take into account in the following form (also used in section 3.3):

δϕ(x) = τa(x, ϕ)δη
a, δxµ = −Tµa (x)δηa, (4.227)

where the δηa are the infinitesimal independent parameters of the Lie group.
According to the general Feynman-Kac formula (4.151) and using the effective action formalism
we obtain from (4.216)

∫
d4x

δΓ[φJ ]

δφJ(x)
δηa ⟨0 |Tc[τa(x,ϕ)− Tµa ∂µϕ]| 0⟩ = 0, (4.228)

which is exactly of the same form, we deduced for the classical action to prove Noether’s theorem
in the classical case, if τ is linear in ϕ, because then we have ⟨τ(ϕ, x)⟩ = τ (⟨ϕ⟩ , x) and ⟨ϕ⟩ = φJ ,
where ⟨· · ·⟩ is the vacuum expectation value for the operators under influence of the external
current J .
Together we have shown, that, if the classical action functional is invariant under a infinitesimal
transformation, which is linearly realized on the fields and leaves the path integral measure
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invariant, then the effective action of the corresponding quantum field theory also is invariant
under the same transformation. We can immediately conclude, that then Noether’s theorem
holds for the quantum case, i.e., there exists a conserved Noether current for each independent
symmetry transformation, which operates linearly on the fields.
Warning! All this is purely formal, because we have not taken into account that one has to
regularise and renormalise the field theory. All this formal manipulations with path integrals
have only sense if we are able to regularise the theory in some way. This regularisation has to
be done such that the symmetries hold for the regularised theory too. One nice regularisation
technique is the dimensional regularisation invented by Veltman and van ’t Hooft especially
for gauge theories (explained in chapter 6 of this notes). Now it may happen that there is
a transformation which leaves the classical action invariant in the physical 1 + 3-dimensional
space-time, but that there is no symmetry in other space-time dimensions. Then the regularised
theory has no symmetry and thus it happens that the effective action fails also to be symmetric
under the symmetry transformation, although the formal assumptions may be fulfilled.
It can also be that the path integral measure is not invariant under the symmetry transformation,
which again breaks the symmetry for the effective action. All these cases, when a symmetry of
the classical action is not a symmetry of the effective action, are called an anomaly. Thus we
should keep in mind that we have to check carefully if the theory is free of anomalies before we
use any symmetry argument in the quantum case.
In the next section we show in which sense Noether’s theorem holds for the Dyson-Wick expansion
of the quantum field theory, if all the conditions for the transformation to be a symmetry of the
exact effective action is fulfilled.

4.6.6 ℏ-Expansion

In this section we reintroduce ℏ explicitly in the path integral formulation of quantum field
theory. We expect that it should be possible to expand around the classical solutions for the
fields which we denote by φ0. In order to discuss the generating functionals for disconnected and
connected Green’s functions and the effective action which generates proper vertex functions we
include an external source J :

δS

δϕ1

∣∣∣∣
ϕ=φ0

+ J1 = 0. (4.229)

The generating functional for disconnected Green’s functions is defined according to 4.187. As
explained above we reintroduce ℏ explicitely:

Z[J ] = N

∫
Dϕ exp

[
i

ℏ
(S[ϕ] + {J1ϕ1}1)

]
:= exp

(
i

ℏ
W [J ]

)
. (4.230)

Now we substitute
√
ℏϕ′ = ϕ−φ0 where φ0 is the classical field subject to the equation of motion

(4.229). The classical field is of course of order O(ℏ0) since it is completely classical while the
quantum part should be scaled with

√
ℏ according to its dimension. With this substitutions we

find

Z[J ] = exp

[
i

ℏ
(S[φ0] + {J1φ01}1)

]
Z1(J) (4.231)
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with

Z1[J ] = N

∫
Dϕ′ exp

[(
i

2

{
D−1

12 ϕ
′
1ϕ

′
2

}
12

− iλ
√
ℏ

3!

{
φ01ϕ

′
1
3
}
1
− iλ

4!
ℏ
{
ϕ′1

4
}
1

)]
,

D−1
12 =

(
−□1 −m2 − λ

2
φ2
01

)
δ(4)(x1 − x2).

(4.232)

This shows that we can evaluate an ℏ-expansion for Z1 if we apply the perturbative expansion
given for Z itself by (4.188). There are only two differences: The first is that the propagator is
given by D12 which depends on the classical field φ0 and thus implicitly on the external source
J . The second is that we are not allowed to cancel the additional factor for Z10[J,K] (where K
denotes a new independent external source), because it depends on φ0 and thus also on J .
Thus we obtain

Z1[J ] = N

{
exp

[
−i

√
ℏṼ (3)

[
1

i

δ

δK1

]
− iℏṼ (4)

[
1

i

δ

δK1

]]
Z

(0)
1 [J,K]

∣∣∣∣
K=0

}

1

. (4.233)

Here we have abbreviated the interaction parts of the Lagrangian in (4.232) by

Ṽ (3)(φ) =
λ

6
φ0ϕ

′3, Ṽ (4)(φ) =
λ

24
ϕ′4, (4.234)

while Z(0)
1 (J,K) is given by the quadratic part of the Lagrangian in (4.233). We apply to it

the same trick as for obtaining (4.186) but here we have to keep the overall factor, because it
depends in J via its dependence on φ0:

Z
(0)
1 [J,K] =

∫
Dϕ′ exp

[
i

2

{
D−1

12 ϕ
′
1ϕ

′
2

}
12

+ i
{
K1ϕ

′
1

}
1

]

= exp

[
− i

2
{D12K1K2}12

] ∫
Dϕ′ exp

[
i

2

{
D−1

12 ϕ
′
1ϕ

′
2

}
12

]
.

(4.235)

To calculate the path integral factor we think of the path integral in terms of its discretised form.
Then after a Wick rotation of the integrand we can use (1.77) to obtain immediately

∫
Dϕ′ exp

[
i

2

{
D−1

12 ϕ
′
1ϕ

′
2

}
12

]
=

N ′
√
Det(D−1

12 )
=

= N ′′ exp
[
−1

2
Tr ln(D−1D)

]
,

(4.236)

where we have introduced other indefinite factors N ′ and N ′′ which are independent of both J
and K. In the second term we have used the free propagator, defined by

D−1 = (−□1 −m2)δ(4)(x1 − x2), (4.237)

to normalise the whole expression and to avoid dimensionful quantities within logarithms. As
we shall see below in the Tr ln-form we can calculate the functional determinant with help of a
perturbation series at any given order of ℏ.
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Now it is our goal to calculate the effective action, defined by (4.212), up to order ℏ2. According
to (4.230) for that purpose we have to expand the functional Z1 (4.232) up to order ℏ. Thus we
expand the functional differential operator (4.233) up to order ℏ leading to

Z
(2)
1 [J ] = N

[
1 +

{(
λ

3!

√
ℏ
δ3

δK3
1

− iℏ
δ4

δK4
1

)
Z

(0)
1 [J,K]

}

1

+

+
ℏ
2

λ2

(3!)2

{
φ01φ02

δ3

δK3
1

δ3

δK3
2

Z
(0)
1 [J,K]

}

12

]∣∣∣∣∣
K=0

.

(4.238)

Straight-forward calculation leads after some algebra3 to the result

W [J ] = −iℏ lnZ[J ] = S[φ0] + {J1φ01}1 +
i

2
ℏ ln

(
D−1D

)
+ iℏ2

λ

8

{
D2

11

}
1
+

+ ℏ2λ2
{
1

8
φ01D11D12D22φ02 +

1

12
φ01D

3
12φ02

}

12

.
(4.239)

The next task is to invert the definition

φ1 =
δW [J ]

δJ1
(4.240)

and substitute φ instead of J in order to perform the Legendre transformation according to
(4.212). This is of course impossible to obtain exactly. But it is not too difficult to provide
the systematic ℏ-expansion. Here it is important to note that by definition (4.229) φ0 is the
stationary point of the functional S[φ] + {J1φ1}1. Thus we have

S[φ] + {J1φ1}1 = S[φ0] + {J1φ01}1 +
1

2

{
D12φ

′
1φ

′
2

}
12

+O(ℏ3) with φ′ = φ− φ0. (4.241)

Here we have used the fact that φ′ = O(ℏ) which we have to prove now. To that end we derive
the expansion (4.239) with respect to J . Since (4.239) depends only implicitly on J we do first
the derivative with respect to φ0. Using (4.229) we find

δW

δφ01
= − iλ

2
ℏφ01D11 +O(ℏ2). (4.242)

Again using (4.239) we get
δφ01′

δJ1
=

(
δJ1
δφ01′

)−1

= −D11′ . (4.243)

Combining (4.242) and (4.243) leads to

φ1 =
δW

δJ1
= φ0 +

iλ

2
ℏ {φ01′D1′1′D1′1}1′ +O(ℏ2). (4.244)

This proves that φ′ = φ− φ0 = O(ℏ). Now we have also

D−1
12 = D−1

12 − λ

2
φ01φ02δ12 = D−1

12 − λ

2
φ1φ2δ12 +O(ℏ) := D−1

12 (φ) +O(ℏ). (4.245)

3A simple computer algebra system like FORM is recommended for such cases!
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This means that up to corrections of order O(ℏ) we can substitute φ instead of φ0 in D12. Now
we are ready to expand (4.239) systematically up to order O(ℏ2).
Making use of (4.239), (4.244) and (4.245) we find

S[φ0] + {J1φ01}1 = S[φ] + {J1φ1}1 +
λ2

8
ℏ2 {φ1D11(φ)D12(φ)D22(φ)φ2}12 +O(ℏ3). (4.246)

For the logarithm we have

i

2
ℏTr ln(D−1

12 D) =
i

2
ℏTr ln

(
δ13 −

λ

2
φ2
1D13

)
=

=
i

2
ℏTr ln[D−1(φ)D]− λ2

4
ℏ2 {φ1D11(φ)D12(φ)D22(φ)φ2}12 +O(ℏ3).

(4.247)

In the remaining terms of (4.239) which are explicitely of order O(ℏ2) we can simply set φ instead
of φ0 which gives only differences of order O(ℏ3).
The final result for the action up to order ℏ2 is thus

Γ[φ] = S[φ] +
i

2
ℏTr ln[D−1(φ)D] +

λ

8
ℏ2
{
D2

11(φ)
}
1
+
λ2

12
ℏ2
{
φ1D

3
12(φ)φ2

}
12

+O(ℏ3). (4.248)

For sake of completeness we derive the rule how to get derivatives of D(φ) with respect to φ.
These are needed if we like to calculate the proper vertex functions using (4.214). We have

δ12 =
{
D−1

11′ D1′2

}
1′
⇒

{
δD−1

11′

δφ3
D1′2

}

1′

= −
{

D−1
11′
δD1′2

δφ3

}

1′
.

(4.249)

Using the explicit form of D−1 given by (4.245) we find

δD12(φ)

δφ3
= λD13(φ)φ3D32(φ). (4.250)

Now we shall give a diagrammatical interpretation in terms of the propagator D . To obtain an
interpretation in terms of the perturbative propagator D = D(φ = 0) we have to use (4.245)
which is inverted with help of a resummation which reads in obvious functional matrix notation:

D(φ) = D +D
λ

2
φ2D + . . . = D

∞∑

k=0

(
λ

2
φ2D

)k
. (4.251)

Diagrammatically this is given by

+ + . . .= + (4.252)

where the bold line stands for D and the thin one for the perturbative propagator D. The single
leg with a cross at the end symbolises the field φ.
The logarithmic contribution to order ℏ is given by

i

2
ℏ ln(D−1D) = − i

2
ℏ

∞∑

k=1

1

k

(
λ

2
φ2D

)k
. (4.253)
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Diagrammatically these are the following “ring diagrams”:

++−~
2 Tr ln(D

−1D) = + . . .

(4.254)

For the two-loop contribution it is more convenient to give the diagrams in terms of D rather
than of D:

iλ2~2

12 = .

(4.255)

Here it becomes clear that the number of loops in the diagrams for the proper vertices, which
are obtained by taking the appropriate derivative due to (4.214) and setting φ = 0 at the end
give the order or ℏ. This can be understood directly from the diagrams as follows: The number
of loops is given by the number of independent loop momenta. If I is the number of internal
propagator lines and V the number of vertices we have L = I − (V − 1) loops, since on each
vertex energy-momentum conservation has to hold but one of this restrictions is fulfilled due
to the overall energy-momentum conservation for the external legs. Each vertex multiplies the
diagram with a 1/ℏ due to the factor 1/ℏ in the original path integral (4.230) and each propagator
delivers a factor ℏ. Then there is the overall factor ℏ from the definition of W as W = −iℏ lnZ.
So a diagram has ℏ-order I − V + 1 which was seen to be the number of loops of the diagram.
The calculation of the second order terms also shows how the one particle reducible contributions
to Γ cancel order by order in the ℏ-expansion as we have already proven in a semi-combinatorial
way in section 4.6.3.

4.7 A Simple Interacting Field Theory with Fermions

We end this chapter with deriving the Feynman rules for a very simple quantum field theory
including fermionic fields. It will be quite the same line of arguments as given in the scalar case,
but we have to be careful with the signs coming from the anti-commuting character of fermionic
fields (Grassmann fields in the path integral formalism).
This theory contains massive Dirac fields ψ with mass m and a massive scalar field with mass
M . We couple these fields using a pure vector coupling. As we shall see in chapter 6 in order to
keep the theory renormalisable we also need a ϕ4-coupling: Thus the Lagrangian is

L =
1

2
(∂µϕ)(∂

µϕ)− M2

2
ϕ2 + ψ̄(i/∂ −m)ψ − λ

4!
ϕ4 − gϕψ̄ψ. (4.256)

This Lagrangian is relativistically invariant because we coupled the scalar field to the scalar
bilinear form of the Dirac spinor ψ̄ψ. Since the Lagrangian again contains no derivative couplings
we can go immediately over to the Lagrange-an formalism of the path integral. So we define the
generating functional

Z[J, η̄, η] = N

∫
DϕDψ̄Dψ exp

[
iS[ϕ, ψ̄, ψ] + i ⟨Jϕ⟩+ i ⟨η̄ψ⟩+ i

〈
ψ̄η
〉]
, (4.257)

where J is a real and, η̄ and η are Grassmann external currents.

122



4.7 · A Simple Interacting Field Theory with Fermions

Now the Dyson-Wick series can be derived along the same lines as done with the scalar ϕ4-theory
above. The first step is to calculate the free generating functional. Fortunately this functional
factorises in a scalar and a spinor part. So we can use the scalar free functional from above and
have only to calculate the functional for the fermions. So we have to solve for

Z0F [η̄, η] = N

∫
Dψ̄Dψ exp

[
iS0F [ψ̄, ψ] + i ⟨η̄ψ⟩+ i

〈
ψ̄η
〉]
. (4.258)

The free Dirac spinor action is

S0F [ψ̄, ψ] =

∫
d4xψ̄(i/∂ −m)ψ. (4.259)

Now again we have an action quadratic in the fields under the path integral. Due to our calcula-
tions above for Grassmann fields we can use the same trick as before: The value of the generating
functional is a current-independent constant times the exponential of the action functional at its
stationary point. Fortunately it is enough to solve the equation of motion for ψ:

(i/∂ −m)ψ = −η. (4.260)

This is the inhomogeneous free Dirac equation, which can be solved with help of the causal
Green’s function with appropriate boundary conditions. We shall do the calculation a little
sloppy. The reader is invited to do the exact calculation by first going to Euclidean space-time
and then back to Minkowski space by analytic continuation. Thus we set

ψ(x) = −
∫

d4x′G0(x− x′)η(x′), (4.261)

where we have named the free Green’s function for Dirac fields G0 in order to distinguish from
the scalar Green’s function D. Again the Green’s function can be found by solving its equation
of motion

(i/∂x −m)G0(x− x′) = δ(x− x′) (4.262)

with help of the Fourier transformation

G0(x− x′) =
∫

d4p

(2π)4
exp[−ip(x− x′)]G0(p) ⇒ (/p−m)G0(p) = 1̂. (4.263)

Multiplying this algebraic equation from the left side with /p+m and using

/p
2 = pµpνγ

µγν =
1

2
pµpν {γµ, γν}︸ ︷︷ ︸

2gµν

= p2 (4.264)

we find
G(p) =

/p+m

p2 −m2 + iϵ
= (/p+m)D(p). (4.265)

Here we have used the iϵ-description known from scalar theory in order to define the propagator
properly. As said above this result may be obtained by a formal Wick rotation and analytical
continuation back to Minkowski space. Physically it is also clear that the causality of this solution
is correct in the sense of the Feynman-Stueckelberg interpretation of the “negative energy states”.
The insertion of (4.261) gives

Z0F (η̄, η) = exp[−i ⟨η̄1G012η2⟩12]. (4.266)
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Now to write the action functional for the interacting theory as a series in powers of interactions
we use the same trick as above in the scalar case. The only thing we have to be careful with
is the anti-commuting nature of the Grassmann fields and functional derivatives with respect to
the Grassmann external currents (signs!). With this caveats in mind the Feynman rules can be
derived the same way as in the scalar case. The only point is, that the fermionic propagator G0

has to be represented with an arrow which gives the order of the arguments. Our convention
will be such that Feynman diagrams have to be translated to analytic expressions by reading
against the direction of the arrows. This will give also the correct order for the matrix valued
propagators (and vertices if there is, for instance, an axial scalar coupling involving γ5).
In the following we shall only use left functional derivatives and writing δ/δη as abbreviation for
δL/δη. With this notation we have, using (4.173):

iG
(m,n)
F (x1, . . . , xm; y1, . . . , yn) =

(
δm+nZ[J, η̄, η]

δ(iη̄(x1)) · · · δ(iη̄(xm))δ(−iη(y1)) · · · δ(−iη(yn))

)

J,η,η̄=0

.

(4.267)
It is simple to see from the Dyson-Wick series that to all orders perturbation theory this is only
non-vanishing for m = n. Our diagrammatical convention is thus as given in fig. 4.9.

iG0(x1, x2) =
x1 x2

Figure 4.9: The diagrammatical representation of the Dirac-fermion propagator

It is also clear that the Feynman rules can be calculated the same way as we did in case of
pure scalar ϕ4-theory. The only change is that the external fermionic lines have an arrow,
which gives the direction of the current ψ̄γµψ rather than the direction of momentum. Thus
an incoming (outgoing) external fermionic line can mean an incoming (outgoing) particle or an
outgoing (incoming) antiparticle. The vertex coming from the ϕψ̄ψ-interaction always contains
an incoming and an outgoing fermionic line and a bosonic line (further on drawn as wavy line)
which does not necessarily need an arrow. Interchanging two external fermion lines changes the
sign of the whole diagram. The overall sign is not important because it adds only an unphysical
phase factor to the S-matrix.
There is also another sign rule saying that for each loop which consists of a closed ring of fermionic
lines, also gets an additional sign, the so-called sign rule for fermionic loops. To prove this we
look on the general structure of such a loop drawn in fig. 4.10.
This diagram comes from a term in the Dyson-Wick series of the form

Zloop = (−ig)n
∫

d4x1 · · · d4xn
n∏

k=1

δ

iδJ(xk)

δ

δ(iη̄(xk))

δ

iδη(xk)
. (4.268)

In order to get the n free Green’s functions as drawn in the diagram, one has to interchange the
order of the derivatives with respect to η̄n, which has to be written to the very left of the whole
expression. Since this is done by interchanging this derivative operator an odd number of times
with another Grassmann derivative operator this gives the sign change due to the fermionic loop
theorem.
It is clear further that there is no other formal change in the Feynman rules for S-matrix elements.
It is also the same Fourier transformation technique as used in chapter 3 to get the momentum
space representation for the Feynman rules.

124



4.7 · A Simple Interacting Field Theory with Fermions

Figure 4.10: A fermionic loop with additional sign

1. Draw all topological different diagrams for the process due to initial and final state in Sfi.
A diagram with n vertices is to multiply with 1/n! (from the expansion of the exponential
of the interaction part).4 Leave all diagrams out which contain vacuum-to-vacuum parts
(closed diagrams).

2. For any ϕ4-vertex there is a factor −iλ/4!, for any ψ̄ψϕ vertex a factor −ig. Each of the
latter vertices is attached to one incoming and one outgoing fermionic current.

3. There is to obey energy-momentum conservation on each vertex and for the overall diagram
(with an overall factor (2π)δ4(Pf − Pi) cancelled).

4. For any fermionic line write down a factor iG0, for any bosonic line iD.

5. Integrate over all independent momenta (loops of the diagram).

6. Any diagram is to be multiplied by the number of ways one can draw the given diagram
out of the vertices and external points, which is called symmetry factor of the diagram.

7. Multiply the diagram with a factor (−1) for each fermionic loop contained. The overall
sign of the diagrams to a given order is arbitrary but there is a relative sign for each
interchange of external fermionic legs compared to an arbitrary diagram with a certain
reference of order of the external points.

8. For any external fermionic line multiply with the proper normalised free fermion ampli-
tudes. For a fermionic line with outgoing arrow this can be either a ū+(p, σ) (outgoing
particle in the final state) or a ū−(−p, σ) (incoming antiparticle in the initial state). For a
fermionic line with incoming arrow this can be either a u+(p, σ) (incoming particle in the
initial state) or a u−(−p, σ) (outgoing antiparticle in the final state).

9. All the external momenta are to be taken on the mass shell.

10. If one measures the unpolarised cross section one has to average over the spins in the initial
state and to sum over the spins in the final state.

4This factorial is not cancelled completely since there are two different vertices. Only the interchange of the
different vertices of the same sort gives a factor. Thus it is more save to count all contractions (or possibilities to
connect external points and vertex points to give the partial diagram). It is also important to keep in mind that
the external points have fixed labels!
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The changes in rule 8. for calculating connected or disconnected Green’s functions is to substitute
a Green’s function for the external amplitudes and just to cancel this factors completely when
calculating truncated diagrams. If one likes to calculate vertex functions perturbatively one has
to keep 1PI diagrams only.
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Chapter 5

Renormalisation

5.1 Infinities and how to cure them

We have already seen in chapter 3 that Feynman diagrams contributing to the perturbation
series for the Green’s functions are divergent integrals over momentum space if we go beyond
the lowest order tree-level diagrams.
The physicists have found such divergences in quantum field theory quite from the very beginning
of quantum field theory in the late twenties and early thirties when Heisenberg and Pauli invented
Quantum Electrodynamics (QED). The problem of infinities was finally solved in 1948 for the
case of QED by Feynman, Schwinger and a little bit earlier during the war by Tomonaga in
Japan.
Nevertheless this solution was only formal and the physicists stayed to feel uneasy with this
solution. It looked like as “sweeping the garbage under the rug” (Feynman). It took until the
early seventies when Wilson discovered its full physical meaning by looking at quantum field
theory from the point of view of a condensed-matter physicist. It is this Wilsonian point of view
we are after in this chapter.
Because the mathematics of renormalisation is rather involved we shall take a little time in this
introducing section to get a qualitative idea, what has to be done and what is the physical
meaning of this complicated procedure.
For this purpose let us look back on what has been done in the chapters before. We started with
ordinary non-relativistic quantum mechanics for a point particle. Using this simple example
for a quantum system we repeated how the general structure of quantum theory looks like: As
an ingredient from classical physics quantum theory inherits the structure of space and time.
Almost all of the physical content of space and time can be summarised in the symmetries the
spacetime manifold respects and the principle of causality, i.e., the direction of time. Further
the quantum system is defined by an algebra of observables which is realized as a representation
by self-adjoint operators on a Hilbert space. These observables have to be generators of the
symmetry group of spacetime, which must be a symmetry of the quantum formalism, because
otherwise the theory would not be consistent with the structure of space and time.
We have also seen that any symmetry has to be realized as a unitary (or anti-unitary) transfor-
mation in the Hilbert space, i.e., any symmetry group is realized as a unitary or antiunitary ray
representation on Hilbert space.
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Further to complete the definition of a quantum system, we have to define the Hamiltonian
(contained in the algebra of observables). The Hamiltonian describes the causal evolution of
the system in time. Since the physical laws have to be the same at any instant of time this
time evolution has to be also a symmetry transformation, which means that it is necessarily also
described by a unitary transformation.
The most important special application of quantum mechanics for elementary particle physics is
scattering theory. Our picture of such processes is motivated by the typical experimental setup
of an elementary-particle collision: At first one prepares the particles in a given asymptotically
free state (in most experiments as particles with a well determined momentum). These particles
collide, and the experimenter observes the asymptotically free state of the scattered and the
particles which might have been produced during the collision. The transformation from the
asymptotically free initial to the asymptotically free final state is given by time evolution and
is thus a unitary transformation in Hilbert space, which we have called the S-operator (or S-
matrix).
This S-matrix contains the main physical outcome of the theory, namely the transition proba-
bilities for the scattering events. In order to be consistent with the structure of space and time
it has to respect this symmetry. Note that we neglect by definition the question “What happens
at the collision time?”
Coming now back to our problem of the divergences we have to take care of this fundamental
structure in order to keep the theory physically consistent. This means that we can summarise
the main task of renormalisation theory that we have to get rid of the infinities, arising often when
we try to calculate loop diagrams in perturbation theory, in such a way that the fundamental
features of the S-matrix (namely to be unitary and to respect the symmetries of space and time
and other symmetries which we shall use in the next chapter when we come to the description of
the standard model of elementary particles) are settled and thus the theory keeps its fundamental
physical meaning with which we started when we built this theory as a model for real processes.
Since this section is introductory for the entire topic and because the physical meaning of renor-
malisation theory is hidden under a carpet of tremendously complicated mathematical formalisms
it might be allowed to look from the solution of the problem at the physical results. This might
be done from the point of view of the quantum effective action we have introduced as a gener-
ating functional for truncated 1PI diagrams, which represent the exact proper vertex functions
of the theory. Nevertheless the first way to approximate this effective action is perturbation
theory, and we have also seen using formal manipulations of path integrals that the lowest or-
der, corresponding to tree-level diagrams (which means diagrams without loops), corresponds
to the classical approximation while the number of loops counts the ℏ-power of the diagram.
This means that the loop diagrams contribute to the interaction vertices already existent in the
classical limit as well as to interactions which are clearly induced as quantum corrections and
which are not contained in the classical limit.
Now this picture of a ℏ-expansion or an expansion around the classical limit gives us a first intu-
itive picture about the physical meaning of the radiative corrections in quantum field theory. We
want to take QED as an example because we know very well the classical limit, which is nothing
else than Maxwell’s theory of electromagnetism given in a modern relativistic prescription. The
particle content is given by the classical Lagrangian containing a massless spin-1-field, describing
photons. This field is necessarily a gauge field as we have seen in chapter 4. This in turn means
that this field is necessarily coupled to a conserved current and the most easy way to do so is
minimal coupling (the geometric meaning of this formalism will become much clearer in the next
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chapter about more general gauge theories). Let us concentrate on QED in the narrow sense
where we have an electron-positron field (a massive Dirac-spinor field) minimally coupled to the
photon-field.
The point we are interested in here is now the meaning of the constants in this classical Lagrangian
from the point of view of quantum theory of fields. There is a mass of the electron and a
coupling constant which is given by the elementary charge e of the positron (particle/anti-particle
symmetry dictates then that the electron has the same charge with the opposite sign, namely
−e). The only classical coupling is given by the 3-point vertex describing the Coulomb interaction
of positrons and/or electrons by exchange of a virtual photon. Especially note that there are
no interactions of photons in the classical limit because these are uncharged particles which do
not interact. Now there are radiative corrections to the 3-point vertex and the propagators of
the particles. This means there is not only the classical Coulomb interaction between electrons
and/or positrons but also interactions with virtual photons and electron-positron pairs created
spontaneously due to quantum fluctuations and also absorbed due to these interactions. This
means that the real (not perturbative) photons, electrons and positrons are surrounded with a
cloud of virtual particles.
The main effect of this cloud to the n-point-functions is a contribution to the mass and charge of
the particles. This means that there are fluctuations of the energy contributing to the measured
mass of the electrons (and of course also to that of the photons!). The same is true for the
correction to the three-point vertex, which means that the main effect of the virtual particles is
a contribution to the measured charge of the electrons and positrons. But it hints us to what
may be the cure for the infinities arising by the naive use of the perturbative Feynman rules:
The couplings and masses written down in the Lagrangian cannot be the physically measured
parameters since these correspond to the tree-level diagrams which are shown to leave out the
quantum fluctuations or neglect in our intuitive picture the clouds of virtual particles around the
physical measured entities. This in turn means that these parameters have no physical meaning
because the observed physical particles contain these quantum fluctuations. For this reason we
call the parameters given in the Lagrangian the bare parameters. These parameters can have
any value because they are not observable. Thus we can hope that we shall be able to push
the infinities of the naive Feynman rules to these unobservable parameters and writing down
the results in terms of the physical or dressed parameters which have the measured finite values
listed in the particle data booklet.
But now as the quantum action functional shows that there will be contributions of the perturba-
tion theory which were not given in the original classical Lagrangian. For instance in QED there
is the famous box diagram which gives a contribution to the four-photon vertex which means
physically the scattering of “light by light” (also called Delbrück scattering), an effect which is
not known from classical electromagnetic theory. Now if this diagram was infinite we would need
such a coupling in the classical Lagrangian to shuffle the infinity of the box diagram into the
associated coupling bare constant, which shows that it might be that we need an infinite number
of terms in the classical Lagrangian because all vertices generated by radiative corrections that
are infinite force us to introduce a bare parameter where we can push the infinity to. This is
indeed the case for almost all quantum field theories.
Nevertheless fortunately there are some quantum field theories which need only a finite number
of bare parameters, and these are called renormalisable. It is the main task of this chapter to
give the strict mathematical condition to prove that a field theory is renormalisable and how it
is done in practice to push the infinities to the bare parameters in order to obtain a perfectly
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finite result in terms of the physical parameters.
To make our qualitative story about QED complete we have to mention some specialities which
are caused by the gauge symmetry of the underlying Lagrangian. The first physical content is
that the photon is massless. This is the reason that the theory must be gauge invariant and thus
the physical mass of the photon should be 0. As we shall see in the next chapter this is indeed
the case and the reason for that is, the reader might have guessed it, the gauge invariance of the
classical Lagrangian, which cancels the infinity which could force us to introduce a bare-mass
term to the Lagrangian. There is also a nice cancellation of an infinity in the four-photon diagram
mentioned above, so that we are prevented from introducing a bare four-photon coupling in the
classical Lagrangian. As we shall see later, quantum electrodynamics is a renormalisable theory,
which means that we can hide all infinities into the bare parameters given in the QED-Lagrangian.
Thus a renormalisable quantum field theory contains only a finite number of parameters, of which
the bare ones are given in the classical Lagrangian. These bare parameters absorb the infinities
and the physical (dressed) parameters are the finite coupling constants, masses and so on which
are measured in experiments.
As one can guess the procedure of renormalisation is not unique since one always may add
arbitrary finite renormalisations to the bare parameters of the theory. A certain choice of this
finite renormalisation is called a renormalisation scheme. This shows that the numerical values of
the physical parameters change when we go to a different renormalisation scheme. On the other
hand since the theory is defined uniquely by the particle content (i.e. the sorts of fields contained)
and the particular form of the Lagrangian this dependence should change nothing with respect
to S-matrix elements, i.e., the measurable particle properties. As we shall see this is indeed
the case for the fully resummed theory. The dependence of the physical parameters on the
renormalisation scheme is governed by the renormalisation group equations which describes the
independence of the S-matrix elements from the chosen renormalization scheme. As we shall see,
for perturbative S-matrix elements these equations provide a resummation of “large logarithms”
based on the renormalization-scheme independence of the (or course still approximate) S-matrix
elements.
This leads directly to the Wilsonian interpretation of the renormalisation process: The physical
parameters like coupling constants and masses have to be fixed at a certain scale of energies
involved in the processes. The choice of the scale is in principle arbitrary for a renormalisable
theory. But in practice if we use perturbation theory we can only evaluate the Green’s functions
when the coupling constants are small. This might be the case on certain scales and not on others.
For instance in QCD (Quantum Chromodynamics as the most promising candidate for describing
the strong interactions of quarks) the couplings are small at high energy scales and perturbation
theory can be justified, but this is not the case at lower energies where other non-perturbative
techniques (especially lattice QCD calculations) are at place.
This Wilsonian point of view also shows that in the quantum field theory always enters an energy-
momentum scale, the renormalisation scale. This widens also the applicability of quantum field
theory to so called effective theories which are not renormalisable in the sense explained above.
The Lagrangian we build for such theories may contain an arbitrary number of terms consistent
with a given symmetry which is underlying the theory. Then we have to introduce a cutoff-
parameter which is higher than the energies of interest and at which the theory is estimated to
be valid. As we shall see, the most relevant part of such a theory will be its renormalisable part
and this explains why up to the nowadays applicable energies the renormalisable standard model
of elementary particle is so successful: There might exist an underlying “first-principle theory” of
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which the standard model is an effective theory valid at least up to energies which are available
with nowadays particle accelerators.
To clarify this point of view on effective theories we can give one example from solid state physics
which is quite enlightening. If one looks at the phenomenon of super-conductivity, one can de-
scribe it as quantum electrodynamics where the gauge symmetry is spontaneously broken (in the
sense of the Higgs mechanism, which we shall describe later). This leads to “phenomenological”
theories like the London or the Ginzburg-Landau theory of super-conductivity and explains al-
most all measured phenomena of super-conducting materials with help of a few parameters which
have to be fitted to the data. On the other hand we know that the conducting electrons in a
metal are described very well as a free Fermi gas with weak interactions of the electrons and the
phonons (the quanta of lattice vibrations). Now the effective interaction of the electrons near the
Fermi surface1 is attractive due to the electron-phonon interaction. Because of this attraction
the naive picture of the scattering of electrons fails for small momentum exchange. The reason
is that the electrons near the Fermi surface can lose energy by pairing to a state of total spin 0.
This is the main ingredient of the famous BCS-theory2. Due to this Cooper pairing there is an
energy gap (which in particular prevents the Cooper pairs to break by weak perturbations) to
the next excited state super conductivity can take place, because below a certain energy thresh-
old there are no excitations and thus no dissipation. This means that the electric resistence
vanishes. This shows that there are indeed two levels of describing the system: The first one
uses only symmetry principles and explains super-conductivity as a phenomenon of spontaneous
U(1)-gauge symmetry breaking, while the other explains what happens on a microscopic level
and how this symmetry breaking comes about.
It might be that the standard model of elementary particles is also an effective theory of which
the underlying “microscopic theory” is not known yet. Of course we do not know up to now
the mechanism which explains the spontaneous symmetry breaking. Finding such a more com-
prehensive theory might answer the question about how the observed masses of the elementary
particles come about.
We close this qualitative introduction with a short overview over the rest of this chapter since
the mathematical task is difficult and the whole chapter will be lengthy. The reader should keep
in mind this overview when going through the rest of the chapter.

5.1.1 Overview over the renormalisation procedure

In the next section we start the renormalisation procedure at hand of the simple example of
ϕ4-theory. The first task is to give the infinite integrals a meaning which is called regularisation.
Regularisation means to render the infinite integrals finite by parameterising the divergence of
the integral. The original ill-defined integral is then given as a diverging limit of the regularisation
parameters.
On hand of the most simple example of an infinite integral, namely the tadpole diagram, which
is 0 in the operator formalism due to normal ordering but becomes a divergent expressen in the
path integral formalism, where normal ordering is lost, we show how to regularise this divergence

1Remember that a Fermi gas at zero temperature fills the electrons up to a certain energy level due to
Pauli’s exclusion principle. This is called the Fermi surface in momentum space. The quantum theory at finite
temperatures describes the system with help of particle-like excitations from this ground state, which are called
quasi-particles.

2named after its inventors Bardeen, Cooper and Shriver
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with help of a cutoff. We shall also show that the infinity can be absorbed completely into the
bare mass rendering the contribution of the tadpole diagram to 0 in terms of the observable mass
(in one particular renormalisation scheme, the so called on-shell scheme).
This example shows that it is most convenient to calculate the Feynman integrals in Euclidean
space time with help of a Wick rotation. To go back to Minkowski space is then a task of analytic
continuation, as will be worked out together with the regularisation scheme used in these notes.
There are a lot of regularisation schemes on the market, but we shall use only the so-called
dimensional regularisation scheme. This scheme uses the observation that the Feynman integrals
would be finite if the spacetime dimension was less than 4 and that the results of these finite
integrals are analytic functions of the dimension of spacetime. The infinities are manifest in this
formalism as the Feynman integrals have poles in the complex spacetime-dimension plane at
d = 4. For dimensional regularisation we give a self contained study of the Γ-function which is
needed to calculate some standard integrals which can then be used as a toolbox for calculating
Feynman integrals. We evaluate these standard integrals and continue back to Minkowski space.
Then we can do all our calculations completely in Minkowski space.
In order to get some experience what to do about the poles for d = 4 we go further with
another one-loop example of infinite integrals in ϕ4 theory and calculate it within the dimensional
regularisation scheme. We shall see how to renormalise the bare parameters of the theory in order
to make the results of the calculation finite.
This experience will help us to formulate the convergence criterion for Feynman integrals, which is
known as Dyson’s power-counting theorem. This theorem was proven by Weinberg and is thus also
known as Weinberg’s theorem. This theorem leads to a necessary condition for renormalisability
of a quantum field theory.
The next task will be to show that ϕ4-theory (which fulfils the necessary condition) is indeed
renormalisable. As we shall see, this is a rather complicated issue, and we shall also present a
self contained complete proof of this fact in terms of the so called BPHZ-renormalisation (also
in the version given by Zimmermann).
As we shall see, the BPHZ-formulation is applicable to general quantum field theories. We shall
use this wide applicability of the BPHZ-scheme to show the complications coming in when the
theory is a gauge theory like QED. Here renormalisability not only means to absorb the infinities
into the bare constants but also to make sure that the renormalised theory is gauge invariant.

5.2 Wick rotation

With this section we start the prescription of the mathematical formalism of regularisation as
the first step towards renormalisation.
We have shown in the third and fourth chapter that we can restrict our investigation to 1PI trun-
cated diagrams, the so called proper vertex functions. We shall use ϕ4-theory as the most simple
example of a quantum field theory which has no symmetries (especially no gauge symmetries) to
be fulfilled along the procedure of regularisation. We shall also use the path-integral formalism
Feynman rules which corresponds to a non-normal-ordered Lagrangian. From the point of view
of renormalisation this means only that we have also to regularise the vacuum energy of the
theory and this is done by an additional mass renormalisations. The reason for that is that the
path integral formalism is more simple in the case of gauge theories.
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Now let us take the most simple 1-loop-diagram in ϕ4-theory, which is the tadpole contribution
to the self-energy shown in fig. 5.1.

−iΣ(1) =

l

Figure 5.1: The one-loop tadpole contribution to the self-energy

Due to the Feynman rules we have found in the third chapter within the canonical operator
formalism and in the fourth in the path integral formalism that the analytic expression of this
diagram is given by

Σ(1) =
iλ

2

∫
d4l

(2π)4
1

l2 −m2 + iη
. (5.1)

The first complication we have to get rid of are the poles of the propgator for on-shell loop
momenta. Now we find it again important to have used the iη-regulator3, which came into the
game when we calculated the propagator in the operator formalism as well as in the path integral
formalism. In the former the reason we had to plug in the iη was the time-ordering operator
in the definition (3.134) of the propagator, in the latter it was used to project out the vacuum
expectation value as shown in section 1.10. From the mathematical point of view it defines the
correct causal (i.e. the Feynman-Stückelberg-) weak limit of the propagator in momentum space.

Im l0

Re l0

ω − i0

−ω + i0

C

Figure 5.2: The Wick rotation: The 0-component of the loop momentum as a complex variable
and the pole structure of the integrand in (5.1)

It is clear that the iη-prescription helps us to take the correct integral over l0. Thus we look at
figure 5.2, where l0 is depicted as a complex variable. The two poles ±ω(p⃗) are slightly shifted
due to the iη prescription. In (5.1) we are told to integrate over the real l0-axis. On the other
hand the integration over the path C vanishes due to the theorem of residues, because there
are no poles inside this path thanks to the iη-shifts. Since the integrand is ∼=l0→∞ 1/l20 the two

3Beginning with this chapter we change the regulator in the Green’s functions from iϵ to iη because in the
dimensional-regularisation technique one usually uses d = 4− 2ϵ for the spacetime dimension.
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quarter circles do not contribute to the integral. Thus we have
∫

C
dl0f(l0) = 0 ⇒

∫ ∞

−∞
dl0f(l0)−

∫ i∞

−i∞
dl0f(l0) = 0, (5.2)

where the limits in the 2nd integral mean the integral along the imaginary l0-axis from −i∞ to
i∞ (the sign comes in from the fact that this path is run in the opposite direction as part of C ).
Now substituting in the second integral l0 = −il4 we find

∫ ∞

−∞
dl0f(l0) = +i

∫ ∞

−∞
dl4f(−il4). (5.3)

This rule, which allows one to take the causal pole structure of the propagators into account by
integrating over the complex l0-axis instead along the real axis, is called Wick rotation [Wic54],
because it can be seen as a rotation of the real path of integration to the complex axis.
Now introducing l̄ = (l1, . . . , l4) as a new four vector, we can write (5.1) as

Σ(1) =
λ

2

∫
d4 l̄

(2π)4
1

l̄2 +m2
, (5.4)

where l̄2 = l21 + · · · l24 is the positive definite Euclidean inner scalar product of the four-vector l̄.
Thus the Wick-rotation means to go from causal quantum field theory to Euclidean field theory.
This feature of the iϵ-description we have already seen in section 1.10, where we could either
rotate the time integral over the Lagrangian to the imaginary axis (leading to the Euclidean
description) or rotate only with a tiny angle (leading to the iϵ-description).
Now we introduce four-dimensional spherical coordinates. Since the integrand depends only on l̄2

we leave out the angular part of the integral, which will be discussed in detail in the next section.
It gives only the surface of the three-dimensional sphere Ω3 in four-dimensional Euclidean space.
Now we realise the problem with the integral explicitly, which is divergent, because the volume
element reads L3dL (with L =

√
l̄2) while the integrand decreases only with 1/L2 for Large

Euclidean loop momenta.
In order to make sense of this most simple example we simply cut off the integral at a Euclidean
loop-momentum scale Λ, called the cut-off scale. From the power counting above we expect the
integral to diverge with Λ2 for Λ → ∞. Indeed we find

Σ(1)
reg =

λ

32π4
Ω3

∫ Λ

0
dL

L3

L2 +m2
=

λΩ3

64π4

(
Λ2 +m2 ln

m2

Λ2 +m2

)
. (5.5)

This shows that the naive power counting was correct for our simple example. The divergence
is thus called quadratic divergence.
Now we can use the recipe given in the previous section. We try to absorb this divergent
contribution of the radiation corrections to the bare parameters of the Lagrangian. This must be
done by adding a counter term to the interacting Lagrangian which is of the same form as a term
which is already in the bare Lagrangian (it is not important if the term in the bare Lagrangian
is in the “free part” or the “interacting part”). Because this counter term should contribute to
the self energy, it has to be ∝ ϕ2.
Now we see that to make the combined contribution (i.e. the sum of (5.5) and the counter term)
finite, we can just set

L
(1)
CT =

Σ
(1)
reg + const.

2
ϕ2. (5.6)

134



5.2 · Wick rotation

This counter term has to be treated as a vertex in the interaction part of the Lagrangian for
later use when evaluating other Feynman diagrams, where the tadpole diagram occurs as a
subdiagram, leading to the counter-term Feynman-rule in figure 5.3.

= i
Σ

(1)
reg+const.

2

Figure 5.3: The one-loop counter-term contribution to the bare Lagrangian, which compensates
the infinity of the tadpole diagram.

Due to the Feynman rules the contribution of the counter term to the self energy is given by:

−iΣ
(1)
CT = i(Σ(1)

reg + const.). (5.7)

Here we have taken into account the factor 2 from connecting the legs to the external points (the
legs have of course to be amputated). We find then for the whole contribution

Σ(1)
ren = Σ(1)

reg − Σ(1)
reg − const = −const. (5.8)

This is indeed an arbitrary constant contributing to the bare mass of the particles described by
the quantum field ϕ, which is finite for Λ → ∞, because it does not depend on Λ at all. We have
expected the arbitrariness of the finite part of the counter term, because the only thing we have
to fix is the divergent part, which has to be cancelled completely with help of the counter term.
It is also simple to interpret this arbitrariness. From (4.222), Dyson’s equation, we know that
the approximation for the two-point Green’s function to first order in the coupling constant is
given by

G(1)(p) =
1

p2 −m2 − Σ
(1)
ren + iϵ

. (5.9)

Now it becomes clear that the physical mass squared is given by the pole of the Green’s function
of the particle, which means that we have

m2
phys = m2 +Σ(1)

ren. (5.10)

Now choosing the constant, we define a certain renormalisation scheme. This can be done such
that Σ

(1)
ren = 0, which is called the physical renormalisation scheme or the on-shell scheme. In

that case we set the mass parameter in the original Lagrangian equal to the physical mass order
by order of the Dyson-Wick series. We may also choose another scheme. The only point is that
we have to compensate the part of the regularised Feynman integrals which is infinite for Λ → ∞
with help of a counter term in the Lagrangian. The counter term should be of the same form
as a term which was in the original Lagrangian in order to absorb the infinities into the bare
parameters of the theory (which are in this counter-term renormalization approach the sum of
the finite parameters and the counter terms, which are divergent for Λ → ∞). The numerical
values of the finite parameters have to be fitted to scattering data; they are not given from first
principles of relativistic quantum field theory. As we shall see later, the only known principles
which restrict the choice of parameters are symmetries (most importantly gauge invariance) and
renormalisability.
From our simple example the whole idea of renormalisation can be summarised now. Our first
step was to handle the pole structure of the Green’s function in order to keep the causality
of the theory with help of the Wick-rotation. Then we have seen that the integral is indeed

135



Chapter 5 · Renormalisation

divergent and to give it a definite meaning we had to regularise this integral. Here we did this by
introducing a cut-off Λ for the Euclidean four-momentum. The reader should keep in mind that
we have introduced a momentum scale into the theory when we keep Λ finite. The next step was
to renormalise the integral making the first order Tadpole-contribution to the self energy finite
for Λ → ∞ by absorbing the infinity of order Λ2 for Λ → ∞ into the bare mass of the particle.
After this we could take the physical limit Λ → ∞. The physical renormalisation scheme was
in this case nothing else than enforce the normal ordering description of the path integral which
makes the Tadpole contribution vanish from the very beginning within the canonical operator
formalism.
We can now give a further outlook of the mathematical solution of the problem of infinite
Feynman integrals: For a given theory we have to show that all infinities can be cancelled with
help of adding counter-terms to the bare Lagrangian which shuffle the infinities when taking the
regularisation parameter (in our example the cut-off) to the physical limit (in our case this was
Λ → ∞) into a finite set of bare parameters of the theory as there are masses, coupling constants
and wave function normalisation constants. Thus a necessary condition for renormalisability is
that only a finite set of proper amputated diagrams should be divergent. For ϕ4-theory only
the 2-point and the 4-point function are allowed to be divergent. If another diagram would be
divergent, and this divergence had to be compensated by a counter-term which goes with ϕ6 for
example, this would violate the renormalisability of ϕ4-theory or it would at least force us to
introduce a ϕ6-vertex into the bare Lagrangian from the very beginning. But we shouldn’t be
forced to introduce infinite many terms into the bare Lagrangian and thus also to use an infinite
set of parameters to describe the interaction of the particles involved. Although we might be
forced to introduce a finite number of such bare terms, we can define a renormalisable quantum
field theory such that it is possible to start with a bare Lagrangian with a finite number of
parameters.
A first superficial hint which diagrams are divergent is given by power counting of the loop
integrals. Beginning with the next section we shall solve the problem of renormalisation. The
first step is to introduce a simple regularisation scheme which gives us a recipe to calculate
systematically the Feynman integrals and to extract the infinities in order to find the correct
counter terms for the bare Lagrangian. Because it is so useful for the renormalisation of gauge
theories we shall use dimensional regularisation in these notes.

5.3 Dimensional regularisation

In this section we want to show one of the most convenient regularisation prescriptions used
in perturbative calculations. The idea is to preserve as many symmetry features as possible
in the theory. This is most important in the case of gauge theories, where the local gauge
symmetry is not the basis of the model building process to describe interactions which occur
in nature. It is also a necessary condition to give the theory a physical meaning at all. It is
the only principle known so far to build theories which are at the same time flexible enough to
describe all the features of elementary particle up to the highest energies which are available
nowadays in accelerator facilities in the world and constraint enough to be renormalisable and
give thus a physically consistent theory with a unitary S-matrix to describe scattering processes
of interacting elementary particles.
To find a regularisation which keeps especially the gauge invariance of the theory valid at all
stages of the calculation (as far as this is possible at all) is not only important for convenience
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during the calculations in perturbation theory (although this is indeed also an important point
for practical purposes) but it is also an essential key to the proof of renormalisability in the sense
that the renormalised S-matrix is unitary as well as gauge invariant, because this proof is only
sound if the regularised theory is gauge invariant.
We shall come back to gauge theories (not only QED but also the more general case of non-
abelian gauge theories and as a final goal of these notes the standard model for elementary
particles) after we have settled the complete renormalisation program. Now as a first step we
use again our ϕ4-toy model theory which we aim to renormalise as the first particular example
for a field theory. In that case there is no need for dimensional regularisation. We could do all
with the above given regularisation scheme with a cut-off momentum Λ without violating any
physical principles. But this has no advantages compared to dimensional regularisation, and
since we shall need this technique for all physical relevant theories we like to understand later
on, we shall use the dimensional regularisation prescription also in that simple case. This work
is also not lost since we shall calculate all the standard integrals, which are useful for practical
calculations in perturbation theory, in this section.
Our starting point is the naive power counting approach we have seen to work for the most
simple Tadpole-graph in the preceding section. If space-time would not be four-dimensional but
only one-dimensional (which would of course be a rather “boring world” so to say), the integral
we had to calculate were perfectly finite. Thus we introduce the dimension of space time as
the regularisation parameter. It seems just clear that all inner symmetries, i.e. symmetries
which have nothing to do with the space-time symmetries, are valid in the arbitrary space time-
dimension. We shall see later on that there are very important exceptions of this conjecture,
known as anomalies, which are not only important for phenomenological reasons (e.g. pion decay
to photons) but may also be dangerous for the renormalisability and unitarity of gauge theories.
As an anomaly we define the case that a symmetry of the bare Lagrangian, which leads to a
conserved current due to Noether’s theorem, is not preserved in the quantised theory. But we
shall come to that point later. Our ϕ4-toy theory cannot have an anomaly because there is no
symmetry except Lorentz-invariance.
Thus we introduce the space time-dimension d as our regularisation parameter with the physical
limit d → 4 which will be taken after renormalising the Feynman-integral under consideration.
Now it happens that the Feynman-integrals can be formally seen as analytic functions in the
complex d-plane. Of course there is no sophisticated geometrical meaning behind that, but it
is convenient to expand the integrals around the point d = 4 which is a singular point if these
integrals are divergent (otherwise they were convergent and we had nothing to regularise). This is
perfectly what we like to find, namely a parameterisation of the infinity of the Feynman-integral,
which gives us the possibility to push this infinity into the bare parameters of the (hopefully)
renormalisable theory. After the subtraction of the infinities by introduction of counter terms
into the bare Lagrangian we can take without further problems the physical limit d→ 4 to obtain
the finite result of the radiation corrections to the tree level order of perturbation theory4.
We have seen that it is very convenient to get rid of the pole structure of the free propagators by
using the Wick-rotation to switch to Euclidean field theory. This will be done here. We should
only remark, that we have also to take the Euclidean form of the external momenta, which enter
a given diagram, in order to have a SO(4) instead of a SO(1, 3) invariant theory. We shall also
have to solve the problem of analytic continuation to Minkowskian space time for the external

4The next much more involved task will be to show that the renormalised physical result is independent of the
regularisation scheme, which will be done beginning with the next section.
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momenta.
As mathematical foundation the first step is to remember the properties of the Γ-function which
is very useful to calculate the d-dependent regularised Feynman-integrals. What we shall also
need is the complete analytic structure of the Γ-function.

5.3.1 The Γ-function

The Γ-function lies at the heart of the dimensional regularisation technique, because its analytic
properties allow to manage the problem of continue the dimension d of Euclidean space time
from a few integer values where the Feynman integrals are convergent5 to the whole complex
d-plane.
Indeed it was a quite similar task Euler and Gauß solved in the 18th century, namely the
continuation of the factorial function, defined on the non-negative integer numbers, to the whole
complex plane.
We start with Euler’s representation of the Γ-function:

Γ(z) =

∫ ∞

0
dt exp(−t)tz−1. (5.11)

Herein we understand the potential of t as

tz−1 = exp[(z − 1) ln t], (5.12)

where the logarithm along the positive real axis is defined as real (principal value of the loga-
rithm). Now we show that the integral (5.12) is uniformly convergent in all compact areas in the
right z-half-plane, i.e., for all Re z > 0. This implies that the Γ-function is an analytic function
in the right z-half-plane.
For this purpose we split the integral in the following way:

Γ(z) =

∫ 1

0
dt exp(−t)tz−1 +

∫ ∞

1
dt exp(−t)tz−1. (5.13)

At first we look on the second integral:

ω(z) =

∫ ∞

1
dt exp(−t)tz−1 : (5.14)

For each t > 1 the integrand is an analytic function of z ∈ C. For an arbitrary compact area B
of the z-plane there exists x0 ∈ R such that:

x0 = max
z∈B

[Re z]. (5.15)

Since further for t ≥ 1 the logarithm is non-negative, we find

∀z ∈ B : | exp(−t)tz−1| = | exp[−t+ (z − 1) ln t]| ≤ exp(−t)tx0−1. (5.16)

Because the integral ∫ ∞

1
exp(−t)tx0−1dt (5.17)

5The whole dimensional regularisation program makes only sense if at least one integer space time dimension
exists, where the integral under consideration is convergent.
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is converging point-wise for all z ∈ B, due to Weierstraß’ convergence criterion this is also the
case in the sense of uniform convergence in B and thus ω is a analytic function in B. Thus ω is
analytic in the whole complex z-plane.
A little more work is to do for the first integral in (5.13):

ϕ(z) =

∫ 1

0
dt exp(−t)tz−1. (5.18)

The modulus of the integrand is exp(−t)tx−1, and for x > 1 the integral converges. Thus (5.18)
is an analytic function for Re z > 1. We like to show that this is the case for all compact areas
of the right z-half-plane. Because B is supposed to be compact, there exists

x1 = min
z∈B

Re z, (5.19)

and it is x1 > 0. For 0 < t ≤ 1 we have ln t ≤ 0. Thus also

∀z ∈ B : | exp(−t)tz−1| ≤ exp(−t)tx1−1 (5.20)

holds true.
Since the integral over this real function is converging, again applying Weierstraß’ criterion for
uniform convergence shows that (5.18) is an analytical function in B.
Since B can be an arbitrary compact area in the right z-half-plane from (5.11) follows the
analyticity of Γ in the whole open right z-half-plane.
The next step is to find a maximal analytic continuation of Γ to the left half plane. It is enough
to do this for the first integral in (5.13), because the second one has been shown to be an analytic
function of z in the whole complex plane.
Now the series

exp(−t) =
∞∑

n=0

(−t)n
n!

(5.21)

is uniformly convergent for fixed t ∈ R. Plugging this into (5.18) by naive order by order-
integration of the series we find for z ∈ C with Re z > 0:

ϕ(z) =
∞∑

n=0

(−1)n

n!

1

n+ z
. (5.22)

Since the series at the right hand side of this equation is uniformly convergent in any compact
subset of the right z-half-plane which does not contain any of the points {0;−1;−2; . . . }, the
order by order-integration is justified and ϕ is analytically continued to a meromorphic function
with simple poles at the non-positive integer numbers. This property is thus also true for the
Γ-function itself. From this we read off Weierstraß’ expansion of the Γ-function:

Γ(z) =

∫ ∞

1
dt exp(−t)tz−1 +

∞∑

n=0

(−1)n

n!

1

n+ z
. (5.23)

In the following we understand this meromorphic function as Γ. Now we like to find some useful
properties of the Γ-function.
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Fur n ∈ N we can calculate the integral (5.11) analytically with the result

Γ(n+ 1) = n! (5.24)

This is easily shown inductively by integrating (5.11) by parts. For any real positive z this yields
also the important functional relation

Γ(z + 1) = zΓ(z). (5.25)

Since Γ is a meromorphic function this is valid for all z ∈ C \ Z≤0.
The next relation we like to show is

Γ(z)Γ(1− z) =
π

sin(πz)
. (5.26)

To prove this we substitute t = u2 in (5.11) and suppose z ∈ (0, 1) ⊂ R:

Γ(z) = 2

∫ ∞

0
du exp(−u2)u2z−1. (5.27)

Now setting 1− z for z and renaming the integration variable with v we find

Γ(1− z) = 2

∫ ∞

0
exp(−v2)v1−2zdv. (5.28)

Multiplicating (5.27) with (5.28) yields

Γ(z)Γ(1− z) = 4

∫ ∞

0

∫ ∞

0
dudv exp(−u2 − v2)

(u
v

)2z−1
. (5.29)

This can be read as an integral over the first quarter of the uv-plane and we transform it into
plane polar coordinates:

Γ(z)Γ(1− z) = 4

∫ ∞

0
r dr exp(−r2)

∫ π/2

0
dϕ (cotϕ)2z−1 =

= 2

∫ π/2

0
dϕ (cotϕ)2z−1.

To calculate this integral we substitute ϕ = arccot(
√
x):

Γ(z)Γ(1− z) =

∫ ∞

0
dx

xz−1

1 + x
. (5.30)

The function

f(y) =
(−y)z−1

1 + y
(5.31)

has an essential singularity in y = 0 and we cut the complex y-plane along the positive real axis.
Now we go to the sheet of the Riemannian surface for which

lim
Imz→±0

(−y)z−1 = |y|z−1 exp[∓iπ(z − 1)] (5.32)

is valid. Now we integrate over the path shown in figure 5.4.
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Re y

Im y

x+ i0

C

Figure 5.4: Path for the integral (5.30)

Letting the radius of the big circle go to infinity and this of the small one to zero these circles
do not contribute to the integral, and we find

∫

C
dy

(−y)z−1

1 + y
= 2i sin(πz)

∫ ∞

0
dx

xz+1

1 + x
. (5.33)

On the other hand using the residuum theorem we see, that
∫

C
dy

(−y)z−1

1 + y
= 2πi Res

y=−1

(−y)z−1

1 + y
= 2πi. (5.34)

Both results prove together with (5.29) the conjecture (5.26) for z ∈ (0, 1) and thus for all
z ∈ C \ {0,−1,−2, . . .}, because Γ is a meromorphic function.
Especially plugging in z = 1/2 in (5.26) we find

Γ

(
1

2

)
=

∫ ∞

0
dt
√
t exp(−t) = √

π. (5.35)

Further we need Euler’s Beta-function, defined by

B(p; q) =

∫ 1

0
dxxp−1(1− x)q−1. (5.36)

Substitution of t = 1 − x yields the symmetry of the function under interchange of its two
arguments:

B(p; q) = B(q; p). (5.37)

Integration by parts shows that

B(p; q + 1) =
q

p
B(p+ 1; q). (5.38)

holds. Inspection of (5.27) gives

Γ(p)Γ(q) = 2

∫ ∞

0
du

∫ ∞

0
dv exp(−u2 − v2)u2p−1v2q−1 =

= 4

∫ ∞

0
drr2(p+q−1)

∫ π/2

0
dϕ exp(−r2) cos2p−1 ϕ sin2q−1 ϕ, (5.39)

where we have introduced plane polar coordinates in the last step.
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Substitution of t = r2 gives

Γ(p)Γ(q) = 2

∫ ∞

0
dt exp(−t)tp+q−1

∫ π/2

0
dϕ cos2p−1 ϕ sin2q−1 ϕ =

= 2Γ(p+ q)

∫ π/2

0
dϕ cos2p−1 ϕ sin2q−1 ϕ. (5.40)

In the remaining integral we substitute x = cos2 ϕ and obtain its value to be B(p; q)/2. Thus we
have

B(p; q) =
Γ(p)Γ(q)

Γ(p+ q)
. (5.41)

Now we want to give a proof for Gauß’s representation of the Γ-function as an infinite product:

1

Γ(z)
= z exp(γz)

∞∏

k=1

(
1 +

z

k

)
exp

(
−z
k

)

with γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
.

(5.42)

γ is the so called Euler-Mascheroni-constant.
To prove (5.42) we use the following representation of the exponential function

exp(−t) = lim
n→∞

(
1− t

n

)n
(5.43)

and define the function series

Pn(z) =

∫ n

0

(
1− t

n

)n
tz−1dt. (5.44)

Naively looking on this definition we see that this series converges to Γ(z) in each regular point
z. We shall show that this is even the case in the sense of uniform convergence. But at first we
show that we then also have proven the product representation (5.42):
Substitution of t = nτ in (5.44) yields

Pn(z) = nz
∫ 1

0
dτ(1− τ)nτ z−1 = nzB(z;n+ 1) =

=
nzΓ(z)Γ(n+ 1)

Γ(z + n+ 1)
=

nzn!

(z + n)(z + n− 1) · · · z .
(5.45)

Here we have used the properties of the B-function given above as well as the functional property
(5.25) of the Γ-function.
A little algebra of this result yields:

1

Pn(z)
=

exp[z(1 + 1/2 + · · ·+ 1/n− lnn)]

exp[z(1 + 1/2 + · · ·+ 1/n)]
z
z + 1

1
· · · z + n

n
=

= z exp[z(1 + 1/2 + · · ·+ 1/n− lnn)]×

×
n∏

k=1

(
1 +

z

k

)
exp

(
−z
k

)
.
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This shows that indeed the uniform convergence of the series Pn to Γ proves Gauß’ product
representation (5.42).
From the principle of analytic continuation we know that it is sufficient to show this for real
positive z. Differentiating with respect to t leads to the following relation:

1−
(
1− t

n

)
exp t =

∫ t

0
dv
v

n

(
1− v

n

)n−1
exp v. (5.46)

For 0 < t < n the integrand is positive. On the other hand we have
∫ t

0
dv
v

n

(
1− v

n

)n−1
exp v <

∫ n

0
dv
v

n
exp t =

t2

2n
exp t, (5.47)

which leads to

0 ≤ exp(−t)−
(
1− t

n

)
<

t2

2n
. (5.48)

From Euler’s definition of the Γ-function (5.11) we know that

Γ(z)− Pn(z) =

∫ n

0
dt

[
exp(−t)−

(
1− t

n

)n]
+

∫ ∞

n
dt exp(−t)tz−1 (5.49)

holds. Within the convergence proof of (5.11) we have shown that the second integral converges
uniformly to 0 for n→ ∞. From the above inequality we read off

0 ≤
∫ n

0
dt

[
exp(−t)−

(
1− t

n

)n]
tz−1 ≤

≤
∫ n0

0
dt

[
exp(−t)−

(
1− t

n

)n]
tz−1 +

∫ n

n0

dt exp(−t)tz−1 ≤

≤
∫ n

0
dt
tz+1

2n
+

∫ ∞

n0

dt exp(−t)tz−1 (5.50)

for all n ∈ N. Let ϵ > 0. Because of the uniform convergence of the last integral we may chose
n0 so large that ∫ ∞

n0

dt exp(−t)tz−1 <
ϵ

2
(5.51)

holds. Then we have for n > n0 by using the inequality again:

0 ≤
∫ n

0
dt

[
exp(−t)−

(
1− t

n

)]
tz−1 <

∫ n0

0
dt
tz+1

2n
+
ϵ

2
=

1

z + 2

nz+2
0

n
+
ϵ

2
. (5.52)

From this we can read off immediately that the integral is uniformly convergent in each compact
interval of the positive real axis. Thus we finished the proof of Gauß’ product representation for
the Γ-function.
Taking its logarithm we find

− ln[Γ(z)] = γz + ln z +
∞∑

k=1

[
−z
k
+ ln

(
1 +

z

n

)]
. (5.53)
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Deriving of this equation with respect to z leads to

Ψ1(z) :=
d

dz
ln[Γ(z)] = −γ − 1

z
+ z

∞∑

k=1

1

k(z + k)
(5.54)

Since the series converges uniformly on each compact subset of C which does not contain a
negative integer number or 0, this is really the logarithmic derivative of the Γ-function.
Within the dimensional regularisation technique we shall also need the Laurent-expansion of the
Γ-function around the simple poles at z ∈ Z≤0. It is enough to find the expansion up to the first
order:

∀n ∈ N : Γ(−n+ ϵ) =
(−1)n

n!

[
1

ϵ
+Ψ1(n+ 1) +O(ϵ)

]
. (5.55)

For proving this equation we state that from (5.54) follows

Ψ1(1) = −γ − 1 +
∞∑

k=1

1

k(k + 1)
= −γ. (5.56)

From (5.25) we obtain

Ψ1(z + 1) =
d

dz
ln[Γ(z + 1)] =

1

z
+Ψ1(z). (5.57)

By induction we find

∀n ≥ 1 : Ψ1(n+ 1) = −γ +
n∑

k=1

1

k
. (5.58)

Now we look on the Taylor-expansion of the Γ-function around the regular point z = 1:

Γ(1 + ϵ) = 1 + ϵΓ′(1) +O(ϵ2) = 1 + ϵΨ1(1) +O(ϵ2), (5.59)

which is valid in the open disc of radius 1 around ϵ = 0, because the next pole of the Γ-function
is at ϵ = −1. Dividing this equation through ϵ yields:

Γ(ϵ) =
1

ϵ
Γ(1 + ϵ) =

1

ϵ
− γ +O(ϵ). (5.60)

This is (5.55) for n = 0. For all other n ∈ N the equation can be shown by induction. Suppose
it is true for n = k. Then we find making use of (5.25) again:

Γ[−(k + 1) + ϵ] =
Γ(−k + ϵ)

−(k + 1) + ϵ
=

(−1)k+1

(k + 1)!

[
1

ϵ
+Ψ1(k + 1) +

1

k + 1
+O(ϵ)

]
. (5.61)

Comparing this with (5.55) we see that this is of course this equation for n = k + 1, and this
was to show.

5.3.2 Spherical coordinates in d dimensions

We have seen in the last section that one can use the iϵ-description of the free Green’s functions
to make use of the Wick-rotation. This makes it possible to calculate the Feynman integrals in
Euclidean space. The final result in Minkowski space is then given by analytic continuation.
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The first step to find the standard formulas which we shall use when we calculate Feynman
integrals, is to introduce d-dimensional spherical coordinates. For d = 2 these are the usual
polar coordinates

x⃗ = (r cosϕ, r sinϕ) with r ∈ R>0, ϕ ∈ (0, 2π). (5.62)

The d-dimensional spherical coordinates can be defined recursively starting with the 2-dimensio-
nal polar coordinates as follows:

x⃗ = r(n⃗d−1 sin θd−2, cos θd−2). (5.63)

Herein n⃗d−1 is the radial vector of unit length in (d− 1)-dimensional space. The angles θk with
k = 1 . . . (d − 2) are defined in (0, π). The Jacobian of the transformation from Cartesian to
spherical coordinates contains a factor rd−1:

Jd = det
∂(x1;x2; . . . ;xd)

∂(r;ϕ; θ1; . . . ; θd−2)
= rd−1jd. (5.64)

Using the definition of the Jacobian for (5.63) we obtain the recursion formula by expansion of
the determinant with respect to its last row:

j2 = 1; jd = (sin θd−2)
d−2jd−1, (5.65)

from which we get immediately

jd =
d−2∏

k=1

sink θk for d ≥ 3. (5.66)

Further we remark that the part of Rd which is not covered by the spherical coordinates is of
Lebesgue-measure 0, so that the Euclidean integrals can be calculated by using this one chart.

5.3.3 Standard-integrals for Feynman integrals

In this subsection we shall calculate some integrals which will be useful to calculate Feynman-
integrals within the dimensional regularisation scheme. First we consider:

Id(q) =

∫
ddp

(m2 − p2 − 2pq − iϵ)α
. (5.67)

This integral is written in d-dimensional Minkowski space. If the integral exists in the d-
dimensional space we can shift the integration variables by p′ = p+ q:

Id(q) =

∫
ddp′

[−(p′)2 + (m2 + q2)− iϵ]α
. (5.68)

Now we suppose that q is chosen such that µ2 := m2+q2 > 0. This integral is of the typical form
of Feynman-integrals6. It is simply the α-th power of the negative Feynman-Green’s function

6As α does not need to be an integer along the calculations of multi-loop-integrals it is advantageous to use
[−G(p)]α which enables a Wick rotation without introducing factors (−1)α. Since α in the original Feynman
integrals is integer this causes no trouble since one can uniquely introduce an integer number of factors (−1)
within the original integral as needed.
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for a free scalar particle. We have seen in the previous section that its pole structure allows us
to make use of the Wick-rotation and transform the integral to its Euclidean counterpart:

Id(q) = i

∫
ddp̄

1

(p̄2 + µ2)α
. (5.69)

Herein p̄2 is the positive definite Euclidean quadratic form of the d-dimensional vector p̄. Now
we introduce the d-dimensional spherical coordinates. From (5.64) and (5.66) we get:

Id(q) = i

∫ ∞

0
dr rd−1 1

(r2 + µ2)α
×

×
∫ 2π

0
dϕ

∫
· · ·
∫

dθ1 · · · dθd−2

d−2∏

k=1

sink θk, (5.70)

where r = ∥p̄∥. The integration over the angles can be done with help of Euler’s B-function.
When we proved (5.41) we found

∫ π/2

0
dθ cos2p−1 θ sin2q−1 θ =

1

2
B(p; q) =

Γ(p)Γ(q)

2Γ(p+ q)
. (5.71)

For p = 1/2 we have ∫ π

0
dθ sin2q−1 θ =

Γ(1/2)Γ(q)

Γ(p+ q)
, (5.72)

because the sine is symmetric around π/2. Setting k = 2q − 1 yields with help of (5.35):
∫ π

0
dθ sink θ =

√
πΓ[(k + 1)/2]

Γ(k/2 + 1)
. (5.73)

Thus the integration over the angles in (5.70) gives the area of the d-dimensional hyper-sphere
of radius 1, which is the d-dimensional analogue of the full solid angle in 3-dimensional space:

Ωd = 2π
d−2∏

k=1

√
πΓ[(k + 1)/2]

Γ[(k + 2)/2]
=

2πd/2

Γ(d/2)
. (5.74)

For d = 2 we find the well known length of the circumference of the unit circle 2π, for d = 3 the
surface area of the unit sphere 4π.
Now the right hand side of this formula is written in the form which is most important for the
dimensional regularisation technique, namely it can be interpreted as an analytic function of the
dimension d.
Using (5.74) in (5.70) we get

Id(q) =
2iπd/2

Γ(d/2)

∫ ∞

0
dr

rd−1

(r2 + µ2)α
. (5.75)

Substitution of
τ2 =

1

t
− 1 ⇒ t =

1

1 + τ2
; τdτ = − 1

2t2
dt, (5.76)

in the definition of the B-function (5.36) yields

B(x; y) = 2

∫ ∞

0
dτ

τ2y−1

(1 + τ2)x+y
= 2

∫ ∞

0
dτ

τ2x−1

(1 + τ2)x+y
, (5.77)
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where we have used the symmetry of the B-function under the interchange of its two arguments.
Setting herein

x =
β + 1

2
, y = α− β + 1

2
, τ =

s

µ
, (5.78)

we find ∫ ∞

0
ds

sβ

(s2 + µ2)α
=

1

2µ2α−β−1
B

(
β + 1

2
;α− β + 1

2

)
. (5.79)

With β = d− 1 in (5.75) we have

Id =
iπd/2

Γ(d/2)
B

(
d

2
;α− d

2

)
µd−2α =

iπd/2

Γ(α)

Γ(α− d/2)

(µ2)α−d/2
. (5.80)

Because of µ2 = m2 + q2 we can write this as:

Id(q) =

∫
ddp

(2π)d
1

(m2 − p2 − 2pq − iη)α
=

i

(4π)d/2Γ(α)

Γ(α− d/2)

(q2 +m2)α−d/2
. (5.81)

For q2 > −m2 the power in the denominator is defined to be real and has to be continued
analytically to the whole Minkowski space. For later convenience we introduce d = 2ω:

∫
d2ωp

(2π)2ω
1

(m2 − p2 − 2pq − iη)α
=

i

(4π)ω
Γ(α− ω)

Γ(α)

1

(q2 +m2)α−ω
. (5.82)

All other formulas we shall need for the calculation of Feynman-integrals can be obtained by
deriving this result with respect to qµ:

∫
d2ωp

(2π)2ω
pµ

(m2 − p2 − 2pq − iη)α
= − i

(4π)ω
Γ(α− ω)

Γ(α)

qµ
(q2 +m2)α−ω

. (5.83)

Differentiating this result again with respect to qν we obtain:
∫

d2ωp

(2π)2ω
pµpν

(m2 − p2 + 2pq − iη)α
=

i

(4π)ωΓ(α)

1

(q2 +m2)α−ω
×

×
[
qµqνΓ(α− ω)− 1

2
gµν(q

2 +m2)Γ(α− ω − 1)

]
. (5.84)

Contracting the indices µ and ν results in:
∫

ddp

(2π)d
p2

(m2 − p2 − 2pq − iη)α
=

i

(4π)ωΓ(α)

1

(q2 +m2)α−ω
×

× [q2Γ(α− ω)− ω(q2 +m2)Γ(α− ω − 1)].

(5.85)

With these formulas and the others listed in appendix C we shall calculate almost all of the
Feynman integrals in these lectures. Of course there are some subtleties in those calculations
which will be developed in the next section where we give some characteristic examples in ϕ4-
theory.
There is only one general topic we have to mention, concerning the dimensions. In these notes we
always set ℏ = c = 1 and thus are left with one fundamental unit, namely energy or length (which
is in our “natural” units inverse energies). Since we work in momentum space the most time we
shall count the dimensions in terms of energies. It is clear that from ℏ = 1 the action functionals
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have dimension 1 and thus the Lagrangian is of dimension E2ω where 2ω is the dimension of
space-time. In order to keep the coupling constants of the same dimension as in 2ω = 4, which
is of course the physical case, we have to introduce an energy scale µ. We see that from this an
energy scale comes into the game from the regularisation procedure which was introduced in a
less formal way also by the crude cut-off regularisation. In the case of renormalisable quantum
field theories in the final result the infinities can be absorbed into the bare quantities and the
renormalised parameters will depend on the renormalisation scale.

5.4 Renormalization of the ϕ4 model

In this section we shall look at the divergent truncated 1PI diagrams (depicting proper vertex
functions) of the ϕ4 model up to order λ2 of the perturbative expansion in a systematic way,
using dimensional regularisation. In d = 2ω = 4 space-time dimensions the superficially divergent
diagrams are the two-point function or self-energy and the four-point function. At order λ for
the self-energy there is only the tadpole diagram and no correction to the four-point function. At
order λ2 we have a one-loop correction of the four-point function and two two-loop corrections
for the self-energy. As we shall see shortly, from the point of view of renormalisation one has to
systematically calculate first all one-loop diagrams, isolate their divergences, which in terms of
dimensional regularization occur in poles 1/(2−ω)j = 1/ϵj , which define counterterms to shift the
infinities to the bare parameters. If we only subtract these pole terms, which defines the socalled
minimal subtraction (MS) renormalization scheme we expect that these counterterms
become independent of all energy scales, because the divergences are due to large loop momenta.
In this “UV region” any finite mass or energy scales should become irrelevant, and thus the
MS renormalization scheme should lead to bare parameters (i.e., wave-function normalization,
mass and coupling constant) that depend on the renormalisation scale only implicitly via the
corresponding renormalized parameters.

5.4.1 The tadpole self-energy diagram

We have evaluated the tadpole self-energy diagram in Fig. 5.1 in Eq. (5.1). Now we use dimen-
sional regularization to regularise the diagram, i.e.,

Σ(1) = − iλ

2
µ4−2ω

∫
d2ω

(2π)2ω
1

m2 − l2
. (5.86)

The factor µ4−2ω with the renormalisation scale µ has been introduced to keep the coupling
constant λ dimensionless in all spacetime dimensions, i.e., we write λ → λµ4−2ω = λµ2ϵ. Here
and in the following we have absorbed the small imaginary part of the free propagator into the
mass term, i.e., one should read m2 → m2 − iη. Now we can use the standard formulae (C.11),
leading to

Σ(1) =
λm2

32π2

(
4πµ2

m2

)ϵ
Γ(−1 + ϵ) =

λ

32π2

[
−1

ϵ
− 1 + γ + ln

(
m2

4πµ2

)]
+O(ϵ), (5.87)

where in the last step we have performed a Laurent expansion around ϵ = 0, using (C.14).
The infinity for ϵ→ 0, corresponding to the pole ∝ 1/ϵ can be renormalised by a mass countert-
erm. In the MS scheme we just use it to subtract the pole term, i.e., we set

δm2
1,MS =

λm2

32π2ϵ
= m2δZm1,MS. (5.88)
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As we see, the dependence on the renormalisation scale µ is only implicit in the renormalised
coupling λ and mass m. The renormalised self-energy the reads

Σren, MS = δm2
1,MS +Σ(1) =

λm2

32π2

[
−1 + γ + ln

(
m2

4πµ2

)]
. (5.89)

5.4.2 The dinosaur diagram for the four-point vertex

The one-loop correction to the four-point vertex function is of order λ2, cf. Fig. 5.5.

p1

p2 p3

p4

l

l − p

+ (1 ↔ 3)︸ ︷︷ ︸
p=p3−p2

+ (1 ↔ 4)︸ ︷︷ ︸
p=p4−p2

p = p1 + p2

iΓ4 =

Figure 5.5: The “dinosaur diagram” as a one-loop contribution to the 4-point function

Evidently it is sufficient to calculate the first diagram. From momentum conservation and rela-
tivistic covariance this diagram is a function of the Mandelstam variable s = (p1 + p2)

2, and the
other diagrams lead to the same function of the other Mandelstam variables t = (p1 − p3)

2 and
u = (p1 − pr)

2.
The symmetry factor is calculated as follows: There are 8 possibilities to connect the first external
point to one of the vertices, remaining 3 possibilities to connect the second one with the same
inner vertex, 4 to connect the other vertex with the external point and again 3 to connect this
same vertex with the last external point. Then there are 2 possibilities to connect both vertices
with the two lines building the loop. There is a factor 1/2 from the Dyson-Wick series while a
factor (−iλ/4!)2 comes from the interaction Lagrangian. The Feynman rules in d = 2ω = 4− 2ϵ
spacetime dimensions, including the scale factor µ2(4−2ω) = µ4ϵ leads to

Γ(4)
reg(s, t, u) =− µ2ϵ[A(s) +A(t) +A(u)] with

−iA(p2) =
λ2

2
µ4ϵ
∫

ddl

(2π)d
1

(m2 − l2 −m2)[m2 − (l − p)2]
.

(5.90)

To apply formula (5.82) we introduce the Feynman parameterisation making use of

1

ab
=

∫ 1

0
dx

1

[ax+ b(1− x)]2
. (5.91)

Setting this into (5.90) we find

−iA(p2) =

∫ 1

0
dx
λ2

2

∫
ddl

(2π)d
µ2ϵ

{(1− x)(l2 −m2) + x[(l − p)2 −m2]}2 . (5.92)

Introducing l′ = l − xp leads to

−iA(p2) =
λ2µ2ϵ

2

∫ 1

0
dx

∫
ddl

(2π)d
1

[l′2 + x(1− x)p2 −m2]2
, (5.93)
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and applying (5.82) gives

−iA(p2) =
λ2(4πµ2)ϵ

32π2

∫ 1

0
dx

Γ(ϵ)

[m2 − x(1− x)p2]ϵ
. (5.94)

Now using (5.55) and (5.58) this gives

−iA(p2) =
iλ2

32π2

{
1

ϵ
− γ −

∫ 1

0
dx ln

[
m2 − x(1− x)p2 − iη

4πµ2

]}
, (5.95)

where we have reintroduced explicitly the regulator iη from the propagator in order to define the
analytic continuation of the integral from space like momenta p where it is analytic and uniquely
defined. The remaining Feynman integral is finite and can be evaluated analytically to be

A(p2) = − λ2

32π2

[
1

ϵ
− γ + 2− ln

(
m2

4πµ2

)

− 2

√
p2 − 4m2 + iη

p2 + iη
artanh

(√
p2 + iη

p2 − 4m2 + iη

)]
.

(5.96)

For first investigation of the properties of this function we shall apply the so called minimal
subtraction scheme which just subtracts the pole term at ϵ→ 0 leading to the finite result

AMS(s) = − λ2

32π2

[
2− γ − ln

(
m2

4πµ2

)
− 2

√
p2 − 4m2 + iη

p2 + iη
artanh

(√
p2 + iη

p2 − 4m2 + iη

)]

(5.97)
for ϵ→ 0. Thereby we have introduced a counterterm for the coupling constant7:

δAMS =
λ2

32π2
1

ϵ
⇒ δλMS =

3λ2

32π2
1

ϵ
(5.98)

into the Lagrangian in order to render the 1-loop contribution to Γ4 finite.
Now we can investigate the analytic structure of A(s) around the real axis. In the physical sheet
of the Riemannian surface this function is analytic for s < 4m2 and has a branch cut along the
real axis for s > 4m2, i.e., at s = 4m2 it has an essential singularity (branching point). For
s < 4m2 the function is real and from Schwarz’ reflection principle this means along the cut we
have AMS(s− iη) = A∗

MS(s+ iη). The branching point s = 4m2 marks the two-particle threshold
which can be read off the Feynman diagram by the two propagators building the loop. Later
in this chapter we shall investigate such analytic properties from first physical principles as are
unitarity of the S-matrix and causality.
Now the unitarity of the S-matrix can only survive if the counter terms chosen to make the loop
diagrams finite are real. Thus we can set the physical point at which we like to fix the physical
coupling only below the threshold. For instance we can chose the symmetric point of the static
limit, i.e., s = t = u = 0, which means to say Γ(4)(0, 0, 0, 0) = 0. We have only to introduce
another counterterm to compensate for the contribution of the loop integral at this point leading
to

Aphys(s) = − λ2

16π2

[
1 +

√
s− 4m2 − iη

s+ iη
artanh

(√
s+ iη

s− 4m2 + iη

)]
(5.99)

7Note that in the effective action all three diagrams in figure 5.5 dressed with mean fields appear. Thus the
counter term for the coupling has an additional factor 3 compared to the single diagram.
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with the counter term for the physical scheme

δAphys =
λ2

32π2

[
1

ϵ
− γ − ln

(
m2

4πµ2

)]
⇒ δλphys = 3 δAphys. (5.100)

Note that here the dependence on the renormalisation scale µ has been moved from the finite part
to the counterterm, i.e., (5.99) is independent from µ, while the counterterm becomes explicitly
dependent on µ and (more importantly) also on the mass m.

5.4.3 Two-loop self-energy diagrams

To complete the renormalisation of ϕ4 theory up to order λ2 we have to consider the self-energy
diagrams, which are two-loop diagrams. They are also interesting, because they are examples
for diagrams with overlapping subdivergences, i.e., they contain one-loop subdiagrams that are
divergent.

pp

k

l

p p

l1

l2

l + k + p

(a) (b)

Figure 5.6: The self-energy contributions at order λ2.

Let us start with the quite simple diagram (a) in Fig. 5.6. The Feynman rules lead to the
dimensionally regularised expression

Σ(2)
a =

λ2µ4ϵ

4

∫
d2ωk

(2π)2ω

∫
d2ωl

(2π)2ω
1

(m2 − k2)2(m2 − l2)

=
λ2µ4ϵ

4

∫
d2ωl

(2π)2ω
iΓ(ϵ)

m2ϵ

1

m2 − l2

= − λ2m2

1024π4

(
4πµ2

m2

)2ϵ

Γ(ϵ)Γ(−1 + ϵ)

=
λ2m2

1024π4

[
1

ϵ2
−
(
2γ − 1− 2 ln

(
4πµ2

m2

))
1

ϵ

]
+ finite.

(5.101)

Here we have again used the standard formulae from Appendix C.
Let us now calculate the sun-set diagram (diagram (b) in Fig. 5.6). This calculation is introduced
here to present an example for the non-trivial problems concerned with hiding infinities into the
Feynman parameterisation which forces us to use some tricks during the calculation. It is also
important to realise how important it has been to introduce the Wick rotation for the calculation
of the standard integrals and to use the form with the negative propagators mentioned already
above in the very beginning of the calculation because otherwise there we would have serious
problems in the analytic continuation in the dimension due to factors ∝ (−1)ϵ which are only
well defined for ϵ ∈ Z.
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The Feynman rules lead to the self-energy contribution in dimensional regularisation

Σ
(2)
b (p) =

λ2µ4ϵ

6

∫
ddk

(2π)d

∫
ddl

(2π)d
1

m2 − k2
1

m2 − l2
1

m2 − (l + k + p)2
. (5.102)

As in our previous calculation of the one-loop vertex diagram we could introduce immediately
Feynman-parameter integrals for the three Green’s functions but this would cause a new sort
or trouble, namely that we hide divergences in the Feynman parameter integral. Experience
shows that the Feynman parametrization is usually unproblematic for logarithmically divergent
integrals. Now from power counting it is clear that the self-energy should be of the general form

Σ
(2)
b (p) = p2Σ̃

(2)
b1 (p) +m2Σ̃

(2)
b2 (p), (5.103)

where Σ̃b1 and Σ̃b2 are at most logarithmically divergent since these functions have energy di-
mension 1. To extract these functions from the Feynman integral we multiply the trivial identity

∂(k)µ kµ + ∂(l)µ lµ = 2d = 4ω (5.104)

under the integral and then integrate by parts:

Σ
(2)
b (p) = −λ

2µ4ϵ

24ω

∫
ddk

(2π)d

∫
ddl

(2π)d

(
kµ∂(k)µ + lµ∂(l)µ

) 1

m2 − k2
1

m2 − l2
1

m2 − (l + k + p)2
.

(5.105)
Differentiating explicitly and algebraic manipulations with some linear shifts of the integration
variable, which is allowed because the integrals are dimensionally regularised, gives after com-
bining the original integral on the right hand side of the equation with the left hand side:

Σ
(2)
b (p) = − λ2µ4ϵ

6(2ω − 3)

∫
ddk

(2π)d

∫
ddl

(2π)d
3m2 − p(k + l + p)

(m2 − k2)(m2 − l2)[m2 − (k + l + p)2]2
. (5.106)

This enables us to split the integral into the desired two parts:

Σ
(2)
b (p) = − λ2

6(2ω − 3)

[
3m2Σ̃(1)(p) + pµΣ̃(2)

µ (p)
]
. (5.107)

Let us start with the less complicated diagram

pµΣ̃(2)
µ = −

∫
ddk

(2π)d

∫
ddl

(2π)d
p(k + l + p)µ4ϵ

(m2 − k2)(m2 − l2)[m2 − (k + l + p)2]2
=

= +

∫
ddk

(2π)d

∫
ddl

(2π)d
pkµ4ϵ

(m2 − k2)2(m2 − l2)[m2 − (k + l + p)2]
.

(5.108)

In the last step we have substituted −k′ = k + l+ p and renamed k′ back to k afterwards. Now
we introduce Feynman parameters for the integration over l which is the most divergent part of
the integral. This is mainly the same calculation as we have done when we calculated the vertex
diagram in Sect. 5.4.2. After a shift of the integration variable this integral reads

pµΣ̃(2)
µ (p) =

∫
ddk

(2π)d

∫ 1

0
dx

∫
ddl

(2π)d
µ4ϵkp

(M2
1 − l2)2(m2 − k2)2

with M2
1 = m2 − x(1− x)(k + p)2.

(5.109)
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Using (C.8) this gives

pµΣ̃(2)
µ (p) =

iΓ(ϵ)µ4ϵ

(4π)ω

∫ 1

0
dx

∫
ddk

(2π)d
kp

M2ϵ
1 (m2 − k2)2

. (5.110)

Now we introduce another Feynman parameter for combining the denominator to the power of
a propagator-like function. Thereby it is advantageous for the further calculation to take out a
factor [x(1− x)]−ϵ:

pµΣ̃(2)
µ (p) =

iΓ(2 + ϵ)

(4π)ω
µ4ϵ
∫ 1

0
dx

∫ 1

0
dy

∫
ddk

(2π)d
kp(1− y)yϵ−1[x(1− x)]−ϵ

[
(m2 − k2)(1− y) + y

M2
1

x(1−x)

]2+ϵ . (5.111)

A shift from k to k′ = k − yp in the integration variable and using equations (C.8) and (C.9)8.
So we end up with the parameter integral

pµΣ̃(2)
µ (p) =

p2

(4π)4
Γ(2ϵ)

∫ 1

0
dx[x(1− x)]−ϵ

∫ 1

0
dy(1− y)yϵ

(
4πµ2

M2
2

)2ϵ

with M2
2 = m2

(
1− y +

y

x(1− x)

)
− y(1− y)p2.

(5.112)

Now we take the Laurent expansion of this expression around ϵ = 0 (and now it indeed turns
out to be important to have used the quasi-Euclidean sign convention for the propagators):

p2Σ̃
(2)
b1 = − λ2

6(2ω − 3)
pµΣ̃(2)

µ = − p2

(24π)4ϵ
+ finite. (5.113)

It is quite easy to see that the Feynman parameter integrals over x and y are finite. But because
these are rather complicated dilogarithmic functions (in the literature also known as Spence’s
function) we leave it for numerical integration where a trial shows that an adaptive integrator
of low order is the right method.
Now let us turn to the first contribution. With exactly the same steps we have just done for the
second contribution before we obtain

Σ̃(1)(p) =

∫
ddk

(2π)d
µ4ϵ

(m2 − k2)(m2 − l2)2[m2 − (k + l + p)2]
=

= −Γ(2ϵ)

(4π)4

∫ 1

0
dx[x(1− x)]−ϵ

∫ 1

0
dy(1− y)yϵ−1

(
4πµ2

M2
2

)2ϵ

.

(5.114)

This is a good example for the dangers of the Feynman parameterisation. The y-integral is
divergent for ϵ ≤ 0 at the boundary y = 0 of the integral. This makes it impossible to Laurent
expand around ϵ = 0. But this is only a logarithmic divergence9 and thus is cured easily by a
partial integration giving an explicit factor 1/ϵ as expected from the overlapping divergences.
Now we can Laurent expand around ϵ = 0 with the result

m2Σ̃
(2)
b2 = − λm2

2(2ω − 3)
Σ̃(1)(p) =

λ2m2

1024π4

[
1

ϵ2
+

1

ϵ

(
3− 2γ + 2 ln

4πµ2

m2

)]
+ finite. (5.115)

The finite part is again left for numerical integration.
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+−iδΣ̃(2) =

Figure 5.7: The contributions to the self-energy at order O(λ2) due to the O(λ) coupling-constant
and mass counter-terms (symbolized by a crossed vertex point).

At order λ2 are now two more diagrams, which are necessary to subtract the one-loop divergences
in the divergent subdiagrams. The diagrams are shown in Fig. 5.7.
The evaluation of the divergent pieces yield

δΣ̃
(2)
MS =

λ2m2

1024π4

[
− 4

ϵ2
+

1

ϵ

(
−3 + 4γ − 4 ln

4πµ2

m2

)]
+ finite. (5.116)

To obtain this result we used the usual rules to evaluate the Feynman diagrams, using the O(λ)
counterterms (5.98) and (5.88). Adding now (5.101), (5.113) and (5.116) we obtain the remaining
“overall” divergent part of the two-loop self-energy,

Σ̃(2) =
λ2

1024π4

(
−2m2

ϵ2
+
m2

ϵ
− p2

6ϵ

)
+ finite. (5.117)

As we see, thanks to the contributions from the diagrams involving the O(λ) counterterms, the
divergent part is no longer explicitly dependent on the renormalization-scale parameter µ and
the δZm2,MS = δm2

2,MS/m
2 is also independent of the mass m. The same holds true for the

wave-function counterterm:

δm2
2,MS = δZm2,MSm

2, δZm2,MS =
λ2

1024π4

(
2

ϵ2
− 1

ϵ

)
, δZ2,MS = − λ2

6144π4ϵ
. (5.118)

As we shall see in the reminder of this chapter concerning renormalization, this mass indepen-
dence of the dimensionless scaling parameters of the various counterterms holds to any order,
i.e., we shall show that it is always possible to choose such a “mass-independent renormal-
ization scheme”. This is of great advantage to analyse the independence of the physical con-
tent of renormalized perturbation theory from the renormalization scheme and particularly the
renormalization scale: The coupling constant, wave-function normalization constant and mass-
renormalization constant, must be chosen as dependent on the renormalization scale µ such that
the physical quantities do not change under a change of the renormalization scale. This will lead
us to the renormalization-group equations in Sect. 5.11.
The mass independence of the minimal-subtraction scheme, which is defined via the dimensional
regularisation of the loop integrals, is not obvious, but will become clear in terms of the gen-
eral analysis of the divergent diagrams and the proper subtraction of the subdivergences before
determining the overall divergence of the diagram, which provide the counterterms at the con-
sidered order of perturbation theory in terms of the BPHZ formalism in Sect. 5.8. Then we shall

8the last one only to show that the integral with pk′ in the numerator vanishes because there we have the case
q = 0 in (C.9).

9which was the reason for introducing the “trick” (5.104 in (5.105)
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also see that after the proper subtraction of subdivergences the counterterms renormalizing the
overall divergences are of the form in the original Lagrangian, i.e., one has only a wave-function,
mass-renormalization, and a coupling-constant counterterm. Particularly the counterterms are
of the same local structure (e.g., there are no divergent terms ∝ ln(p2/µ2)). Heuristically we
can understand this feature of the MS scheme by the fact that the here considered divergences
are all UV divergences, i.e., they occur from the divergence of the loop integrals for large loop
momenta. In this region any finite energy-momentum-mass scales are irrelevant, and thus the
divergences are also independent of these scales.
Of course, there are arbitrarily many other renormalization schemes that are not mass-independent
schemes. An example is what we called “physical renormalization scheme”, where the both the
mass-renormalization scale and the coupling-constant counterterm became mass dependent, cf.
(5.89) and (5.100. Although such schemes are as legitimate as any other scheme, the corre-
sponding renormalization-group equations, describing the running of the renormalized parame-
ters with the renormalization sacle become more complicated. Sometimes such schemes become
also problematic, when massless particles are involved in the theory or occur due to sponta-
neous symmetry breaking as Nambu-Goldstone modes (see Sect. 5.10). In such cases the choice
of a mass-independent renormalization scheme is preferable. As we have also seen, the choice
of dimensional regularisation and the minimal-subtraction scheme is particularly convenient in
perturbative calculations, because it might be much simpler to just extract the divergent pieces
to determine the counterterms than to evaluate the complicated finite parts of the diagram.
Sometimes one also subtracts some finite constant terms in addition to the poles in ϵ. This, of
course, doesn’t change the advantageous features of the MS renormalization scheme. One calls
such schemes the modified minimal-subtraction or MS schemes. Such an MS scheme is usually
applied when dealing with Quantum Chromodynamics, the non-Abelian gauge theory describing
the strong interaction between quarks and gluons.

5.5 Power counting

Our experience from the previous section lets us now look for the systematic proof of renormal-
isability to all orders of perturbation theory. We shall again take ϕ4-theory as the most simple
example of a renormalisable theory.
At first we look on the so called superficial degree of divergence. This is obtained by simply
counting the powers of loop momenta within the Feynman integral Γ in d-dimensional space
time. A diagram with L loops yields an integral over dL momenta. Each internal line stands for
a propagator which gives a power of −2I (where I is the number of internal lines). The whole
integral has thus a momentum power

Ds(d,Γ) = Ld− 2I. (5.119)

For the convergence of Γ it is obviously necessary but by no means sufficient that Ds(Γ) < 0.
The diagrams in the previous section showed that of course the divergent part had the power law
in the external momenta as expected by this simple power counting method but the finite part
contains non-trivial logarithms. The powers in momenta where ≤ 2 for d = 4. Now it is evident
that it is necessary for a theory to be renormalisable that the degree of divergence is negative
and that the infinite part can be subtracted with help of a counter term which is of the same
form as monomials of fields and its derivatives already contained in the Lagrangian. This means
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that necessarily a renormalisable theory can contain only interaction monomials such that the
superficial degree of divergence for proper vertex-functions is positive only for a finite set of such
vertex functions and exactly those which are already in the Lagrangian.
Now we want to show that ϕ4 is fulfilling this necessary requirements. This is simply done by
substituting E and L in (5.119) instead of I. The conditions are fulfilled if only the 2- and 4-point
1PI vertex functions are superficially divergent. It does not matter if the divergences arise at
all orders perturbation theory but the counter terms should only contain polynomials of order
O(p2) for the 2-point function and only of order O(p0) for the 4-point vertex. The 3-point vertex
should be finite and also all n-point vertices for n ≥ 5. Due to the symmetry under ϕ→ −ϕ the
3-point vertex vanishes at all.
Now we have to count the number of internal lines in terms of the number of loops and external
lines. From momentum conservation at each vertex we have I − V independent momenta but 1
condition is already fulfilled by conservation of the external momenta (the sum of all momenta
running into or out of the vertex diagram has to be 0), thus we have

L = I − V + 1. (5.120)

While (5.119) and (5.120) are valid for any bosonic quantum field theory now we have to use
the fact that each vertex of ϕ4-theory contains exactly 4 legs leading to I = (4V − E)/2 (each
of the 4V legs is connected to an external point linked with another leg. The external legs do
not contribute to the internal lines, each of which is the linking of two fields). This leads to the
following expression for the superficial degree of divergence

D
(d)
S (Γ) = (d− 4)V + d+

(
1− d

2

)
E. (5.121)

For d = 4 this reads D(4)
S (Γ) = 4 − E. This means that the superficial degree of divergence is

negative for E ≥ 5, i.e., the first condition is fulfilled. Now we have to count the naive powers of
momentum for the vertex function.
An n-point vertex function has the same naive momentum power as a coupling constant in front
of a (fictive or real) ϕn-contribution in the Lagrangian. In our system of units the action has
dimension O(p0) and thus from the kinetic term ∂µϕ∂

µϕ we read off that ϕ = O(p(d−2)/2).
This shows that an E-point proper vertex function has the naive dimension O(pE−n(E/2−1)) =

O(pD
(d)(Γ)). Thus for d = 4 the ϕ4-theory is really superficially renormalisable because for E = 2

the naive momentum power is 2 (we have a mass counter term there to absorb the infinities into
the mass) and for E = 4 the power is 0 and this gives rise to the counterterm absorbing the
infinities into the bare coupling.
As we have always emphasised this ideas are not complete. The so far developed power counting
arguments are only necessary but not sufficient conditions for renormalisability. Although a
diagram may have a negative naive degree of divergence it need not be finite and even worse the
infinities need not be polynomial in the external momenta which seems to introduce non-local
interactions into the Lagrangian. It is not a difficult task to explain how this comes about and
how this problem can be solved while the mathematical proof is a hard stuff.
So let us first give a heuristic argument how to treat these problems practically.
First take a superficially finite diagram namely the 6-point vertex of which some contributions
are shown in fig. 5.8. The first diagram is primitive, i.e. it does not contain any 1PI subdiagrams
which can diverge. It is clear how to calculate this diagram qualitatively: One introduces a

156



5.5 · Power counting

(c)(a) (b)

Figure 5.8: An example for a convergent (a) and two superficially convergent but in fact divergent
diagrams

Feynman-parameter and treats the diagram making use of the standard formulas of appendix C.
The result is finite by naive power counting.
But now look on diagram (b) which contains a 1-loop four-point-vertex sub-diagram which we
have calculated in just some paragraphs above. This diagram is divergent, but we have also
to add a counter-term diagram making use of our result of the counter-term at least in the
MS-scheme. This cancels the divergencies which are not local, i.e., which are not polynoms of
p2 which look awkward on the fist look because this would spoil the idea of renormalising the
divergencies with local counter terms in the effective quantum action and absorb them to the bare
parameters. The same is of course true for diagram (c). The diagram with the sub-divergences
subtracted is finite due to our naive power counting. If it was divergent there would remain only
local over-all divergences which can be renormalised by absorbing them into the bare parameters
of the theory.
But this sort of divergences is not the worst one! In these examples there was only one divergent
sub-diagram which could be subtracted unambiguously. The next example, depicted in fig. 5.9
is an example of so called overlapping divergences.
Any of the bold lines in the diagrams indicates a sub-divergence. Looking on diagrams (a)-(c)
each pair of these divergent sub-diagrams have one line in common. This is what is known
as overlapping divergences and realizing that there are overlapping divergences also in QED
threatened the field theorists of the old days this could spoil the renormalisability completely.
To keep the reader calm we mention the solution to this problem. Just don’t worry if the
divergences are overlapping or not and add the three counter terms from the one-loop four-point
result obtained above and magically all difficulties vanish because this procedure leaves us with
an overall divergence which is local. This can be subtracted and put to the bare wave function
normalisation factor and the bare mass of the Lagrangian. This solution also shows that in this
case of the setting-sun diagram there are no non-local divergences because the subdivergences
are subtracted by tadpole diagrams not dependent on the external momentum.
This is also an example for the most important point of the BPHZ formalism which systematically
shows that these conjectures are correct. Although it is a rather hard thing to calculate this
diagram we shall treat it as the next example for the power of dimensional regularisation to have
a fully calculated example with overlapping divergences at hand when switching to a detailed
description of the BPHZ renormalisation.
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21

3

2

1

3

2

3

(a) (b) (a’) (b’)

Figure 5.9: The setting sun diagram (of which we have drawn 2 copies to indicate the sub-
divergences by bold lines) in ϕ4 theory as an example for overlapping sub-divergences: The
two divergent sub-diagrams indicated by the bold lines in the diagrams (a) and (b) have one
propagator line in common. Additionally the diagram has also an overall divergence indicated
by the box around the entire diagram which we have not depicted here. As results from our
calculation in the next section by adding the counter terms (a’) and (b’) for the sub-divergences
one ends up with a local overall divergence which can be absorbed into the bare parameters of
the theory. The dot in the diagrams (a’), (b’) stands for the one-loop counter term of a single
“dinosaur subdiagram” (which is 1/3 of the counter term to the total one-loop contribution). The
rule for such diagrams is to set in the local counter term instead of the sub-diagram, keeping all
the rest as is in the full diagram. In our case this rule shows that each of the counter terms (a’)
and (b’) stands for −iδλi ×

∫
G(l)/3. As is shown below this cancels the leading divergence of

1/ϵ2 in dimensional regularisation.
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5.6 Weinberg’s Theorem

Beginning with this section we prove systematically the renormalisability for superficially (Dyson-
) renormalisable quantum field theories without gauge symmetries.
Our experience from the few examples of Feynman diagrams we have calculated above leads to
the conjecture that a theory is renormalisable by a finite number of local counterterms if there
are only a finite class of diagrams superficially divergent, i.e., if all coupling constants are of a
momentum dimension greater or equal to 0. For calculating the overall local counterterm of a
given diagram one has first to identify and subtract the divergences of subdiagrams.
The program of our proof will be as follows:

(1) Weinberg’s theorem: This theorem states in a mathematical precise way what is meant by
divergences and subdivergences and gives a precise criterion when a diagram is convergent.

As an additional result we shall extract the asymptotic behaviour of Feynman diagrams
for large space like momenta.

(2) BPH-Renormalisation: Then we set up a recursive definition for the renormalisation pro-
cedure and prove the locality of all counterterms of a theory and give the criterion for
renormalisability of a theory.

One of the major advantages of the BPH-scheme compared to older schemes is that there
are no problems with overlapping divergences.

Further it is shown that the renormalised theory is independent of the regularisation scheme
(which we have chosen to be the dimensional regularisation for convenience).

(3) BPHZ-Renormalisation: The final step will be the explicit solution of the recursive BPH-
scheme by Zimmermann, the famous forest formula.

We should also emphasise that for QED or the whole standard model (or other gauge theories)
this is only the first step of the proof that these physically most important theories are renormal-
isable because for them we have in addition to prove that the counterterms are gauge invariant.
This topic will be treated in the next chapter where we set up the mathematical foundation of
the standard model and where we shall treat the problem of symmetries and renormalisation.
But now let us start with the formulation of Weinberg’s theorem. In rough words we like to show
that a Feynman diagram10 gives a finite result if its superficial degree of divergence as well as
the superficial degree of divergence of all its subdiagrams is negative is in fact convergent. But
for this purpose we have to give a mathematically feasible criterion for the degree of divergence
for the subdiagrams as well as the whole diagram.
The problem is that one has to read off this from the integrand of the Feynman diagram where
one can go to infinity with the loop momenta independently from each other as well as with more
than one momentum to infinity at different or the same orders for each momentum.
We shall give here Weinberg’s original formulation and proof of his theorem [Wei60].

Definition 1. Let f : Rn → C. Then f is said to be in the class An if for any

S = span{L⃗1, . . . , L⃗m}
10Of course it is enough to show this for the Wick rotated diagrams, i.e., in Euclidean quantum field theory.

The Minkowskian version of a finite diagram is given by analytic continuation to time like momenta.
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with m ≤ n independent Rn-vectors and for any compact region W ⊆ Rn exist numbers

α(span{L⃗1, · · · , L⃗k}), β(L⃗1, · · · , L⃗k)

such that for every C⃗ ∈W :

f(L⃗1η1 · · · ηm + L⃗2η2 · · · ηm + · · ·+ ηmL⃗m + C⃗) ∼=
η1,...,ηm→∞

∼=
η1,...,ηm→∞

O




m∏

k=1

η
α(span{L⃗1,...,L⃗k})
k

m∏

j=1

(ln ηj)
β(L⃗1,··· ,L⃗j)


 .

(5.122)

The numbers α and β are called the asymptotic coefficients.

Further we define for any set of independent vectors {L⃗′
1, . . . , L⃗

′
k} the integral

fL⃗′
1,...,L⃗

′
k
(P⃗ ) =

∫ ∞

−∞
dy1 · · ·

∫ ∞

−∞
dykf(P⃗ + L⃗′

1y1 + · · ·+ L⃗′
kyk). (5.123)

to be “existent” if it is absolutely convergent with respect to the iterated integrations as they are
written down in the equation. Then Fubini’s theorem immediately proves that this integral is
dependent up to a factor on I = span{L⃗′

1, . . . , L⃗
′
k} ⪯ Rn11 not on the specific vectors L⃗′

j . This
factor is due to the Jacobi determinant of the basis transformations from one set of basis vectors
for I to another. Thus fL⃗′

1,...,L⃗
′
k

exists if and only if the integral over the subspace I

fL⃗′
1,...,L⃗

′
k
(P⃗ ) =

∫

I
dkP⃗ ′f(P⃗ + P⃗ ′) (5.124)

exists, and both integrals have the same asymptotic behaviour.
Further it is clear that the integral (5.124) depends only on the complement of I, i.e., for any
L⃗ ∈ I we have fI(P⃗ + L⃗) = f(P⃗ ). Thus it is convenient and appropriate for the application of
the theorem to let Rn = I ⊕ E where I, E ⪯ Rn with I ∩ E = {0}.
In perturbative Euclidean QFT this is a generalisation of the typical situation that one has to
calculate a k-dimensional integral over the internal loop momenta covering the subspace I with
external momenta spanning the subspace E of Rn. Our present formulation is in turn more
convenient for the general proof of the theorem and because of the above stated equivalence of
the convergence and asymptotic behaviour of the integrals (5.123) and (5.124) we can switch
between these formulations whenever this is convenient for the proof.
To close this section of definitions before we finally state the theorem we have to define the
“projection along a subspace”: Let S ⪯ Rn and S′ its disjoint complement such that Rn = S⊕S′.
Then for any vector V⃗ ∈ Rn there is a unique decomposition V⃗ = L⃗1 + L⃗2 with L⃗1 ∈ S and
L⃗2 ∈ S′. Then we define the projection of V⃗ along S to be Λ(S)V⃗ = L⃗2.
Further for S′′ ⪯ Rn we define the projection of A ⪯ Rn along B ⪯ Rn to be

Λ(B)A = span{Λ(B)V⃗ |V⃗ ∈ A}.

Now we can state Weinberg’s theorem:
11Here and in the following A ⪯ B means that A is a subspace of B.
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Theorem 4. Let f ∈ An where f : Rn → C with the asymptotic coefficients α(S) and β[B(S)]12.
Further let f be integrable over any finite region of I ⪯ Rn in the sense of (5.124) and let

DI = max
S′⪯I

[α(S′) + dimS′] < 0. (5.125)

We call DI the real degree of divergence of the diagram.
Then the following holds for the integral fI defined in (5.124):

(a) fI is absolutely convergent (in short we say “it exists”).

(b) fI ∈ An−k where the asymptotic coefficients for any S ⪯ E is given by

αI(S) = max
Λ(I)S′=S

[α(S′) + dimS′ − dimS] (5.126)

Before we go into the rather lengthy (but elementary) proof we comment on this with respect
to the application of the theorem to perturbative QFT: Clearly DI is the greatest degree of
divergence of any subdiagram contained in the diagram and part (a) is precisely the statement
we need for the convergence of a diagram and (a) is thus enough for the general proof of divergence
of the renormalised theory as we shall have to show below while for (b) we have to work a little
more but it has practical importance for the operator product expansion which is needed to draw
empirically testable conclusions from QCD for deep inelastic scattering.
Weinberg’s example
Here we want shortly refer to the example given by Weinberg in the above cited paper. This
is very simple but nevertheless also illuminating. It is a typical “diagram” in Euclidean 1 + 0-
dimensional Yukawa theory, namely

Σ(p′) =
∫ ∞

−∞
dp′′

p′′

(p′′2 +m2)[(p′′ − p′)2 + µ2]︸ ︷︷ ︸
f(p′,p′′)

. (5.127)

Here we have R2 as the total vector space and E = span{(1, 0)} and I = span{(0, 1)}. Now
we want to determine the asymptotic coefficients for f . Of course the logarithmic coefficients
β are 0 while we have to determine the α carefully. We start with α(I) which is important for
the question of convergence according to (a) of the theorem. To determine α(I) we have to use
(5.122) with only one vector L⃗ = (0, 1). We read off α(I) = −3 immediately. Since I is one
dimensional the only non-trivial subspace S′ ⪯ I is I itself and thus according to (5.125) the
real degree of divergence is DI = α(I) + dimI = −3 + 1 = −2 < 0 and according to (a) the
integral Σ exists because the integral over any finite interval with respect to p′′ exists because f
is a continuous function in p′′ for any p′. To determine the asymptotic behaviour of Σ according
to (b) we have to calculate αI(S) for any subspace S ⪯ E. Now because E is one-dimensional
the only non-trivial subspace is E itself. To calculate αI(E) we have in turn to calculate α(S′)
for any S′ ⪯ R2 with Λ(I)S′ = E. Of course it is immediately clear that S′ can be the whole
R2 and any line different from I. For S′′ = R2 we have only to calculate the behaviour of
f(η2(η1L⃗1+ L⃗2) with respect to η2 → ∞ for any η1 > 1 and independent L⃗1, L⃗2 ∈ R2 fixed. This

12Here we are a little bit more precise than Weinberg, because the “logarithmic coefficients” may depend on the
basis B(S) chosen for the subspace S but this does not change anything for the reasoning of the proof.
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gives O(η−3) and thus α(R2) = −3. For the α(S′) with S′ any line different from I we have to
look at f(η1L⃗+ C⃗) for any C⃗ fixed and L⃗ /∈ I which gives

α(S′) =





−2 for S′ = span{(1, 0)}
−1 for S′ = span{(1, 1)}
−3 for all other lines different from I.

(5.128)

Thus according to (5.126) we have αI(E) = −1.
An explicit integration gives indeed

Σ(p′) =
πp′

µ[(µ+m)2 + p′2]
∼=

p′→∞
O(p′−1). (5.129)

5.6.1 Proof of Weinberg’s theorem

The proof of Weinberg’s theorem is obtained in three steps:

(A) Step of induction: We show that if the theorem is true for dimI ≤ k where k ≥ 1 then it
is true for dimI = k + 1.

(B) Convergence for dimI = 1: We prove that the integral over an arbitrary one-dimensional
subspace I is absolutely convergent provided DI < 0.

(C) Covering the one-dimensional subspace I with a finite number subintervals J each of which
contributes a certain asymptotic behaviour of the integral.

(D) The sum over the subintervals constructed in (C) is a function of the class An−1 with αI
given by (5.126).

The convergence theorem, i.e., conjecture (a) of the theorem is proven with (A) and (B) which
is the simple part of the proof.
Ad (A): Let the theorem be true for any subspace I ⪯ Rn with dim(I) ≤ k.
Now let I be a subspace with dimI = k + 1. Let S1 and S2 be arbitrary non-trivial disjoint
subspaces of I with I = S1⊕S2 (there are arbitrary many such splittings of I!). Then necessarily
dimS1 + dimS2 = dimI = k + 1 and because S1 and S2 are both non-trivial they are both of a
dimension less then k. By the induction hypothesis the theorem holds for these subspaces. Thus
we apply it twice making use of Fubini’s theorem:
(a1) fS2 converges absolutely if DS2(f) < 0 where

DS2(f) = max
S′′⪯S2

[α(S′′) + dimS′′]. (5.130)

(b1) If DS2(f) < 0 then fS2 ∈ An−k2 , k2 = dimS2, with

αS2(S
′) = max

Λ(S2)S′′=S′
[α(S′′) + dimS′′ − dimS′]. (5.131)

(a2) If fS2 ∈ An−k2 cf. (b1) then fI converges absolutely if

DS1(fS2) = max
S′⪯S1

[αS2(S
′) + dimS′] < 0. (5.132)
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(b2) If fS2 ∈ An−k2 and DS1(fS2) < 0 then fI ∈ An−k−1 with

αI(S) = max
Λ(S1)S′

[αS2(S
′) + dimS′ − dimS]. (5.133)

(a1) and (a2) together mean that fI is absolutely convergent if

D′
I(f) = max{DS2(f), DS1(fS2)} < 0 (5.134)

and this can be written as
D′
I(f) = max

S′′
∗[α(S′′) + dimS′′] (5.135)

where max∗ indicates that S′′ has to be a subspace of S2 or such subspaces of Rn that Λ(S2)S′′ ⪯
S1. To show that D′

I(f) = DI(f) we have to prove that this means that S′′ is running in fact
over all subspaces of I = S1 ⊕ S2.
Let S′ ⪯ I but not a subspace of S2. Then let V⃗ ∈ S′. Because I = S1 ⊕ S2 there exist
vectors L⃗1 ∈ S1 and L⃗2 ∈ S2 such that V⃗ = L⃗1 + L⃗2. So we have Λ(S2)V⃗ = L⃗1 ∈ S1 and thus
Λ(S2)S

′ ⪯ S1. Thus since S′′ in max∗ runs over all subspaces of S2 or such subspaces of Rn for
which Λ(S2)S

′′ ⪯ S1 in fact S′′ runs over all subspaces of I and thus

D′
I(f) = max

S′′⪯I
[α(S′′) + dimS′′] = DI(f) (5.136)

Thus we have shown claim (a) of the theorem for fI .
To show (b) out of the induction hypothesis we have to combine (b1) and (b2) which immediately
show that fI ∈ An−k−1. Thus we have only to prove (5.126). From (b1) and (b2) we know that

αI(S) = max
Λ(S1)S′=S

[
dimS′ − dimS + max

Λ(S2)S′′=S′
[α(S′′) + dimS′′ − dimS′]

]
=

= max
Λ(S1)S′=S;Λ(S2)S′′=S′

[α(S′′) + dimS′′ − dimS].
(5.137)

To complete the induction step we have just to show that we can combine the both conditions
for S′′ to Λ(I)S′′ = S.
Thus we have to show the equivalence

[
Λ(S2)S

′′ = S′ ∧ Λ(S1)S
′ = S

]
⇔ S = Λ(S1 ⊕ S2)S

′′ (5.138)

Let S = span{L⃗1, . . . , L⃗r} then S = Λ(S1)S
′ means that in the above maximum we can restrict

S′ to such subspaces for which exist L⃗′
1, . . . , L⃗

′
r ∈ S1 such that S′ = span{L⃗1 + L⃗′

1, . . . , L⃗r + L⃗′
r}.

The same argument gives S′′ = span{L⃗1 + L⃗′
1 + L⃗′′

1, . . . , L⃗r + L⃗′
r + L⃗′′

r} if Λ(S2)S
′′ = S′ with

vectors L⃗′′
1, . . . , L⃗

′′
r ∈ S2. But since S1 and S2 are disjoint subspaces this is nothing else than the

statement that S′′ runs over all subspaces with Λ(S1 ⊕ S2)S
′′ = S. This proves (A).

Ad (B): Now we like to show (a) for a one-dimensional subspace. Thus we set I = span{L⃗} and
look on

fL⃗(P⃗ ) =

∫ ∞

−∞
f(P⃗ + yL⃗). (5.139)

Since f ∈ An by definition

f(P⃗ + L⃗y) ∼=
y→∞

O
(
yα(I)(ln y)β(L⃗)

)
(5.140)
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This integral converges absolutely if α(L⃗) + 1 < 0 if it exists for any finite integral wrt. y. Now
the only non-trivial subset of I is I itself because dimI = 1 and thus DI(f) = α(I) + 1 which
proves part (a) completely.13

Ad (C): The rest of the proof is devoted to show that the integral fI of a function f ∈ An over
a one-dimensional subspace I = span{L⃗} is of class An−1 provided DI(f) < 0.
To show this we use the form (5.123), i.e. we have to study the asymptotic behaviour of

fL⃗(P⃗ ) =

∫ ∞

−∞
dyf(P⃗ + yL⃗) (5.141)

which is the same as that of the function fI defined by (5.124).
Let span{L⃗1, . . . , L⃗m} ⪯ Rn where the L⃗j for j = 1, . . . ,m build a linearly independent set of
vectors which are also linearly independent from L⃗, and W ⊆ Rn compact. Then we have to
show that

fL⃗(P⃗ )
∼=

η1,...,ηm→∞
O

(
m∏

k=1

η
α
L⃗
(span{L⃗1,...,L⃗k})

k (ln ηk)
β
L⃗
(L⃗1,...,L⃗k)

)
(5.142)

with the asymptotic coefficients

αL⃗(S) = max
Λ(I)S′=S

[α(S′) + dimS′ − dimS]. (5.143)

For this purpose we try to split the integration range R in (5.141) in regions of definite asymptotic
behaviour of the integral. Since we have to find only an upper bound of the integral it is enough
to construct a finite coverage which needs not necessarily to be disjoint.
We look on the set of vectors

L⃗1 + u1L⃗, L⃗2 + u2L⃗, . . . , L⃗r + urL⃗, L⃗, L⃗r+1, . . . , L⃗m (5.144)

with 0 ≤ r ≤ m and u1, . . . , ur ∈ R.
Now we have to write out what it means that f ∈ An for this set of vectors: There exist numbers
bl(u1, . . . , ur) > (0 ≤ l ≤ r) and M(u1, . . . , ur) > 0 such that for all ηl > bl(u1, . . . , ur) and
C⃗ ∈W the function fulfils the inequality:

|f [(L⃗1 + urL⃗)η1 · · · ηmη0 + · · ·+ (L⃗r + urL⃗)ηr · · · ηmη0 + L⃗r+1ηr+1 · · · ηm + · · ·+ L⃗mηm + C⃗]|

≤M(u1, . . . , ur)
r∏

k=1

η
α(span{L⃗1+u1L⃗,...,L⃗k+ukL⃗})
k (ln ηk)

β(L⃗1+u1L⃗,...,L⃗k+ukL⃗)×

×ηα(span{L⃗1,...,L⃗r,L⃗})
0 ln(η0)

β(L⃗1+u1L⃗,...,L⃗r+urL⃗,L⃗)×

×ηα(span{L⃗1,...,L⃗r+1,L⃗})
r+1 (ln ηr+1)

β(L⃗1+u1L⃗,...,L⃗r+1+ur+1L⃗,L⃗) × · · ·×
×ηα(span{L⃗1,...,L⃗m,L⃗})

m (ln ηm)
β(L⃗1+u1L⃗,...,L⃗r+urL⃗,L⃗r+1,...,L⃗m,L⃗).

(5.145)

Now each u ∈ [−b0, b0] is contained in a closed interval [u− b−1
1 (u), u+ b−1

1 (u)]. Because [−b0, b0]
is compact in R by the Heine-Borel theorem one can find a finite set of points {Ui}i∈J1 (J1 a

13The reader who intends just to understand the convergence conjecture (a) for renormalisation theory may
stop here because this part is now completely proved. The rest of the section is devoted to the proof of the
asymptotic behaviour for a one dimensional integration space.
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finite index set) such that |U1| < b0 and 0 < λi ≤ b−1
1 (Ui) such that

⋃

i∈J1
[Ui − λi, Ui + λi] = [−b0, b0]. (5.146)

Next take i ∈ J1 and the closed interval [−b0(Ui), b0(Ui) which can be covered again due to
Heine-Borel with a finite set intervals [Uij − λij , Uij + λij ] (j ∈ J2, J2 finite index set) with
0 < λij ≤ b−1

2 (Ui, Uij). This construction we can continue and find m finite sets of points

{Ui1}i1∈J1 , {Ui1i2}i1∈J1,i2∈J2 , . . . , {Ui1...im}i1∈J1,...,im∈Jm (5.147)

and numbers
0 < λi1i2...ir ≤ b−1

r (i1, . . . , ir) with r ≤ m (5.148)

such that
⋃

ir∈Jr
[Ui1...ir − λi1...ir , Ui1...ir + λi1...ir ] ⊆ [−b0(i1, . . . , ir−1), b0(i1, . . . , ir−1)]. (5.149)

Here we have used the abbreviation

bl(i1, . . . , ir) = bl(Ui1 , Ui1i2 , . . . , Ui1i2...ir). (5.150)

Now for given η1, . . . , ηm > 1 we define intervals J±
i1...ir

(η) with r ≤ m which consist of all y
which can be written as

y = Ui1η1 · · · ηm + Ui1i2η2 · · · ηm + · · ·+ Ui1...imηm + zηr+1 . . . ηm (5.151)

where z is running over all values with

b0(i1, . . . , ir) ≤ |z| = ±z ≤ ηrλi1···ir . (5.152)

For r = 0 we define J±(η) to consist of all y with

±y = |y| ≥ b0η1 · · · ηm. (5.153)

Finally we also define J0
i1...im

to consist of all y that can be written as

y = Ui1η1 · · · ηm + Ui1i2η2 · · · ηm + · · ·+ Ui1...imηm + z with |z| < b0(i1, . . . , im). (5.154)

Now we show that any y ∈ R is contained in at least one of these intervals J . If y /∈ J±(η) then
by (5.153) we know that |y| ≤ b0η1 · · · ηm and thus because of (5.146) it exists an i1 ∈ J1 such
that

y ∈ [η1 · · · ηm(Ui1 − λi1), η1 · · · ηm(Ui1 + λi1)]. (5.155)

So we can write
y = η1 · · · ηmUi1 + y′ with |y′| ≤ η1 · · · ηmλi1 . (5.156)

If ±y′ ≥ η2 · · · ηmb0(i1) then y ∈ J±
i1
(η) and we are finished. If on the other hand |y′| ≤

η2 · · · ηmb0(i1) by the same line of arguments using our construction below (5.146) we find a y′′

with
y = η1 · · · ηmUi1 + Ui1i2η2 · · · ηm + y′′︸ ︷︷ ︸

y′

. (5.157)
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It may happen that we have to continue this process until the final alternative, which then leads
to y ∈ J0

i1···im(η). Thus y must indeed be in one of the sets J±
i1...im

(η), J±(η) or J0
i1...im

. Thus we
have found an upper boundary for |fL⃗(P⃗ )| given by

|fL⃗(P⃗ )| ≤
∑

±

m∑

r=0

∑

i1...im

∫

J±
i1...ir

(η)
dy|f(P⃗ + L⃗y|+

∑

i1...im

∫

Ji1···im (η)
dy|f(P⃗ + yL⃗)|. (5.158)

Ad (D): The final step is to determine the asymptotic behaviour of each term on the right hand
side of (5.158) where P⃗ is given by

P⃗ = L⃗1η1 · · · ηm + L⃗2η2 · · · ηm + · · ·+ L⃗mηm + C⃗, C⃗ ∈W (5.159)

where W ⊆ Rn is a compact region.
(i) Let y ∈ J±

i1...ir
(η)

According to the definition of J±
i1...ir

(η) we can combine (5.159) with (5.151) to

P⃗ + L⃗y = (L⃗1 + Ui1L⃗)η1 · · · ηm + (L⃗2 + Ui1i2L⃗)η2 · · · ηm + · · ·+
+(L⃗r + Ui1...ir L⃗)ηr · · · ηm + zL⃗ηr+1 · · · ηm + L⃗r+1ηr+1 · · · ηm + · · ·+ L⃗mηm + C⃗ =

= (L⃗1 + Ui1L⃗)η1 · · ·
ηr
|z| |z|ηr+1 · · · ηm + (L⃗2 + Ui1i2L⃗)η2 · · ·

ηr
|z| |z|ηr+1 · · · ηm + · · ·+

+(L⃗r + Ui1...ir L⃗)ηr · · · ηm ± |z|L⃗ηr+1 · · · ηm + L⃗r+1ηr+1 · · · ηm + · · ·+ L⃗mηm + C⃗

(5.160)

Now we define

α(i1, . . . , il) = α(span{L⃗1 + Ui1L⃗, L⃗1 + Ui1i2L⃗, . . . , L⃗l + Ui1...ilL⃗}), 1 ≤ l ≤ m (5.161)

and apply (5.145) together with the definition (5.151), (5.152) and (5.148) applied to η0 = |z|
with which we find that for

ηl > bl(i1, . . . , ir) for l ̸= r (5.162)

the following boundary condition is valid:

|f(P⃗ + L⃗y)| ≤M(i1, . . . , ir)η
α(i1)
1 (ln η1)

β(i1) · · · ηα(i1,...,ir−1)
r−1 (ln ηr−1)

β(i1,...,ir−1)×

×ηα(span{L⃗1,...,L⃗r+1,L⃗})
r+1 (ln ηr+1)

β(L⃗1,...,L⃗r+1,L⃗) · · · ηα(span{L⃗1,··· ,L⃗m,L⃗})
m (ln ηm)

β(L⃗1,··· ,L⃗m,L⃗)×

×
(
ηr
|z|

)α(i1,...,ir) [
ln

(
ηr
|z|

)]β(i1,...,ir)
|z|α(span{L⃗1,...,L⃗r,L⃗})(ln |z|)β(L⃗1,...,L⃗r,L⃗).

(5.163)

Now introducing z according to (5.160) as the integration variable we find by using the boundary
condition defining J±

i1...ir
(η) cf. (5.152) we find

∫

J±
i1...ir

(η)
dy|f(P⃗ + yL⃗)| ≤M(i1, . . . , ir)η

α(i1)
1 (ln η1)

β(i1) · · · ηα(i1,...,ir−1)
r−1 (ln ηr−1)

β(i1,...,ir−1)×

×ηα(span{L⃗1,...,L⃗r+1,L⃗})
r+1 (ln ηr+1)

β(L⃗1,...,L⃗r+1,L⃗) · · · ηα(span{L⃗1,··· ,L⃗m,L⃗})
m (ln ηm)

β(L⃗1,··· ,L⃗m,L⃗)×
×ηr+1 · · · ηm×

×
∫ ηrλi1···ir

b0(i1,...,ir)
d|z||z|α(span{L⃗1,...,L⃗r,L⃗})(ln |z|)β(L⃗1,...,L⃗r,L⃗) ×

(
ηr
|z|

)α(i1,...,ir) [
ln

(
ηr
|z|

)]β(i1,...,ir)
.

(5.164)
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Because for our purposes an upper bound of the logarithmic coefficients β(L⃗, . . . , L⃗l) is sufficient
we assume without loss of generality that these are positive integers. Then we use the

Lemma 1. Let 0 < λ < 1, b > 1, α, α′ ∈ R and β, β′ ∈ N>0. Then the following holds:

∫ λη

b
dz
(η
z

)α [
ln
(η
z

)]β
zα

′
ηβ

′ ∼=
η→∞





ηα(ln η)β+β
′+1 for α′ + 1 = α

ηα(ln η)β for α′ + 1 < α

ηα
′+1(ln η)β

′ for α′ + 1 > α.

(5.165)

We give the elementary proof of this lemma at the end of the section. From (5.165) we have
with (5.164)
∫

J±
i1...ir

(η)
dy|f(P⃗ + yL⃗)| ≤M(i1, . . . , ir)η

α(i1)
1 (ln η1)

β(i1) · · · ηα(i1,...,ir−1)
r−1 (ln ηr−1)

β(i1,...,ir−1)×

×ηα(span{L⃗1,...,L⃗r+1,L⃗})
r+1 (ln ηr+1)

β(L⃗1,...,L⃗r+1,L⃗) · · · ηα(span{L⃗1,··· ,L⃗m,L⃗})
m (ln ηm)

β(L⃗1,··· ,L⃗m,L⃗)×

×





η
α(i1,...,ir)
r (ln ηr)

β(i1,...,ir)+β(L⃗1,...,L⃗r,L⃗)+1 if α(i1, . . . , ir) = α(span{L⃗1, . . . , L⃗r, L⃗}) + 1

η
α(i1,...,ir)
r (ln ηr)

β(i1,...,ir) if α(i1, . . . , ir) > α(span{L⃗1, . . . , L⃗r, L⃗}) + 1

η
α(span{L⃗1,...,L⃗r,L⃗})+1
r (ln ηr)

β(L⃗1,...,L⃗r,L⃗) if α(i1, . . . , ir) < α(span{L⃗1, . . . , L⃗r, L⃗}) + 1

(5.166)

whenever ηl > bl(i1, . . . , ir) for l ̸= r and ηr > c(i1, . . . , ir) because cf. (5.152) the integral over
the interval J±

i1...ir
(η) contributes only if

ηr ≥
b0(i1, . . . , ir)

λi1...ir
≤ b0(i1, . . . , ir)br(i1, . . . , ir). (5.167)

Now we look on the infinite intervals J±(η). By definition (5.153) of these intervals we find
∫

J±(η)
dy|f(P⃗ + yL⃗)| =

∫ ∞

b0η1···ηm
dy|f(P⃗ ± yL⃗)|. (5.168)

Substitution of y = zη1 · · · ηm and (5.159) for P⃗ gives
∫

J±(η)
|f(P⃗+yL⃗)|dy = η1 · · · ηm

∫ ∞

b0

dy|f(±L⃗zη1 · · · ηm+L⃗1η1 · · · ηm+· · ·+L⃗mηm+C⃗)| (5.169)

and now we can apply (5.145) for r = 0 and η0 = z:
∫

J±(η)
dy|f(P⃗ + yL⃗)| ≤Mη

α(span{L⃗1,L⃗})
1 (ln η1)

β(L⃗1,L⃗) · · · ηα(L⃗1,...,L⃗m,L⃗)
m (ln ηm)

β(L⃗1,...,L⃗m,L⃗)×

×
∫ ∞

b0

zα(span{L⃗})(ln z)β(L⃗).

(5.170)

The integral in the last row is a finite constant since by hypothesis α(span{L⃗}) + 1 < 0.
Now we are left with the interval J0

i1...im
. With its definition (5.154) and (5.159) for P⃗ we have

for these intervals

P⃗ + L⃗y = (L⃗1 + Ui1L⃗)η1 · · · ηm + · · ·+ (L⃗m + Ui1···imL⃗)ηm + zL⃗ (5.171)
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where |z| ≤ b0(i1, . . . , im). Now the region

R′ = {C⃗ ′|C⃗ ′ = L⃗z + C⃗, |z| ≤ b0(i1, . . . , im), C⃗ ∈W} ⪯ Rn (5.172)

is compact. Because f ∈ An by hypothesis there exist numbers

M ′(i1, . . . , im) > 0 and b′l(i1, . . . , im) > 1

such that

|f [(L⃗1 + Ui1L⃗)η1 . . . ηm + · · ·+ (L⃗m + Ui1...imL⃗)ηm + C⃗ ′]| ≤
≤M ′(i1, . . . , im)η

α(i1)
1 (ln η1)

β(i1) · · · ηα(i1,...,im)
m (ln ηm)

β(i1,...,im)
(5.173)

for C⃗ ′ ∈ R′ and ηl > b′l(η1, . . . , ηm). Thus
∫

Ji1...im (η)
dy|f(P⃗ + L⃗y)| ≤ 2b0(i1, . . . , im)M

′(i1, . . . , im)×

×ηα(i1)1 (ln η1)
β(i1) · · · ηα(i1,...,im)

m (ln ηm)
β(i1,...,im)

(5.174)

if ηl ≥ bl(i1, . . . , im) (1 ≤ l ≤ m).
Now our proof is finished by inspection of (5.166), (5.173) and (5.174) because of the result of
the construction in part (C) cf. (5.158). From these estimates of upper bounds for fL⃗(P⃗ ) we
read off that this function is indeed contained in the class An−1 and the asymptotic coefficients
are given by

αL⃗(span{L⃗1, L⃗2, . . . , L⃗r}) = max
i1,...,ir

[α(i1, . . . , ir), α(span{L⃗1, . . . , L⃗r, L⃗) + 1] (5.175)

where i1, . . . , ir are running over the index sets defined in (5.161) and it remains to show that
this is the same as given by (5.126) for our case of integrating over a one-dimensional subspace.
By definition (5.161) we can rewrite (5.175) by

αL⃗(span{L⃗1, L⃗2, . . . , L⃗r}) =
= max

u1,...,ur
[α(span{L⃗1 + u1L⃗, . . . , L⃗r + urL⃗}), α(span{L⃗1, . . . L⃗r, L⃗}) + 1].

(5.176)

Here the u1, . . . , ur run over the sets Ui1 , . . . , Ui1...ir defined above cf. (5.147) respectively. This
expression has to be compared with (5.126).
So let S = span{L⃗1, . . . , L⃗r} and S′ ⪯ Rn such that Λ(span{L⃗}S′ = S. Then of course S′

could be either S ⊕ span{L⃗} or for each v⃗ ∈ S there must exist a w⃗ ∈ S′ and u ∈ R such that
v⃗ = w⃗ + uL⃗. In other words in this there are u1, . . . , ur ∈ R such that

S′ = span{L⃗1 + u1L⃗, · · · , L⃗r + urL⃗}. (5.177)

In the first case we have dimS′ = dimS + 1 in the second we have dimS′ = dimS since S′ in
(5.126) runs over all subspaces disjoint with spanL⃗ and this shows immediately the equivalence
of (5.176) with (5.126) for the case of integration over the one-dimensional subspace span{L⃗}
and this finally finishes the proof. Q.E.D.
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5.6.2 Proof of the Lemma

Now for sake of completeness we prove the above used lemma. (5.165) can be written as:

I(η) = ηα
∫ λη

b
dz

1

zα−α′

[
log
(η
z

)]β
(ln z)β

′
(5.178)

where 0 < λ < 1, b > 1, β, β′ ∈ N>0 and α, α′ ∈ R. With the substitution u = ln z we find

I(η) = ηα
∫ ln(λη)

ln b
du exp[(α′ − α+ 1)u](ln η − u)βuβ

′
. (5.179)

Since we have to investigate the asymptotic behaviour of this integral for η → ∞ we can assume
without loss of generality ηλ > b.

(a) α′ − α+ 1 = 0

In this case we use the binomial theorem to find

I(η) = ηα
β∑

k=0

(
β

k

)
uβ

′+k+1

β′ + k + 1

∣∣∣∣∣

ln(λη)

ln b

(ln η)β−k ∼=
η→∞

O[ηα(ln η)β+β
′+a] (5.180)

(b) α′ − α+ 1 < 0

Then we can let the upper boundary of the integral (5.179) to infinity making the integral greater.
Thus we have the boundary

I(η) ≤ ηα
β∑

k=0

(−1)k(ln η)β−k
∫ β

k=0

(
β

k

)∫ ∞

ln b
duuk+β

′
exp[(α′ − α+ 1)u] (5.181)

and because the integrals under the sum are just finite factors we have the asymptotic behaviour

I(η) ∼=
η→∞

O[ηα(ln η)β. (5.182)

(c) α′ − α+ 1 > 0

In this case we can let the lower boundary of the integral (5.179) to 0. Now the integral

Jn(a, x) =

∫ x

0
un exp(au)du (5.183)

can be calculated by n-fold differentiation of J0(a, x) with respect to a but this is

J0(a, x) =
1

a
[exp(ax)− 1], Jn(a, x) =

∂n

∂an
J0(a, x). (5.184)

The asymptotic behaviour for x → ∞ is thus given if we keep only the differentiation in the
product law where only the exponential term is differentiated leading to

Jn(a, x) ∼=
x→∞

xn exp(ax) (5.185)
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Applying this to (5.179) again using the binomial theorem we find

I(η) = ηα
β∑

k=0

(ln η)β−k(−1)k
∫ ln(λη)

0
du exp[(α′ + 1− α)u]uβ

′+β+k ∼=
η→∞

∼=
η→∞

O

{
ηα

′+1(ln η)β
′
β∑

k=0

(−1)k ln(η)β−k[ln(λη)]k
}

∼=
η→∞

∼=
η→∞

O[ηα
′+1(ln η)β

′
].

(5.186)

The asymptotic formula (5.182), (5.182) and (5.186) together prove the claim of the lemma.
Q.E.D.

5.7 Application of Weinberg’s Theorem to Feynman diagrams

After this lengthy mathematical interlude we come back to perturbative quantum theory and
the problem of renormalisation. Now we can use Weinberg’s theorem to show that a Feynman
diagram is finite if its superficial degree of divergence as well as this of all its subdiagrams is
negative. For this purpose we have only to specify our graphical idea of a subdiagram in a
mathematical manageable way which allows the application of the theorem. Again we shall work
in Wick rotated, i.e., in Euclidean quantum field theory and follow Weinberg’s original paper
but for a general 2ω-dimensional space time.
The typical integrand of a Feynman diagram G is of the form

F = γ(σ)ΠMj=1∆j(p̄j , σ) (5.187)

where σ is a collection of discrete variable like spins, polarisations etc. and γ(σ) is the total
factor independent of the external and the internal momenta of the diagram stemming from the
vertices. All momenta contained in the vertices have to be included in the ∆j . The p̄j ∈ R2ω

is the Euclidean momentum in 2ω-dimensional space time associated with the line labelled with
j. In (5.187) all momentum conserving δ-distributions are integrated out. The total number of
independent internal as well as external momenta is called N .
In order to apply Weinberg’s theorem as formulated in the last section we introduce vectors
V⃗jµ ∈ R2ωN such that

(p̄j)µ = V⃗jµP⃗ , j ∈ {1, . . . , N}. (5.188)

Then the V⃗jµ are linearly independent in R2ωN . Now for the integrand (5.187) we can write

F (P⃗ , σ) = γ(σ)

M∏

j=1

∆j(P⃗ V⃗j , σ) (5.189)

where P⃗ V⃗j is a shorthand notation for the 2ω components (p̄j)µ as given by definition (5.188).
Then we define that the external lines of the diagram G span the subspace E and the inner ones
I which are disjoint and fulfil

R2ωN = E ⊕ I. (5.190)
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Now P⃗ ∈ E(I) if and only if P⃗ ⊥ V⃗j for all j running over the inner (external) lines of G because
in the basis we use here naturally from the Feynman rules P⃗ has only components different from
0 for external or internal momenta respectively14.
The ∆j(p̄j , σ) are tensor or spinor valued expressions in Euclidean 2ω-dimensional space time
and have the asymptotic behaviour

∆j(p̄j , σ) ∼=
p̄2j→∞

O(p̄
αj/2
j ). (5.191)

For instance a Green’s function for a scalar particle is

∆j(p̄j , σ) =
1

p̄2j +m2
j

⇒ αj = −2 (5.192)

while for a Dirac Fermion

∆j(p̄j , σ) =
i/̄pj +m

p̄2j +m2
j

⇒ αj = −1 (5.193)

Lemma 2. The integrand F associated with a Feynman diagram G is of class A2ωN with asym-
ptotic coefficients for S ⪯ R2ωN given by

α(S) =

(S)∑

j

αj , β(S) = 0. (5.194)

Here
∑(S)

j runs over all j for which the vectors V⃗j are not perpendicular to the subspace S.

Proof: Let
P⃗ L⃗1η1 · · · ηm + L⃗2η2 · · · ηm + · · ·+ L⃗mηm + C⃗ (5.195)

with L⃗1, . . . , L⃗m ∈ R2ωN arbitrary linearly independent vectors and C⃗ ∈ W where W is an
arbitrary compact region in R2ωN . Then

∆j(V⃗j p⃗, σ) = O[(ηl · · · ηm)αj ] (5.196)

where
l = min{k|V⃗jL⃗k ̸= 0} (5.197)

Thus we find for the asymptotic behaviour of the integrand

F (P⃗ , σ)∼=O[
M∏

l=1

∏

j

(l)(ηlηl+1 · · · ηm)αj ] (5.198)

where
∏
j
(l) is running over j satisfying (5.197) for the given l. Collecting the powers for each η

we get
F (P⃗ , σ)∼=O(η

α(1)

1 · · · ηα(m)
m ) with α(r) =

∑

j

(r)αj (5.199)

14Here and in the following with P⃗ ⊥ V⃗j we mean that for the line label j for all µ ∈ {1, . . . , 2ω} we have
P⃗ V⃗jµ = 0 where A⃗B⃗ denotes the usual Euclidean scalar product in R2ωN .
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where σj(r) runs over all j satisfying (5.197) for some l ≤ r, i.e., over all j for which

∃k ∈ {1, . . . , r} : L⃗kV⃗j ̸= 0. (5.200)

In other words j runs over those j for which the four V⃗j are not simultaneously perpendicular to
the subspace span{L⃗1, . . . L⃗r}. Thus α(r) depends only on this subspace S and we have proven
our lemma. Q.E.D.
From this lemma the convergence theorem is indeed only a application of Weinberg’s general
theorem (part (a) is sufficient):

Theorem 5. Convergence Theorem: A Feynman integral corresponding to a Feynman graph
G is convergent if its overall superficial degree of divergence, i.e. α(I) + dimI < 0 and if all
subintegrations are superficially convergent, i.e., if α(I ′) + dimI ′ < 0 for all I ′ ⪯ I.

To extract the asymptotic behaviour of the Feynman integral by application of part (b) of
Weinberg’s theorem we have to specify the meaning of the terminus “subgraph” we have given in
a previous section diagrammatically by drawing a box around a part G′ of the Feynman graph
G.

Definition 2. Let G be the Feynman-graph given by its lines15. Then G′ ⊂ G is named subgraph
of G if there is no vertex which is attached to only one line with a vertex in G′. A subgraph G′

is therefore composed of paths which begin and end in each other or in external lines but never
in a vertex of G.

Lemma 3. Let S′ ⪯ R2ωN . Then G′ = {j|V⃗j /⊥S′} is a subgraph associated with S′. For each
subgraph G′ there is a subspace S′ to which it is associated.

Proof: Suppose the lines j1, . . . , jr join one arbitrary vertex in G. Then the momentum con-
servation at this vertex can be written with help of the vectors V⃗j associated with these lines
as

±V⃗j1 ± V⃗j2 ± · · · ± V⃗jr = 0 (5.201)

with a plus-sign for an incoming and a minus-sign for an outgoing momentum (which are linear
combinations of internal and external momenta). Now define G′ as in the lemma and suppose
j1, . . . , jr−1 label lines not contained in G′. Then V⃗j1 , . . . , V⃗jr ⊥ S′. Thus cf. (5.201) also jr ̸= G′.
On the other hand if one has given a subgraph G′ graphically as described in the definition then
each line carries a certain momentum p̄j ∈ R2ωN . Call the set of lines contained in G L(G) and

define S′ =
(
span{V⃗j}j∈L(G′)

)⊥
. Then by definition the subgraph G′ is associated to the subset

S′. Q.E.D.
Now let G′ be a subgraph corresponding to a subspace S′. The external lines contained in G′ are
those for which their corresponding V⃗j are not orthogonal to the projection Λ(I)S′ of S′ along
the subspace of internal momenta. The number of independent internal momenta in G′ is thus

dim[Λ(E)S′] = dimS′ − dim[Λ(I)S′]. (5.202)

It follows that the dimensionality

DI(G
′) = α(S′) + dimS′ − dim[Λ(I)S′] (5.203)

15We shall have to specify the diagrammatic elements more precisely according to Zimmermann [Zim69]but for
now this shorthand notation should be clear enough.
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is the net number of momentum factors (including those of derivative couplings associated with
the vertices) of the subgraph G′ counting αj for each line j and 2ω for each integration. If
the subdiagram G′ associated to the subspace S′ consists only of internal lines of G lines then
Λ(I)S′ = 0 and thus in this case DI(G

′) is the superficial degree of divergence of the subdiagram
G′.
Now it is simple to rewrite (5.126) for our special application to Feynman diagrams as

αI(S) = max
S∈G′

DI(G
′). (5.204)

According to Lemma 3 in other words we can say that max runs over all subgraphs G′ containing
just that very set E∞ of external lines j for which V⃗j is not perpendicular to S. We can summarise
this in the

Theorem 6. Asymptotic behaviour of Green’s functions: If a set E∞ of external lines of
a Feynman diagram G, which is overall convergent as well as its subgraphs according to theorem
5, goes to infinity in the sense of Weinberg’s theorem then the integral associated with G has the
asymptotic behaviour O(ηαI(E∞)(ln η)βI(L⃗) where αI(E) is the maximum of the dimensionality
(defined by (5.203)) of all subgraphs G′ of G including the external lines in E∞ and no more
external lines of G.

5.8 BPHZ-Renormalisation

Now we have all ingredients to prove the main theorem of perturbation theory, namely that for a
theory which has only coupling constants with dimensions O(pk) with k ≥ 0 we can renormalise
any diagram to any order by adding counterterms to the effective action which are of the same
form as in the classical action. This means that only a finite number of parameters (wave
function renormalisation constants, masses and coupling constants) have to be fixed at any order
of perturbation theory to experiment. We call a theory with only renormalisable interaction
terms in the Lagrangian, superficially renormalisable, because we have to show now that they
are really renormalisable. The original parameters in the classical Lagrangian, the so-called
bare parameters, are infinite due to the infinities of finite diagram but cannot be observed in
principle. This is what we call renormalisability in the strict sense. The great advantage of
such a renormalisable theory is that one needs only a finite number of parameters which have
to be fixed to experiment. All other comes out of the model given by the original Lagrangian
containing these parameters.
The mathematical task is thus to show that for a theory with renormalisable couplings, i.e. such
with coupling constants of momentum order greater or equal 0, one can render any diagram finite
by subtracting a polynomial in its external momenta which can be written as a term like that in
the original Lagrangian if interpreted in position space.
Up to now we have calculated some examples by using the method of dimensional regularisation as
an intermediate step to give the integrals a meaning and to find a systematic way to subtract the
divergent parts of the integrals. We have also seen that the renormalisation program works for our
examples using this regularisation scheme. The great advantages of dimensional regularisation
are that it respects most of the symmetries which are so important in quantum field theory,
especially that of local gauge invariance (which is important for QED and essential for the more
complicated non-abelian gauge theories which build the heart of our nowadays understanding of

173



Chapter 5 · Renormalisation

elementary particles within the standard model). For our present task it is not so appropriate as
for the practical calculations.
We come now to the important idea of Boguliubov and Parasiuk who invented a systematic
scheme to render the Feynman integrals finite by handling the integrands first without introduc-
ing an intermediate step of regularisation. They use directly Weinberg’s power counting theorem,
which was so hard to prove in the previous section, to subtract polynoms of the external mo-
menta of the divergent diagrams and its divergent sub-diagrams up to the order given by the
superficial degree of divergence. If we can show that such a scheme works then we are done with
the task to show the renormalisability of superficially renormalisable theories, because then all
infinities are rendered finite by subtracting counterterms in the Lagrangian which are local (i.e.,
they are polynomials of the external momenta momenta which is true by construction) and of
the same form as of the terms already present in the original Lagrangian16.

5.8.1 Some examples of the method

In this section we understand the Feynman rules as rules for building the integrands rather than
the integrals of the perturbation series. To define the subtraction operator we start again with
the simple example of the one-loop contribution to the four point vertex, the dinosaur diagram:

Γ =

p1

p2

p3

p4

l + q

l

with q = p1 + p2 = p3 + p4. (5.205)

According the Feynman rules the integrand of the diagram Γ is

I(q, l) =
λ

2
G(l)G(l + p) with G(k) =

1

m2 − k2 − iη
. (5.206)

Power counting shows that the superficial degree of divergence is

Ds(Γ) = 0. (5.207)

This diagram does not contain any divergent sub-diagrams in the sense of Definition 2 in the
previous section. Indeed breaking up any number of lines to extract sub-diagrams gives a tree
level diagram which is finite. Such diagrams are called primitively divergent.
The idea of Boguliubov and Parasiuk is to render primitively divergent diagrams finite by sub-
tracting the Taylor expansion around 0 with respect to the external momenta of this diagram (in
our case it depends only on the one momentum q which is due to the simplicity of the diagram)
up to the order given by Ds(Γ) from the integrand. The general definition of the Taylor operator
is given by

tj(q)f(q1, . . . , qk) =

j∑

n=0

1

n!
qµ1m1

· · · qµnmn

[
∂n

∂qµ1m1 · · · qµnmn

f(q1, . . . , qk)

]

q1=...=qk=0

. (5.208)

16In this chapter we consider theories in which all superficially renormalisable interaction terms are present
and consistent with Poincaré symmetry. One should note that the Poincaré symmetry is no restriction for the
renormalisation program since all integrands of Feynman integrals are tensors or contractions of tensors with
γ-matrices and thus manifestly Lorentz covariant. The same holds true for the ϕ4–theory which we take as a
simple toy model to have simple examples at hand: Here the superficially renormalisable terms ∝ ϕ and ∝ ϕ3 are
missing but due to the symmetry of the Lagrangian with respect to transformations ϕ → −ϕ all Green’s functions
with an odd number of external legs vanish.
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Herein summation over the Lorentz indices µl and the independent external momenta labels ml

is understood. For the Taylor operator with respect to the external momenta of the diagram Γ
to order Ds(Γ) we write tΓ. Application of the Taylor tγ operator belonging to a sub-diagram γ
is defined to act on the external momenta of γ only and not to affect the complementary diagram
Γ \ γ. Here we introduce the notation we shall need in this and the next sections: We read the
diagram not only as an expression of the Feynman integrals or integrands but also as a set of
the lines and vertices it is built off. By definition the external lines are never contained in the
diagram.
In our case of the dinosaur the subtraction of the overall divergence is given by

RΓ = (1− tΓ)Γ =
λ

2
G(l)[G(l + q)−G(l)]. (5.209)

The degree of divergence is −1 and thus the integral over this expression exists, and the power
counting theorem tells us that the integral has the asymptotic behaviour O[(ln q)β]. Using the
techniques of Feynman parameterisation (C.16) and (C.8) for ω = 2 we find the same result as
we have calculated in section 6.4 with the dimensional regularisation technique. The subtraction
at external momentum 0 is in this case the same as we defined as the physical scheme. Of course
one can change the scheme also in the BPHZ technique by subtracting an arbitrary value so
that one may define λ to be the physical coupling on another set of external momenta. We shall
investigate the meaning of such changes of the renormalisation scheme in another chapter of
these notes when we talk about the renormalisation group.
Now consider the diagram

Γ =
p1

p2

p3

p3 − q

=
iλ3

2
G(l1)G(l1 − q)G(l2)G(l1 + l2 − p3) with q = p1 + p2. (5.210)

which is not only overall divergent (its superficial degree of divergence is Ds(Γ) = 0, i.e. it is
logarithmitically divergent) but contains a divergent subdiagram γ around which we draw a box:

−tγΓ = γ = IΓ\γ(−tγ)γ = − iλ3

2
G(l1)G(l1 − q)G2(l2) with q = p1 + p2. (5.211)

We define that a diagram Γ with one (or more disjoined) subdiagrams stand for the diagram
were the boxed subgraphs are substituted by the negative of the Taylor operator up to the order
of superficial divergence with respect to the external lines of the subdiagram while the remainder
Γ \ γ is unaffected to any manipulations17.
In our case there are no further subdivergent diagrams. Thus we have

R̄Γ = (1− tγ)IΓ =
iλ3

2
G(l1)G(l2)G(l1 − q)[G(l1 + l2 − p)−G(l2)]. (5.212)

17According to the diagram rules one can always write IΓ = IΓ\(γ1∪...∪γk)Iγ1 · · · Iγk were γ1, . . . , γk are arbitrary
mutually disjoined 1PI subdiagrams of Γ. Since γ1, . . . , γk are mutually disjoined tγj (which means that any two
diagrams have neither a line nor a vertex in common) acts only on Iγj while all Iγj′ for j ̸= j′ can be taken out
of the operator tγj
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Power counting shows that this expression is O(l−5
1 ) and thus the integration over l1 is convergent

while the result of this integration is of order O[l−4
1 (ln l1)

β]. Thus the integral over l1 is divergent.
Here we have introduced the definition of R̄Γ which is the integrand according to the diagram
rules for Γ with all subdivergences removed.
Now it is simple to remove also the overall divergence, namely by using the rule for primitively
divergent integrals. This is sufficient to render the whole diagram finite because by definition
R̄Γ does not contain any subdivergence. Thus in our case the integrand of the completely
renormalised diagram reads

RΓ = (1− tΓ)R̄Γ = (1− tΓ)(1− tγ)IΓ =

= G(l1)G(l2){G(l1 − q)[G(l1 + l2 + p3)−G(l2)]−G(l1)[G(l1 + l2)−G(l2)]}.
(5.213)

We see that nested divergences are no problem for the BPH-formalism. Two diagrams γ1 and γ2
are called nested if γ1 ⊂ γ2 or γ2 ⊂ γ1

18.
Now the power counting theorem discussed at length at sections 6.7 and 6.8 shows that the so
renormalised integrals are convergent and up to logarithms behave for large external momenta
asymptotically as given by superficial power counting. Of course the BPH-subtractions of the
subdivergences and overall divergences lead to an integrand which all have a superficial degree
of divergence less than 0 and according to the theorem are thus perfectly finite.
The only thing we have to do is to give a general prescription how to render a general diagram
finite by this formalism which task is completed in the next section by giving the explicit solution
of the recursive BPH-subtraction scheme which is called Zimmermann’s forest formula.

5.8.2 The general BPH-formalism

For sake of completeness we start anew with defining the classes of subdiagrams of a given
diagram relevant for the BPH-formalism. Let Γ be an arbitrary Feynman diagram. Then two
subdiagrams γ1 and γ2 are called

• disjoined if the do not share any common internal line or vertex. The shorthand notation
for this case is γ1 ∩ γ2 = ∅.

• nested if the one diagram, e.g. γ1, is a subdiagram of the other, e.g. γ2: γ1 ⊆ γ2

• overlapping if they are neither disjoined nor nested: γ1 ◦ γ2.

Diagrams and subdiagrams are called renormalisation parts if they are superficially divergent,
i.e., d(γ) ≥ 0. Suppose we have renormalised all subdivergences of Γ by applying the above
described subtraction method (called R-operation) to any divergent subdiagram (including all
nested subdivergences of the subdiagrams themselves). The corresponding integrand is named
R̄Γ. Due to Weinberg’s power counting theorem then the integrand is either finite (which is
the case if Γ is not a renormalisation part) or it can be rendered finite by the R-operation
applied by subtracting the Taylor expansion with respect to the external momenta of Γ if it is a
renormalisation part. Thus this last step can be written compactly as

RΓ = (1− tΓ)R̄Γ. (5.214)
18γ1 ⊂ γ2 means that all lines and vertices of γ1 are also contained in γ2 and γ2 contains lines and/or vertices

which are not contained in γ1.
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Here and in the following we define tΓ as the Taylor expansion with respect to the external
momenta around an arbitrary appropriate renormalisation point19 up to the order given by
superficial degree of divergence of the considered (sub)diagram. If the diagram is not superficially
divergent, i.e. has a superficial degree of divergence d(γ) < 0 than tγ is simply the operator which
maps the integrand to 0.
The R̄γ themselves are defined recursively by

R̄γ = Iγ +
∑

{γ1,...,γc}
Iγ\{γ1,...,γc}

c∏

τ=1

Oγτ (5.215)

with
Oγ = −tγR̄γ . (5.216)

The sum has to be taken over all sets {γ1, . . . , γc} mutually disjoined subdiagrams of γ which
are different from γ.
This is the desired general prescription of the finite part of a Feynman diagram. Indeed if one
takes any subdiagram of Γ by construction of R̄Γ it has a superficial degree of divergence less
then 0 and thus is finite according to Weinberg’s theorem. By definition further also the overall
superficial degree of divergence of the expression RΓ is also less than 0 and thus RΓ is finite,
again by applying Weinberg’s theorem.
Further we have shown that we had to remove only polynomial expressions in p with the order
given by the superficial degree of divergence δ(γ) for any subdiagram γ of Γ. According to (5.121)
in the case of ϕ4-theory for d = 4 only the diagrams with E ≤ 4 external legs are superficially
divergent and the degree of divergence is Ds = 4 − E. Further since only an even number of
fields appears in the Lagrangian also only diagrams with an even number of legs are different
from 0. Thus we need to renormalise only the diagrams with 0, 2 and 4 legs. The diagrams
with 0 legs are contributions to the vacuum energy which can be subtracted without changing
any physical predictions. We do not need to consider them here. The diagrams with 2 legs are
of divergence degree 2 and thus only polynomials of order 2 in the external momentum appear
as counterterms. Further in our case of a scalar theory all vertex functions and the self-energy
are scalars which means that the overall counterterms for self-energy diagrams have the form
δΣ = δZp2− δm2. We can reinterpret these counterterms as contributions to the effective action
which looks the same as those from the original Lagrangian δZ is an infinite contribution to the
bare field-normalisation and δm2 to the bare mass parameter. The remaining divergences are
those of four-point vertex functions which are logarithmitically divergent and have local counter
terms δΓ(4) = δλ which are contributions to the bare coupling constant. This means that any
divergent 1PI diagram part can be made finite by infinite contributions to the bare Lagrangian
which has the same form as the finite tree-level Lagrangian we started with. The only difference
is that the renormalised finite parameters of the theory, which are fixed at certain physical
processes and are thus parameters carrying physical information, are substituted with infinite
bare parameters which are not observable and thus the infinities are not important.
The only problem which is remaining in this description is that of the case of massless particles.
In addition to the so far considered UV-divergences, i.e divergences arising from the integration

19In the case that massless particles are present one has to use a space like momentum otherwise one can use
p = 0 for this so called intermediate renormalisation point. It is called intermediate because of course one can
easily choice another renormalisation point and do a finite renormalisation provided. In the practical applications
we shall use dimensional regularisation where this procedure is much simplified, especially infrared divergences
are cured very naturally with it!
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up to infinite momenta in the loop integrals, such theories contain also IR-divergences arising
from the very soft momenta in the loop integrals. As we shall see below in the case of ϕ4-theory
they can be renormalised by making use of a different renormalisation scheme, like the above
introduced MS (minimal subtraction scheme). Then it will also become clear that we have to
introduce the scale parameter µ as explained in the paragraph after eq. (5.85). In the ϕ4-theory
this means we have to substitute λµ2ϵ for the coupling constant instead of λ, and all counterterms
will depend on µ, which means that especially the renormalised coupling constant will depend on
the choice of µ although the bare coupling constant is independent of this momentum scale. For
the massless case which contains no dimensionful bare parameters this means that we introduce
the parameter µ with the dimension of an energy and we have to adjust the renormalised coupling
at a certain value of µ which fixes the momentum scale of the physical process used to fix the
coupling. As (5.97) shows if the renormalised coupling λ is small at a certain scale µ it might
become large if we look at the same process at a momentum much different in scale from µ.
Then the use of perturbation theory is unjustified since the effective coupling becomes large. We
shall come back to this issue when we use the scale independence of the bare couplings to derive
equations for the “running of the coupling” with µ, the so called renormalisation group equations
which make it possible to resum leading logarithmic contributions to the renormalised coupling
constant which can improve the range of applicability of perturbation theory.

5.9 Zimmermann’s forest formula

Zimmermann has given an explicit solution of the recursive BPH R-operation formula derived in
the last section. We start with his definition of a forest. Let Γ be an arbitrary diagram. Then a
set U of subdiagrams is called Γ-forest if

• All elements of U are renormalisation parts of Γ.

• If γ1, γ2 ∈ U then they are not overlapping.

• U may be the empty set ∅.

Now it is easy to prove that the recursive BPH-scheme described in the last section can be
explicitely solved for a given diagram Γ with help of Zimmerman’s forest formula. In the following
we denote the set of all forests of a given digram Γ with F(Γ). Then the integrand for the
renormalised Feynman integral corresponding to Γ is given by

RΓ =
∑

U∈F(Γ)




′∏

γ∈U
(−tγ)


 IΓ, (5.217)

where IΓ is the integrand given by applying the naive Feynman rules for Γ. The product of the
Taylor operators tγ is ordered such that if γ1 ⊆ γ2 then tγ1 as to be applied before tγ2 . Otherwise
γ1 and γ2 are disjoined and thus the corresponding Taylor operators are commuting.
To prove the forest formula we introduce the set F̄(Γ) of all normal forests. Thereby a forest U
is called normal if Γ /∈ U ; otherwise its called a full forest. Now we use the simple fact that each
full forest U is given by the union of a normal forest Ū = U \ {Γ} with {Γ} which is a special
full forest.
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Now we define

R̄′
γ =

∑

U∈F̄(Γ)


∏

γ′∈U
(−tγ′)


 Iγ . (5.218)

Now we like to show that R̄′
γ is identical with R̄γ defined by (5.215-5.216). For that purpose

it is of course enough to show that they fulfil the recursion relation (5.215). But for any forest
U ∈ F̄ (γ) we can join together the biggest nested parts which are mutually disjoined and call
them γ′1, . . . , γ

′
k. Of course we have also to take into account the empty forest which means

∑

U∈F̄(Γ)


∏

γ′∈U
(−tγ′)


 = 1 +

∑

{γ′1,...,γ′k}

c∑
∏
τ=1



(−tγτ )


 ∑

Uτ∈F̄(γτ )

∏

γ′′τ ∈Uτ

(−tγ′′τ )





 (5.219)

where the sum runs over all sets of mutually disjoined nested parts γ′1, . . . , γ′k of γ. In the bracket
on the right hand side is of the same form as (5.218) but for the γ′τ instead of γ. Since these γ′τ
are mutually disjoined by definition we can write

Iγ = Iγ/{γ′1,...,γk}

k∏

τ=1

Iγ′τ . (5.220)

Thus (5.218) can be written in the form

R̄′
γ = Iγ +

∑

{γ′1,...,γ′k}
Iγ/{γ′1,...,γk}

k∏

τ=1

(−tγ′τ )R̄′
γ′τ
, (5.221)

which is exactly the same recursion as (5.215). This shows that R̄′(γ) = R̄(γ). From the
definition of the forests of Γ we see immediately that also the overall subtraction is given in the
right way:

RΓ = (1− tΓ)R̄Γ =
∑

U∈F̄(Γ)
(1− tΓ)

∏

γ∈U
(−tγ)IΓ, (5.222)

but the right hand side is identical with that of (5.217). Indeed if Γ is overall divergent then it
is a member of all full forests which in turn can again be written as the union of a normal forest
with {Γ} as already mentioned above, and thus (5.222) is indeed identical with (5.217). If on
the other hand Γ is not a renormalisation part tΓ = 0 by definition and (5.217) is also correct
since then Γ is not contained in any forest.
Now we are ready to combine the minimal subtraction scheme defined with help of the di-
mensional regularisation scheme with the BPHZ renormalisation description which is given in
condensed form by the Forest formula (5.217). The only difference is how the subtraction of
the divergences is defined. The only necessity for the proof of the renormalisability with local
counterterms was the fact that in the BPH scheme the tγIγ are polynomials of the external
momenta of the order given by the superficial degree of divergence.
Now the minimal subtraction scheme is defined that one has to subtract only the pole parts
in the analytical dimension plane which are proportional to 1/ϵk.20 The BPHZ-formalism and
especially the forest formula shows that this divergent part of a Feynman integral must be a
polynomial in the external momenta if all its sub-divergences have been removed before. Since

20Remember that the physical space time dimension d = 4− 2ϵ is given by ϵ = 0!
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the forest formula exactly provides this task of removing all subdivergences before the overall
divergences we can simply read tγ in (5.217) as the operator which subtracts the pole parts in
ϵ from the dimensionally regularised Feynman integral corresponding to the diagram γ, which
completely defines the minimal subtraction renormalisation scheme. Of course we are free to
switch to other schemes by subtracting further finite polynomials of the divergent vertices.
Let us now look a last time on the explicit example of ϕ4-theory to clarify this rather abstract
ideas a little bit. Thereby we also solve the problem of the massless theory within dimensional
regularisation and the MS scheme. While the renormalised Lagrangian is given by

L =
1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 − λµ2ϵ

24
ϕ4, (5.223)

the bare one reads

L0 = L + δL =
1

2
(∂µϕ0)(∂

µϕ0)−
m2

0

2
ϕ20 −

λ0
24
ϕ40. (5.224)

In our dimensional regularisation scheme with the counterterm approach we express all quantities
in terms of the renormalised quantities. Concerning the massless case the important point within
this scheme is to write the counterterm Lagrangian in the form

δL =
δZ

2
(∂µϕ)(∂

µϕ)− δZm
2

m2ϕ2 − δZλµ
2ϵ

24
λϕ4. (5.225)

Now δZ, δZm and δλ are dimensionless quantities which also do not contain any derivatives. In
the momentum representation this means that these quantities are independent of the external
momenta of the n-point vertex functions and dimensionless.
Now we investigate the relation between the dimensionally regularised bare and the renormalised
quantities:

(1 + δZ)ϕ2 := Zϕ2 = ϕ20, m2
0 =

1 + δZm
Z

m2, λ0 =
1 + δZλ
Z2

µ2ϵλ. (5.226)

Since Z, Zm and Zλ are dimensionless and the bare coupling λ0 is independent of µ they are of
the form

Z = 1 +
∞∑

k=1

Zk(λ)

ϵk
,

Zm = 1 +
∞∑

k=1

Zmk(λ)

ϵk
,

Zλ = 1 +
∞∑

k=1

Zλk(λ)

ϵk
.

(5.227)

Thus in the minimal subtraction scheme the renormalisation constants Z, Zm and Zλ are inde-
pendent of the renormalised mass m and thus for m2 = 0 there is no singularity at all. This
leads to the conclusion that for m2 = 0 also the bare mass vanishes such that also the massless
theory is renormalisable.
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5.10 Global linear symmetries and renormalisation

We come now back to the issue of symmetries. We have shown in section 4.6.5 that symmetries
which are implemented by linear representations on the fields survive the quantisation process
provided that the path integral measure used to define the effective action is unchanged under
the linear symmetry operation.
From the point of view of the Lagrangian a symmetry means a restriction for possible terms
which can appear in it. In this chapter so far we have shown that a field theory is renormalisable
if the Lagrangian is built by polynomials in the fields and its derivatives such that all constants
appearing in the Lagrangian have an energy dimension less or equal to 4. Since a scalar field
has dimension 1 and each derivative adds also 1 dimension the most general Lorentz invariant
Lagrangian for a theory with N scalar fields reads

L =
1

2
Ajk(∂µϕ

j)(∂µϕk) +
1

2
Bjkϕ

jϕk +
Cjkl
3!

ϕjϕkϕl +
Djklm

4!
ϕjϕkϕlϕm + Ejϕ

j . (5.228)

The coefficients are arbitrary but can be taken without loss of generality to be totally symmetric
in the indices. The discussion in this chapter so far has shown that this defines a renormalisable
theory, i.e., all infinities can be compensated by rescaling the coefficients (with mass independent)
factors. For the scalar theory there is a speciality concerning the three-point vertices: On the
first glance these should be linearly divergent but since they are scalars for the purely scalar
theory they cannot contain a contribution proportional to a four-momentum. Thus in the same
way Lorentz symmetry and power counting forbids us to write down a derivative coupling for
a renormalisable scalar theory it saves us from the need of a counterterm with a derivative
coupling. Thus the three-point vertex is only logarithmically and not linearly divergent as naive
power counting would suggest. This shows that symmetries can lead to a reduction of the order
of divergence compared to pure power counting.
Now we like to find out whether a linearly realised symmetry makes trouble for the renormali-
sation program. As an example we want to look on the O(N)-symmetric version of the theory
given by (5.228), i.e., we want the classical action

S[ϕ] := {L1}1 (5.229)

to be symmetric under all transformations of the form

x′ = x, ϕ⃗′(x′) = Âϕ⃗(x), with Â−1 = Ât ∈ RN×N , (5.230)

where we have used the notation introduced in (3.33). An infinitesimal transformation is given
by

δϕj = δωjkϕk (5.231)

where here and in the following we suppress the space-time argument which is not important as
long as we investigate only the here considered global symmetries. It is clear that the orthogonal-
ity conditions translate into the antisymmetry of δωjk = −δωkj . Now we can count the number
of linearly independent generators of infinitesimal O(N) transformations: The diagonal elements
of the generators must be 0 and we have N(N − 1)/2 independent off-diagonal elements. An
basis of the Lie algebra o(N) is given by

(τ lm)jk = δjlδkm − δjmδkl (5.232)
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and the most general infinitesimal transformation can be written in the form

1

2
δωlmτ̂

lm. (5.233)

Now we are ready to investigate the restrictions for the Lagrangian (5.228) if we want it to be
invariant under all infinitesimal O(N) transformations. It is clear from simple dimensional anal-
ysis that each monomial itself must be invariant. We have only to apply the general infinitesimal
basis transformation which leads to the condition

∀l,m ∈ {1, . . . , N}, ϕ⃗ ∈ RN : Ejτ
lm
jk ϕk = Elϕm − Emϕl = 0 (5.234)

Now for each l we may ϕl = 0 keeping all other components of ϕ⃗ non-zero which leads to El = 0
for all l ∈ {1, . . . , N}.
By analogous arguments we find that the most general O(N)-symmetric renormalisable La-
grangian for a scalar N -let reads

L =
1

2
(∂µϕ⃗)(∂

µϕ⃗)− m2

2
ϕ⃗2 − λ

8
(ϕ⃗2)2. (5.235)

We have written the renormalised Lagrangian in the usual way with the free propagator residuum
normalised to 1. Now from the discussion in chapter 4.6.4 we know that also the dimensionally
regularised effective quantum action Γ[φ⃗] is symmetric under global O(N) transformations, which
of course does not depend on the space-time dimension. Since 1/ℏ is an overall factor in the
exponential of the path-integral the effective action is also O(N)-symmetric to any loop order L.
Now suppose we have renormalised the effective action to all loop order smaller than or equal
to L. Then we know that at loop order L + 1 all proper sub-divergences of any diagram are
of loop order ≤ L and thus are renormalised with the symmetric counterterms by assumption.
Now the BPHZ-renormalisation formalism tells us that the remaining overall divergences of
the diagrams of loop order L + 1 are local polynomials up to order 4 since we have restricted
ourselves. Further we know that the regularised action is symmetric to any orders. From this
we immediately conclude that also for the overall divergences we need counterterms which are
only of the same form as the most general symmetric Lagrangian. This means we have

δL =
δZϕ
2

(∂µϕ⃗)(∂
µϕ⃗)− δZmm

2

2
ϕ⃗2 − δZλλ

8
(ϕ⃗2)2 (5.236)

where all δZk for k ∈ {ϕ,m, λ} are independent of the mass in the minimal subtraction schemes
MS or MS. This shows that also the bare Lagrangian must be O(N) symmetric, i.e., of the form
(5.235).
Now we can answer the question what happens if we chose m2 = −m̃2 < 0. On the first side
we would conclude that we would describe “tachyons”, i.e., particles with a space-like on-shell
momentum. On the other hand since the vacuum is translationally invariant in space and time,
the vacuum expectation value of the fields must be space-time independent, and on the classical
level we need to inspect the potential

V (ϕ) = −L (ϕ)|ϕ=const =
m2

2
ϕ⃗2 +

λ

8
(ϕ⃗2)2. (5.237)

If now m2 = −m̃2 < 0 we see that the solution ϕ⃗ = 0 of the static and homogeneous equations of
motion is a maximum of the potential and not a minimum and thus not a stable solution. Espe-
cially it is not stable against quantum fluctuations in the quantised theory! On the other hand
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we find an continuously degenerated solution of minima of V , namely those field configurations
which obey

λ

2
ϕ⃗2 = m̃2. (5.238)

We are free to chose any vector v⃗ as a solution. This means that although the equations of
motion by construction fulfil the restriction of O(N) symmetry leading to a conserved Noether
current, but the stable homogeneous solution is not ϕ⃗ = 0 but any vector v⃗ different from 0
which is of course not O(N)-invariant since it defines a preferred direction in the Noether-charge
space. This is known as the the spontaneous breakdown of the symmetry.
Now suppose the same holds true for the regularised effective quantum action too, i.e., the stable
solution of the equation of motion

δΓ[φ⃗]

δφ⃗

∣∣∣∣
φ⃗=v⃗

= 0 (5.239)

is different from 0 then we can conclude immediately from its O(N)-symmetry that any O(N)
transformation of v⃗ also is a possible vacuum expectation value. Since the δZk in (5.236) are
all independent of the mass m we can renormalise also this case of a negative mass param-
eter m2 = −m̃2 with symmetric counterterms. Thus also the renormalised theory may have
vacuum expectation values different from 0 and the symmetry is spontaneously broken for the
renormalised quantum theory. In this case one also says the symmetry is realised in the Nambu-
Goldstone mode. The name comes from the seminal papers about the subject of spontaneous
symmetry breaking in quantum field theories [NJL61, Gol61]. The here given more modern dis-
cussion making use of the effective action goes back to [JL64]. If the vacuum expectation value
itself is invariant under the symmetry, i.e., in our case if the stable solution is given by v⃗ = 0
then one calls the symmetry realised in the Wigner-Weyl mode.
To investigate the conclusions we can draw from the spontaneous symmetry breaking we give
a derivation of the the so called Ward-Takahashi identities for the O(N) symmetry. We only
use the fact that the classical action is symmetric under infinitesimal symmetry transformations.
For sake of convenience we label the basis elements of the Lie algebra o(N) with τ̂a where
a ∈ {1, 2, . . . , N(N − 1)/2. Then (5.231) can be written in the more general form

δϕ⃗ = δχaτ̂
aϕ⃗. (5.240)

Now we use the invariance of the path-integral measure in the definition (4.152) for the generating
functional Z for disconnected Green’s functions. The integration over the field momenta is a
Gaussian path integral, which leads up to an indefinite factor which we lump again in the overall
normalisation N :

Z[J⃗ ] =

∫
Dϕ⃗ exp

[
i
{

L (ϕ⃗(x)) + iJ⃗(x)ϕ⃗(x)
}
x

]
. (5.241)

The invariance of the path integral under general field translations reads:

Z[J⃗ ] =

∫
Dϕ⃗ exp

[
i
{

L [ϕ⃗(x) + δϕ⃗(x)] + J⃗(x)(ϕ⃗(x) + δϕ⃗(x))
}
x

]
, (5.242)

and for infinitesimal transformations

0 =

{∫
Dϕ⃗

[
δS

δϕ⃗(x′)
δϕ⃗(x′) + J⃗(x′)δϕ⃗

]
exp

[
i
{

L (ϕ⃗(x)) + iJ⃗(x)ϕ⃗(x)
}
x

]}

x′

. (5.243)
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Now we use (5.240) and the invariance of S[ϕ⃗] under the infinitesimal O(N) transformations:

0 = δχa

{∫
Dϕ⃗
[
J⃗(x′)τ̂aϕ⃗

]
exp

[
i
{

L (ϕ⃗(x)) + iJ⃗(x)ϕ⃗(x)
}
x

]}

x′
=

= δχa

{
J⃗(x′)τ̂a

δ

δiJ⃗(x)

}
Z[J⃗ ].

(5.244)

This tells us nothing else than that Z is a functional of J⃗ which is invariant under O(N) trans-
formations of the external auxiliary current J⃗ . This is what we call the Ward-Takahashi identity
(WTI) for the generating functional Z although usually this name is used for the analogous
situation in the case of abelian local gauge theories like QED which we shall discuss in detail in
the next chapter.
Since (5.244) contains first functional derivatives only the same holds true for the generating
functional of connected Green’s functions (4.204):

W [J⃗ ] = −i lnZ[J⃗ ], δχa

{
J⃗(x′)τ̂a

δ

δiJ⃗(x)

}
W [J⃗ ] = 0. (5.245)

In our case that is a triviality since, if Z is invariant under O(N) transformations the same holds
true for W = −i lnZ. Finally making use of (4.216) we obtain the relation

δχa
{

δΓ

δφ⃗(x⃗)
τ̂aφ⃗(x)

}

x

= 0 (5.246)

which again reproduces the result we obtained in (4.228) in a more explicit form for the more
restricted case of a linearly realized global symmetry : The (symmetrically regularised) effective
quantum action is invariant under the same realisation of the symmetry group as the effective
action and, as we have shown by our discussion above, this also holds true for the renormalised
effective quantum action.
The power of the compact formulation of the symmetry property (5.246) lays in the fact that by
taking further functional derivatives and setting φ⃗ = v⃗ we can derive an infinite set of relations
between the proper n-point vertex functions which are the WTIs for the vertex functions which
play a even more crucial role in the case of gauge theories (including QED) than here in the case
of global symmetries.
We shall give only the most important conclusion from the WTI for the two-point function,
which is the inverse exact propagator as was already shown in (4.217). For that we just take the
derivative of (5.246) with respect to ϕ⃗(x′) where we switch for sake of uniqueness to a component
notation:

δχa
{
(G−1)1i,2lτ

a
ik

}
1
vk = 0. (5.247)

Using the independence of vk from the space-time coordinates and the fact that G−1 must be
a function of the coordinate difference x1 − x2, which both facts follow from the translation
invariance of the theory, we find by inserting the Fourier representation

(G−1)1i,2l =

∫
d4p

(2π)4
[G−1(p)]il exp[−ip(x1 − x2)] (5.248)

into (5.247):
δχa[G−1(p = 0)]ilτ

a
ikv

k = 0. (5.249)
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Now physically this means the following. First we note that G−1(p = 0)il is the bilinear mass-
matrix in the effective quantum potential. Second we remember that we defined v to minimise
the effective quantum potential in order to be a stable solution. This means for the mass matrix
that it must be positive semi-definite. This means all our particles which are identified with
the excitations around the vacuum v⃗ have positive (or zero) squared masses, i.e., they are no
tachyons as it should be. This means that v⃗ is the stable vacuum which therefore is sometimes
also called the “true vacuum”.
If v⃗ ̸= 0, i.e., if the global symmetry is linearly realised in the Nambu-Goldstone mode of a
quantum field theory and v⃗ breaks the symmetry spontaneously, than for any linearly independent
infinitesimal symmetry operation there exists a massless field degree of freedom. Such massless
fields are called Nambu-Goldstone modes.
In our case it is simple to count the Goldstone modes explicitly: It is clear that the symmetry
group which leaves the vacuum invariant is the O(N − 1)-subgroup of O(N) which operates
only on the field degrees of freedom perpendicular to the direction defined by v⃗. The number of
Goldstone bosons is thus given by

dimO(N)− dimO(N − 1) =
N(N − 1)− (N − 1)(N − 2)

2
= N − 1. (5.250)

Indeed there from the N field degrees of freedom there is only one in the direction parallel to v⃗
and thus there must remain N − 1 perpendicular to it, and those are exactly the N − 1 massless
Nambu-Goldstone modes.
We want to mention here that for the case N = 4 the three massless Goldstone bosons where
identified with the three sorts of pions and the fourth massive field with the σ-mesons. Nowadays
we know that this is only one possible realisation of the chiral symmetry of the light-quark sector
of Quantum chromodynamics or QCD, the theory describing the strong interactions of elementary
particles which are called quarks. We know that there are two light quarks, the up- and down-
quark (if one likes one can also treat the strange quark as light too). Now free quarks were
never observed in experiments so far, which is called the confinement but only as bound states of
an anti-quark and a quark (which are called mesons) and a bound state of three quarks (called
baryons). Both sorts of strongly interacting composed particles are called the hadrons. The quark
structure can only be dissolved at higher scattering energies where the quarks inside the hadrons
behave as nearly free particles. At low scattering energies the quarks are confined in the hadrons
hand are not dissolved by the scattering experiments. At low (scattering) energies we can thus
describe the hadrons in good approximation by elementary fields of a quantum field theory with
the appropriate symmetries. As we shall discuss in chapter 7 in detail in the limit of vanishing
masses of the light quarks the QCD-Lagrangian shows a so called chiral symmetry SU(2)⊗SU(2)
which is spontaneously broken to a simple SU(2). Within an effective quantum field theory
model for the scalar sector of the possible composite quark anti-quark bound states, describing
scalar spin-0-bosons one can realise this symmetry by a linearly operating O(4)-symmetry for
four scalar field degrees of freedom. As we have seen this symmetry property together with
renormalisability uniquely determines the to be of the form (5.235). Thus all our conclusions
are valid for this case. The conclusion is that the pions are the three Goldstone bosons from
the spontaneous breakdown of the chiral SU(2)⊗SU(2) to a simple SU(2) in the light quark
sector of QCD. For sake of completeness we close the chapter with the remark that the pions
have a mass of around 140MeV which leads to the conclusion that the above mentioned chiral
symmetry is realised only approximately in nature due to small but non-zero masses of the light
quarks. We shall come back in detail to all this questions in chapter 7 where we discuss Quantum

185



Chapter 5 · Renormalisation

chromodynamics.

5.10.1 Example: 1-loop renormalisation

To illustrate the general considerations of the previous section we shall calculate the divergent
one-loop diagrams for the general case of a non-vanishing constant mean field v⃗ ̸= 0 for the O(N)
linear Σ-model.
First we have to derive the Feynman rules. For the propagator we introduce the two projectors

P jk∥ =
vjvk

v⃗2
, P jk⊥ = δjk − vjvk

v⃗2
. (5.251)

The inverse free propagator is the second functional derivative of the classical action with respect
to the fields taken at φ⃗ = v⃗:

∆̂−1(k) = ∆−1
∥ (k)P̂∥ +∆−1

⊥ (k)P̂⊥ (5.252)

with

∆∥(k) =
1

k2 −m2
∥ + iη

, ∆⊥(k) =
1

k2 −m2
⊥ + iη

,

m2
∥ =

3

2
λv2 − m̃2, m2

⊥ =
λ

2
v2 − m̃2.

(5.253)

Then we have a three-point and a four-point vertex, which read, with our method to determine
the symmetry factors:

kj

l
= − iλ

3!
(vjδkl + vkδjl + vlδjk) = − iλ

3!
δjklmvm,

l

k

i

j
= − iλ

4!
(δijδkl + δikδjl + δilδjk) = − iλ

4!
δijkl.

(5.254)

We start to calculate the one-point function which has to vanish according to the equations of
motion for φ⃗ = v⃗. The one-loop part of this function reads according to the Feynman rules

i[Γ
(1)
1 ]j =

j
=
λ

2
vjµ

2ϵ

∫
ddl

(2π)d
[3∆∥(l) + (N − 1)∆⊥(l)]. (5.255)

With help of (C.8) we obtain with our usual abbreviation d = 4− 2ϵ after an Laurent expansion
around ϵ = 0:

[Γ
(1)
1 ]j =

λvj
64π2

λ(8 +N)v2 − 2(N + 2)m̃2

ϵ
+O(ϵ0). (5.256)

Here we are only interested in the part of the integrals which are infinite for ϵ → 0 since we
like to show the validity of our considerations concerning renormalisation within the minimal-
subtraction scheme which subtracts only the pole terms for ϵ→ 0.
According to (5.236) we have as the counterterms of the minimal subtraction scheme

δMS[Γ
(1)
1 ] = (δZ(MS)

m )1m̃
2vj −

(δλ(MS))1
2

v2vj ,

(δZ(MS)
m )1 =

λ(N + 2)

32π2ϵ
, (δλ(MS))1 =

λ2(N + 8)

32π2ϵ

(5.257)
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Thus already (5.256) determines completely the mass- and coupling constant counterterm. This
shows again how strict the constraints are which are forced by the O(N)-symmetry of the theory.
Now we come to the self-energy part. This is according to the Feynman rules

i[Γ
(2)
1 (p)]jk = −i[Σ1(p)]jk = +j k

j k . (5.258)

Due to the O(N)-symmetry the self-energy decomposes like the free propagator in a parallel and
a transverse part:

[Σ1(p)]jk = Σ∥1(p)P∥jk +Σ⊥1(p)P⊥jk. (5.259)

From the Feynman rules we read off the analytic expressions

Σ∥1(p) =
iλ

2
µ2ϵ
∫

ddl

(2π)d
[3∆∥(l) + (N − 1)∆⊥(l)]+

+
iλ2v2

2
µ4ϵ
∫

ddl

(2π)d
[9∆∥(l + p)∆∥(l) + (N − 1)∆⊥(l)∆⊥(l + p)],

Σ⊥1(p) =
iλ

2
µ2ϵ
∫

ddl

(2π)d
[∆∥(l) + (N + 1)∆⊥(l)]+

+
iλ2v2

2
µ4ϵ
∫

ddl

(2π)d
[2∆∥(l + p)∆⊥(l)].

(5.260)

The result reads

Σ∥1(p) =
λ

64π2
2(N + 2)m̃2 − 3λ(N + 8)v2

ϵ
+O(ϵ0),

Σ⊥1(p) =
λ

64π2
2(N + 2)m̃2 − λ(N + 8)v2

ϵ
+O(ϵ0).

(5.261)

In this case there is no wave-function counterterm at the here considered one-loop level since the
tadpole diagram is constant in p2 and the exchange loop contains only the vertex counterterm
already determined by (5.257). Indeed the MS-counterterms for the self-energy are given by the
counterterms already determined by (5.257):

(δMSΣ∥)1 = −(δZ(MS)
m )1m̃

2 +
3

2
(δλ(MS))1v

2

(δMSΣ⊥)1 = −(δZ(MS)
m )1m̃

2 +
1

2
(δλ(MS))1v

2
(5.262)

as it should be for counterterms that are consistent with the O(N) symmetry of the original
Lagrangian.
Now we come to the three-point function. The Feynman diagrams read

i[Γ
(3)
1 (q, r)]jkl =




j

lk
rq

p

+ exch.


+

k l

p j

q r

. (5.263)

The reminder “exch.” means that one has to add the two crossed versions of the first diagram
with the index-momentum pairs (j, p), (q, k), (r, l) interchanged.
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Only the first sort of diagrams gives rise to logarithmic (rather than linear, which is another
consequence of the underlying O(N)-symmetry!) divergences. We have to show that these are
compensated by the already determined coupling-constant counterterm:

δMS[Γ
(3)
1 (q, r)]jkl = −δλδjklmvm. (5.264)

The Feynman rules give for this divergent part (including the exchange terms):

[Γ
(3)
1 (q, r)]jkl =

λ(N + 8)

32π2ϵ
δjklmv

m +O(ϵ0), (5.265)

which pole contribution is indeed cancelled by the counterterm (5.264).
Finally we have the four-point vertex itself. Again first we draw the Feynman diagrams:

i[Γ
(4)
1 (o, p, q)]ijkl =




lk
rq

p ji o

+
lk

rq

o
i j

p

+ exch.


+

o
i j

p

q r lk
(5.266)

Again it is clear that only the first diagram contains logarithmic divergences and thus we have
to calculate only this diagram to get the terms in 1/ϵ. We have to prove that the counterterm is
given by

δMS[Γ
(4)
1 (o, p, q)]ijkl = −δλδijkl. (5.267)

Evaluation of the Feynman diagram including the crossed channels, again denoted by “exch.” in
(5.266) gives

[Γ
(4)
1 (o, p, q)]ijkl =

λ(N + 8)

32π2ϵ
δjklm +O(ϵ0), (5.268)

while the terms ∝ vivj/v
2gkl, analogous terms with permuted indices, and ∝ vivjvkvl/v

4 are
all finite and thus give no ϵ-pole contributions. Thus again the counterterm (5.267) cancels the
divergent piece of (5.268).
We have shown explicitly that the one-loop level can be rendered finite by subtracting mass and
coupling constant counterterms compatible with the O(N) symmetry of the classical Lagrangian.
For higher order corrections there will be of course also wave-function renormalisations, but
these are also compatible with the symmetry as we have shown by our inductive argument in
the previous section.

5.11 Renormalisation group equations

In this section we investigate the dependence of the vertex functions on the chosen renormalisa-
tion scheme. In fact, the outcome for physical observables should not depend on the renormali-
sation scheme, and this is achieved by the running of the wave function normalisation, the mass
and to coupling with the renormalisation scale. The renormalisation group equations (RGEs)
describe this running.
We shall see that, although the various functions, entering the RGEs, have to be calculated
perturbatively, the solution of the RGEs can improve perturbation theory, since they resum
leading logarithmic contributions to the running of the coupling constant.
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5.11.1 Homogeneous RGEs and modified BPHZ renormalisation

The derivation of the RGEs becomes most clear in BPHZ-like renormalisation techniques, since
there no intermediate regularisation is introduced. First, we shall look at the mass independent
renormalisation schemes (MIR schemes). We follow here [Kug77, Kug97] with some deviations
in the treatment. Especially we avoid the introduction of a cut-off parameter which breaks
Lorentz invariance. In the next section we shall show that the MS and MS schemes of the
previous section, which are defined through dimensional regularisation, are special cases of such
MIR schemes. Such renormalisation schemes, based on dimensional regularisation, is especially
well suited for the perturbative investigation of gauge theories although the dependence on the
renormalisation scale is less intuitive.
For simplicity’s sake we look again at simple ϕ4 theory with the renormalised Lagrangian

L =
1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 − λ

4!
ϕ4. (5.269)

The bare Lagrangian is given in terms of the bare fields and parameters

L0 =
1

2
(∂µϕ0)(∂

µϕ0)−
m2

2
ϕ20 −

λ0
4!
ϕ40. (5.270)

Now, we write the counterterm Lagrangian in the form

δL =
δZ

2
(∂µϕ)(∂

µϕ)− δZm
2

m2ϕ2 − δm2

2
ϕ2 − δλ

4!
ϕ4. (5.271)

In the MIR scheme we introduce a mass renormalisation scale M and use the fact that we always
can subtract at the symmetric off-shell point p̃ = 0 for m2 > 0. Here p̃ denotes an arbitrary set of
independent external momenta of an n-point function. We will also choose invariant parameters
to characterise these external momenta, for instance the invariant s = p2 for the self-energies or
the Mandelstam variables s, t, u for the four-point function.
We also ignore vacuum contributions, corresponding to closed diagrams without external fields,
to the effective action, i.e., we understand the action to be normalised such that Γ[ϕ = 0] = 0.
Since the superficial degree of divergence for a Γ(n)-graph is δ(Γ(n)) = 4− n, we need to impose
renormalisation conditions only for n = 2 (corresponding to wave-function and mass renormal-
isation) and for n = 4 (corresponding to coupling-constant renormalisation). All the Γ(n) with
odd n vanish due to field-reflection symmetry.
We need a mass renormalisation scale, because any integral of superficial divergence degree ≤ 0
is not only UV- but also IR divergent for m2 = 0 at the point p̃ = 0. Thus, if we like to avoid
a space-like momentum subtraction point, and choose the symmetric point p̃ = 0 of BPHZ, we
have to subtract all divergences with divergence degree 0 at a point m2 = M2 > 0. The finite
renormalised quantities then remain well-defined also for m2 = 0 or even at m2 < 0, where the
ϕ4-model shows spontaneous breaking of the Z2 field-reflection symmetry. For now, we stay at
m2 ≥ 0. We thus impose the renormalisation conditions

Σ(p2 = 0,m2 = 0, λ;M2) = 0 ⇒ δm2 = 0,

[∂m2Σ(p2,m2, λ;M2)]m2=M2,p2=0 = 0 ⇒ δZm,

[∂p2Σ(p
2,m2, λ;M2)]m2=M2,p2=0 = 0 ⇒ δZ,

Γ(4)(s = t = u = 0,m2 =M2, λ;M2) = −λ ⇒ δλ.

(5.272)
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One should keep in mind that the self energy is related to Γ(2) by

Γ(2)(p2,m2, λ,M2) = p2 −m2 − Σ(p2,m2, λ;M2). (5.273)

The renormalisation conditions (5.272) make it immediately clear, that δZm, δZ, and δλ cannot
depend on m: Since all external momenta are set to 0 at the renormalisation point, there is no
other dimensionful quantity in the game than the renormalisation scale M2, and thus, since these
quantities are of mass dimension 0, they can only depend on λ. Thus, within the MIR schemes,
the M2 dependence of the logarithmic quantities is only implicit through the M2 dependence of
the running coupling λ.
The choice of the first condition provides a speciality of this particular MIR scheme, namely
δm2 = 0: Since the integrand of the self-energy without BPHZ-subtractions does not depend on
M2, there is no dimensionful quantity at the point m2 = 0. Thus the dependence of δm2 on
M2 can be only through λ. But δm2 is itself of mass dimension 2. So, having no dimensionful
quantity at hand, imposing the first condition in Eq. (5.272), makes necessarily δm2 vanish. It
is the special choice of the first condition in (5.272) which is the common feature of this special
MIR scheme and the MS and MS-scheme.
If we choose another scheme, like an off-shell scheme with momentum renormalisation scale Λ
(the so called momentum subtraction scheme or MOM scheme) we need an additional mass
counterterm δm2 which is not proportional to m2 but to Λ2.
There are also MIR schemes for which δm2 ̸= 0, as we shall see in Sect. 5.12.2. The only common
feature of the MIR schemes is that the counter terms are independent of m2 and thus especially
well suited for renormalisation of the massless case or for m2 < 0 which leads to spontaneous
breakdown of the Z2 field-reflection symmetry.
The effective quantum action Γ, i.e., the generating functional for 1PI truncated Green’s functions
(proper vertex functions) has a certain (finite!) value, independent of whether we express it in
terms of bare or renormalised quantities:

Γ0[ϕ0,m
2
0, λ0] = Γ[ϕ,m2, λ;M2]. (5.274)

The bare quantities do not depend on M2 which enters the game only through renormalisation.
Thus, taking the derivative with respect to M yields 0. So we find
(
M

∂

∂M
+M

∂λ

∂M

∂

∂λ
+M

∂m2

∂M

∂

∂m2
+M

∫
d4x

∂ϕ(x)

∂M

δ

δϕ(x)

)
Γ[ϕ,m2, λ;M2] = 0. (5.275)

Now the first task is to determine the dimensionless functions

β(λ) :=M
∂λ

∂M
, γm(λ) := − 1

m2
M
∂m2

∂M
, γϕ(λ) := − 1

ϕ
M

∂ϕ

∂M
. (5.276)

It is clear that these quantities in principle can be expressed in terms of the renormalisation
factors Z, Zm, and Zλ, introduced in (5.235). We shall come back to this issue when we use di-
mensional regularisation, because the Z’s are not available in BPHZ like renormalisation schemes,
since we have no meaningful definitions for the Z-factors without some kind of regularisation.
What becomes clear from (5.276) is, that nevertheless these quantities are finite. It is also clear
that γϕ does not depend on x.
With (5.276) the RGE (5.276) reads:

[
M

∂

∂M
+ β

∂

∂λ
− γmm

2 ∂

∂m2
− γϕ

∫
d4xϕ(x)

δ

δϕ(x)

]
Γ[ϕ,m2, λ;M2] = 0. (5.277)
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Applying this to the series expansion

Γ[ϕ,m2, λ;M2] =
∞∑

n=2

1

n!

{
Γ
(n)
12...n(m

2, λ;M2)ϕ1ϕ2 · · ·ϕn
}
12...n

(5.278)

gives the homogeneous renormalisation group equations
[
M

∂

∂M
+ β

∂

∂λ
− γmm

2 ∂

∂m2
− nγϕ

]
Γ(n)[p̃,m2, λ;M2] = 0, (5.279)

where we have switched to the momentum space representation.
The functions β, γm and γϕ can be determined by calculating the Γ(n) for n = 2 and n = 4
perturbatively. The RGE (5.279) for the functions Γ(2)(p2,m2, λ;M2), ∂p2Γ(2)(p2,m2, λ;M2)

and Γ(4)(s, t, u,m2, λ;M2) at the points p2 = s = t = u = 0 gives a set of linear equations for
RGE coefficients β, γm and γϕ.
As an example we take the one-loop approximation for ϕ4-theory. The subtracted (and thus
finite) integrals are easily calculated with help of the standard formulae in the appendix which
here are used for d = 4:

Γ(2)(p2,m2, λ;M2) = p2 −m2 +
λm2

32π2

[
1− ln

(
m2

M2

)]
ℏ+O(ℏ2),

Γ(4)(s = t = u = 0,m2, λ;M2) = −λ− 3λ2

32π2
ln

(
m2

M2

)
ℏ+O(ℏ2).

(5.280)

We reintroduced ℏ in these equations, in order to indicate the loop expansion, applied here.
The renormalisation group equations for Γ(2), ∂p2Γ(2) and Γ(4) read, after setting p2 = 0, s =
t = u = 0 and m2 =M2:

γmM
2 + 2γϕM

2 +

(
βM2

32π2
+
λM2

16π2
− γϕλM

2

16π2

)
ℏ+O(ℏ2) = 0,

− 2γϕ +O(ℏ2) = 0,

− β + 4γϕλ+

(
3λ2

16π2
+ γm

3λ2

32π2

)
ℏ+O(ℏ2) = 0.

(5.281)

Its solution is

β =
3λ2

16π2
+O(ℏ2), γM = − λℏ

16π2
+O(ℏ2), γϕ = O(ℏ2). (5.282)

5.11.2 The homogeneous RGE and dimensional regularisation

The above formalism, using only the renormalised Γ functional, or equivalent to that, the renor-
malised proper vertex functions, is more complicated than necessary as long as we stick to the
perturbative calculation of the vertex functions and the RGE coefficients β, γm and γϕ. In par-
ticular, for gauge theories, where the MIR scheme is (due to possible infrared problems) not so
convenient, the dimensional regularisation method provides a much more convenient possibility
to calculate these functions.
As we shall see, the MS and MS renormalisation schemes are also a mass-independent renormal-
isation scheme. Here a renormalization scale enters the game, because in space-time dimensions
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different from 4 the coupling becomes a dimensionful quantity: Its mass dimension is 4−d = 2ϵ.
Thus in dimensional regularisation we introduce a mass scale µ by writing µ2ϵλ, such that the
renormalised coupling parameter λ is kept dimensionless. We shall see that, in the limit ϵ → 0
which by construction can be taken for renormalised quantities, this scale µ2 corresponds to M2

of the MIR scheme with the special first renormalisation condition in (5.272) which makes δm2

vanishing.
The advantage of the use of a regularisation before the renormalisation is that we have an explicit
expression for the Z-factors at hand. From them we can directly derive the RGE coefficients β,
γm and γϕ as derivatives with respect to µ at fixed bare parameters. As we have shown above, the
RGE coefficients are finite21, so that the limit d→ 4 can be taken at the end of the calculation.
The idea is to calculate the dimensionally regularised Z-factors, defined by (5.226). For that we
need only the terms, divergent for ϵ → 0 of the renormalisation parts Σ and Γ(4). To one-loop
order we have

ΣDR = − λℏ
32π2

1

ϵ
m2 +O(ℏ2) + finite,

Γ
(4)
DR = − 3λℏ

32π2
1

ϵ
+O(ℏ2) + finite.

(5.283)

The MS scheme is defined to subtract only the divergent terms ∝ 1/ϵ which leads to the following
Z-factors

Z(MS) = 1 +O(ℏ2), Z(MS)
m = 1 +

λℏ
32π2

1

ϵ
+O(ℏ2), Z

(MS)
λ = 1 +

3λℏ
32π2

1

ϵ
+O(ℏ2). (5.284)

From (5.226) we have

λ0 =
Zλ
Z2
µ2ϵλ. (5.285)

To find β, we derive with respect to µ. Since the bare quantities do not depend on µ, this yields

0 =

[
Zλ
Z2

+ λ
∂

∂λ

(
Zλ
Z2

)]
β + 2ϵλ

Zλ
Z2
. (5.286)

Solving for β gives

β(λ) = lim
ϵ→0

βϵ = − lim
ϵ→0

2ϵλ

1 + λ ∂
∂λ ln

(
Zλ
Z2

) (5.287)

From the previous section we know that the limit exists. If we calculate the renormalisation
factors perturbatively, of course, this is true only up to the calculated order of the expansion
parameter. With (5.283) we find in the MS scheme up to order ℏ:

β(MS)(λ) = lim
ϵ→0

[
−2ϵλ+

3λ2ℏ
16π2

+O(ℏ2)
]
=

3λ2ℏ
16π2

+O(ℏ2). (5.288)

This is the same as (5.282). This needs not to be true to all orders since in the MS (as well as the
MS) scheme the finite parts from the loop corrections are changing the renormalisation conditions
(5.272). Within the MS or MS schemes, the values of the functions at the renormalisation points,
given in (5.272) are known only after the calculation of the vertex functions.

21This is, of course, true only up to the calculated order of perturbation theory.
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In the same way as (5.287) one derives

γϕ = lim
ϵ→0

βϵ
2

∂

∂λ
lnZ, γm = lim

ϵ→0
βϵ

∂

∂λ
ln

(
Zm
Z

)
. (5.289)

To also find the other renormalization-group coefficients we note that

ϕ20 = Zϕ2 ⇒ 0 = µ
∂

∂µ
ϕ20 = µ

∂Z

∂µ
ϕ2 + 2ϕZµ

∂ϕ

∂µ
⇒ γϕ = −µ∂ϕ

∂µ
= lim

ϵ→0

βϵ
2

∂ lnZ

∂λ
(5.290)

and

m2
0 =

Zm
Z
m2 ⇒ 0 = µ

∂

∂µ
m2

0 ⇒ γm = − 1

m2
µ
∂

∂µ
m2 = lim

ϵ→0
βϵ

∂

∂λ
ln

(
Zm
Z

)
. (5.291)

Using (5.284) we find, after expansion up to order O(ℏ), i.e., in one-loop approximation we obtain
the indeed finite results

γ
(MS)
ϕ = O(ℏ2), γ(MS)

m = − λℏ
16π2

+O(ℏ2). (5.292)

We can also draw conclusions about the general structure of the running coupling and then, via
(5.290) and (5.291), the wave-function and mass-renormalization constants Z and Zm at arbitrary
orders of perturbation theory [Col74, CM74]. Since MS and MS schemes are mass-independent
schemes and the dimensionally regularized divergent parts of the vertex functions Γ(2) and Γ(4)

thus are poles in ϵ with coefficients that depend only on the dimensionless renormalized coupling
λ, i.e., not explicitly on the renormalized mass m and the renormalization scale µ, the relation
between the bare and renormalized coupling is

λ0 = µ2ϵ

(
λ+

∞∑

k=1

ak(λ)

ϵk

)
. (5.293)

Taking the derivative with respect to µ yields

0 = µ
∂λ0
∂µ

= 2ϵ

(
λ+

∞∑

k=1

ak(λ)

ϵk

)
+ βϵ

(
1 +

∞∑

k=1

a′k(λ)
ϵ2

)
. (5.294)

Here βϵ is an analytic function of ϵ in a neighbourhood of ϵ = 0, and the ak(λ) are independent
of ϵ. Thus we have by coefficient comparison on both sides of the equation

βϵ = 2ϵλ+ β. (5.295)

Plugging this into (5.294) we find by further comparing the coefficients of the Laurent series on
both sides of the equation

β = 2(λa′1 − a1), λa′k+1 − ak+1 = (λa′1 − a1)a
′
k. (5.296)

The β function thus is determined by the residue of the O(1/ϵ) pole of λZλ/Z2 only. Indeed for
the one-loop approximation we find from (5.284)

λ
Zλ
Z2

= λ+
3λ2ℏ
32π2ϵ

+O(ℏ2) ⇒ a1(λ) =
3λ2ℏ
32π2

(5.297)
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and thus

β =
3λ2ℏ
16π2

+O(ℏ2) (5.298)

as we have already found in (5.269) by the direct calculation.
The coefficients ak are all determined from a1 via (5.296) and the condition that ak(0) = 0.
For the mass we have

m2
0 = m2

(
1 +

∞∑

k=1

bk(λ)

ϵk

)
. (5.299)

Taking the derivative with respect to µ and applying (5.295) one finds by comparison of coeffi-
cients

γm(λ) = − µ

m2

∂

∂µ
m2 = −2λb′1(λ), γmbj = −2λb′j+1 + βb′j . (5.300)

For the wave-function renormalization factor we have

Z = 1 +
∞∑

k=1

ck(λ)

ϵk
(5.301)

and from
ϕ20 = Zϕ2 (5.302)

we find with the same techniques

γϕ(λ) = −µ
ϕ

∂ϕ

∂µ
= −λc′1(λ), λC ′

j+1 =

(
β

2
− γϕ

)
cj . (5.303)

We check these relations for the expansion with respect to powers in λ, which we have available
up to order λ2. From (5.88) and (5.118) we have

Z = 1− λ2

6144π4︸ ︷︷ ︸
c1

1

ϵ
+O(λ3), (5.304)

m2
0 =

Zm
Z
m2 = m2


1 +

λ2

512π4︸ ︷︷ ︸
b2

1

ϵ2
+

(
λ

32π2
− 5λ2

6144π4

)

︸ ︷︷ ︸
b1

1

ϵ


+O(λ3), (5.305)

and from (5.90) together with (5.98)

λ0 =
Zλ
Z2
λµ2ϵ =


λ+

3λ2

32π2︸ ︷︷ ︸
a1

1

ϵ


µ2ϵλ. (5.306)

Now with (5.296), (5.301) and (5.303) we find

β = 2(λa′1 − a1) =
3λ2

16π2
+O(λ2) (5.307)

γm = −2λb′1 =
λ2

3
= − λ

16π2
+

5λ2

1536π4
+O(λ3), (5.308)

γϕ = −λc′1 =
λ2

3072π4
+O(λ3). (5.309)
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We can also check that the recursion relations for the coefficients ak, bk and ck in the Eqs. (5.296),
(5.301) and (5.303) are fulfilled up to order λ2.

5.11.3 Solutions to the homogeneous RGE

Now we have found two ways to calculate perturbatively the functions β, γϕ and γm to the
homogeneous RGE (5.275). Given these functions, it is easy to obtain solutions for this equation
since it is a functional extension to the flow equation

∂

∂t
S(t, x⃗) + v⃗(x⃗)∇x⃗S(t, x⃗) = 0 (5.310)

which describes the conservation of the quantity S along the orbit of a volume element of a fluid
x⃗(t; x⃗0) with the initial condition x⃗(0) = x⃗0. Indeed, from (5.310), we find

d

dt
S[t, x⃗(t, x⃗0)] = 0,

dx⃗(t, x⃗0)

dt
= v⃗[x⃗(t, x⃗0)]. (5.311)

This means
S[t, x⃗(t, x⃗0)] = S[0, x⃗0]. (5.312)

For the RGE (5.275) Γ corresponds to S, the renormalised parametersm2, ϕ, λ to x⃗, the functions
γm, γϕ, β to v⃗(x⃗). Instead of ∂t, in (5.310) we have M∂M . Thus we set M̄ =M exp(τ). Then we
have M∂M = ∂τ , and the defining equations (5.276) for the RGE functions β, γϕ and γm read

∂τϕ = −γϕ(λ)ϕ, ∂τm
2 = −γm(λ)m2, ∂τλ = β(λ). (5.313)

Given the solution to the third equation,
∫ λ̄

λ

dλ′

β(λ′)
=

∫ τ

0
dτ ′ = τ with λ̄ = λ(M̄), λ = λ(M), (5.314)

the solutions for the first equation is given by integration:

ϕ̄ = ϕ exp

{
−
∫ τ

0
dτ ′γϕ[λ(τ

′)]
}

= ϕ exp

[
−
∫ λ̄

λ
dλ′

γϕ(λ
′)

β(λ′)

]
:= Z̄1/2ϕ. (5.315)

Here Z̄ is a finite renormalisation constant, i.e., (5.315) describes the change of the field’s nor-
malisation due to the change of the mass renormalisation scale from M to M̄ = M exp τ . Of
course, also the mass has to change according to the second equation of (5.313):

m̄2 = m2 exp

[
−
∫ λ̄

λ
dλ′

γm(λ
′)

β(λ′)

]
:= Z̄mm

2 (5.316)

Then we can apply (5.312) to the RGE (5.277):

Γ[ϕ,m2, λ;µ2] = Γ[ϕ̄, m̄2, λ̄, µ̄2]. (5.317)

This equation is no surprise, since the generating functional for vertex functions Γ is always equal
to the corresponding bare functional and thus its value cannot change when the renormalisation
scale M is changed. With (5.314-5.316) we have defined how the coupling and the renormalised
mass have to be scaled in order to ensure this independence of the renormalisation scale.
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From (5.317) one immediately obtains the corresponding behaviour of the vertex functions under
change of the renormalisation scale:

Γ
(n)
1...n(m

2, λ;M2) =
δn

δϕ1 · · · δϕn
Γ[ϕ,m2, λ,M2]

∣∣∣∣
ϕ=0

= Z̄n/2Γ
(n)
1...n(m̄

2, λ̄; M̄2). (5.318)

Here we have used the chain rule for functional derivatives together with (5.315).
A Fourier transformation shows that the same equation holds true in the momentum space
representation:

Γ(n)(p̃,m2, λ;M2) = Z̄n/2Γ(n)(p̃, m̄2, λ̄; M̄2). (5.319)

5.11.4 Independence of the S-Matrix from the renormalisation scale

From (5.319) we can immediately see that S-Matrix elements are independent of the renormal-
isation scale. Due to the LSZ reduction theorem, to calculate transition matrix elements, as
the first step we have to build (connected) Green’s functions from the vertices (1PI truncated
Green’s functions) and to amputate the external legs again. This is done by connecting Γ(n)

functions with Green’s functions G(2) = 1/Γ(2). Rescaling M to M̄ , according to (5.319), each
Green’s function gets a factor 1/Z. This compensates the two factors

√
Z of Γ(n) corresponding

to the legs which are connected. Thus the truncated n-point Green’s function obeys the same
scaling law (5.318):

W
(n)
trunc(p̃,m

2, λ;M2) = Z̄n/2W
(n)
trunc(p̃, m̄

2, λ̄; M̄2). (5.320)

To obtain the S-matrix element, for the truncated leg, labelled with k, we have to multiply with
the corresponding asymptotically free wave function φk(p) in momentum space, corresponding
to the single-particle states in the in- and out-multi particle states. On the right-hand side we
write φk(pk) = φ̄k(pk)Z

−1/2. Since this happens to each of the n external legs, finally we have

Sfi =
n∏

k=1

φk(pk)W
(n)
trunc(p̃,m

2λ;M2) =
n∏

k=1

φ̄k(pk)W
(n)
trunc(p̃, m̄

2, λ̄; M̄2). (5.321)

That means, the S-matrix element does not change with the renormalisation scale as it should
be for physical quantities.
It is clear that, for perturbatively calculated matrix elements, again this holds true only up to
the order of the expansion parameter taken explicitly into account.

5.12 Asymptotic behaviour of vertex functions

Now we use the fact that in momentum space representation the mass dimension of Γ(n)(p) is
4− d. So these functions must fulfil the following scaling law

Γ(n)(eτ p̃, e2τm2, λ, M̄2) = exp[(4− n)τ)]Γ(n)[p̃,m2, λ;M2]. (5.322)

On the left-hand side, we have used the definition M̄ = eτM . Making use of (5.318) we find

Γ(n)(eτ p̃, e2τm2, λ; M̄2) = exp[τ(4− n)]Z̄n/2Γ(n)(p̃, m̄2, λ̄; M̄2). (5.323)
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If we substitute m2 with e−2τm2, according to (5.316) also m̄2 = e−2τm̄2. The same time we
can write M2 instead of M̄2 on both sides of (5.323):

Γ(n)(eτ p̃,m2, λ;M2) = exp

[
τ(4− n)− n

∫ λ̄

λ
dλ′

γϕ(λ
′)

β(λ′)

]
Γ(n)(p̃, e−2τ Z̄mm

2, λ̄;M2). (5.324)

This means, a scaling of the external momenta p̃ can be compensated by a redefinition of m2

with e−2τ Z̄mm
2 and of λ by λ̄. Here we have to take m̄ and λ̄ as functions of m and λ. The

scaling behaviour of the vertex functions is not the naively expected, i.e., it does not scale
with the canonical dimension 4 − n but with one corrected by the factor in (5.324). Also m2

does not rescale in the canonical way, namely just by a factor exp(−2τ) but with an additional
factor Z̄m. Since λ is dimensionless, naively we expect it to be unchanged by a rescaling of the
renormalisation mass scale, but as we learnt now instead it is multiplied by a factor Z̄λ/Z̄2. For
this reason, the RGE coefficients β, γϕ and γm often are also called anomalous dimensions.
We like to check (5.324) for the one-loop result. As an example, we take as Γ(4). Since γϕ = O(ℏ2)
the overall scaling factor is simply 1. Thus we need to calculate λ̄ and Z̄m only. Using (5.289)
and (5.292) yields

λ̄ =
16λπ2

16π2 − 3ℏλτ +O(ℏ2)
= λ+

3λ2ℏ
16π2

τ +O(ℏ2),

Z̄m =

(
λ̄

λ

)1/3

= 1 +
λℏτ
16π2

,

Z̄ = 1 +O(ℏ2).

(5.325)

The perturbative expression for the four-point function is (in the MIR scheme)

Γ(4)(s, t, u,m2, λ;M2) = −λ+ ℏ
λ2

2
[A(s) +A(t) +A(u)] (5.326)

with

A(s) =
1

16π2

[
2 + ln

(
M2

m2

)
− 2

√
s(s− 4m2)

s
artanh

(
s√

s(s− 4m2)

)]
. (5.327)

After some algebra, one can verify the relation

Γ(4)(e2τs, e2τ t, e2τu,m2, λ;M2) = Γ(4)(s, t, u, Z̄2
mm

2, λ̄;M2) (5.328)

to order ℏ which is identical with 5.324.

5.12.1 The Gell-Mann-Low equation

For sake of completeness, we like to derive also the RGEs for other renormalisation schemes. We
start with a MOM scheme (momentum-subtraction scheme). Here the renormalisation conditions
usually are given by

Σ(p2 = m2,m2, λ;M2) = 0,

∂p2Σ(p
2,m2, λ;M2)|p2=−M2 = 0,

Γ(4)(p̃,m2, λ;M2)|s=t=u=−4/3M2 = −λ
(5.329)
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The subtraction point p2 = −M2 for the second condition, determining the wave-function renor-
malisation, should be space-like and independent of m for the case we like to study the massless
theory, i.e., m = 0. For m > 0, one can choose a value for M2 ∈]− 4m2,∞[. The first condition
chooses the physical mass of the particle to be given by m. Using a BPHZ renormalisation,
modified to fulfil (5.329), in (5.271) again δm2 = 0. Here also γm vanishes since the unrenor-
malised integrand for Σ does not depend on M and the subtractions for Σ are taken at p2 = m2,
according to the first line in (5.329), the overall counterterms δZmm2 to the mass do not depend
on M2 either. So here we have only two RGE coefficients, namely

β(λ,m/M) =M∂Mλ, γϕ(λ,m/M) = −M
ϕ
∂Mϕ. (5.330)

The corresponding renormalisation group equation is derived in the same way as (5.275), i.e.,
from

Γ[ϕ20,m
2
0, λ0] = Γ[ϕ,m2, λ;M2] ⇒

[
M∂M + β(λ,m/M)∂λ − γϕ(λ,m/M)

∫
d4xϕ(x)

δ

δϕ(x)

]
Γ[ϕ,m2, λ;M2] = 0.

(5.331)

This is the Gell-Mann-Low RGE. Expanding with respect to the field ϕ one obtains the Gell-
Mann-Low RGE for the proper vertex functions in the same way as we derived (5.279):

[M∂M + β(λ,m/M)∂λ − nγϕ(λ,m/M)] Γ(n)(p̃,m2, λ;M2) = 0. (5.332)

It shows that also in this scheme the S-matrix elements are independent of the choice of the
momentum renormalisation scale M2. The proof is exactly the same as given in Sect. 5.11.4 for
the homogeneous RGE.
The difference to the homogeneous renormalisation group equation is that, in general, its solution
is not so easy since the coefficients β and γϕ depend on both, λ and explicitly on m2/M2. Only
in the limit m→ 0 the equation becomes solvable as easy as the homogeneous one.
For the perturbative calculation of β and γϕ we can use the same technique as shown in Sect.
5.11.1. One only has to use (5.332) for the renormalisation parts Γ(2) and Γ(4) and solve for the
linear system of equations for β and γϕ. For ϕ4-theory, we obtain in lowest ℏ-order

γ
(MOM)
ϕ = O(ℏ2),

β(MOM) =
3λ2ℏ
16π2

[
1− 3m2

√
3m2M2 +M4

artanh

(
M2

√
3m2M2 +M4

)]
+O(ℏ2).

(5.333)

5.12.2 The Callan-Symanzik equation

In the original BPHZ renormalisation scheme, the renormalised mass has to be fixed to m > 0.
The renormalisation conditions read

ΣBPHZ(s = 0,m2, λ) = 0,

∂sΣBPHZ(s,m
2, λ)|s=0 = 0,

Γ
(4)
BPHZ(s, t, u,m

2, λ)|s=t=u=0 = −λ.
(5.334)

Here we have neither a momentum- nor a mass-renormalisation scale as in the MOM or MIR
schemes. Here the physical mass of the particle has to be defined by the zero of

Γ
(2)
BPHZ(m

2
phys,m

2, λ) = 0.
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Thus, within the BPHZ-scheme we interpret m2 as a free mass scale, which can be varied without
changing the theory, provided the wave function and coupling is renormalised such that

ΓBPHZ[ϕ,m
2, λ] = ΓBPHZ[ϕ, m̄

2, λ̄]. (5.335)

Instead of deriving the corresponding RGE from scratch, it is more convenient to use the ho-
mogeneous RGE (5.275). For this, we modify our MIR scheme conditions (5.272) slightly and
denote the new scheme with MIR:

ΣMIR(p
2 = 0,m2, λ;M2)|m2=M2 = 0 ⇒ δm2 =M2δZ ′

m,

∂m2ΣMIR(p
2 = 0,m2, λ;M2)|m2=M2 = 0 ⇒ δZm,

∂p2ΣMIR(p
2 = 0,m2 =M2, λ;M2) = 0 ⇒ δZ(λ),

Γ
(4)

MIR
(s = t = u = 0,m2 =M2, λ;M2) = −λ ⇒ δλ(λ).

(5.336)

The only difference is that δm2 ̸= 0, but it is independent of m. The reasoning is the same as
with the original MIR scheme: The only dimensionful quantity appearing in the non-subtracted
Feynman integrands at the renormalisation point for the self-energy m2 = M2, p2 = 0 is M2

and thus δm2 ∝M2. The factor can only depend implicitly on M over the dependence on λ.
In the following we denote the mass parameter in the BPHZ scheme with m̃, that of the MIR
scheme with m. Then we have

ΓBPHZ[ϕ, m̃
2, λ] = ΓMIR[ϕ,m

2, λ;M2]|m=M=m̃. (5.337)

The homogeneous RGE for the MIR scheme reads the same as before, but the RGE coefficients
β, γϕ and γm are different from those of the MIR scheme. Thus we write β̄, γ̄m, γ̄ϕ:
[
m̃

∂

∂m̃
+ β̄(λ)

∂

∂λ
− γ̄m(λ)m

2 ∂

∂m2
− γ̄ϕ(λ)

∫
d4xϕ(x)

δ

δϕ(x)

]
ΓMIR[ϕ,m

2, λ; m̃2] = 0. (5.338)

Now we define

Γ
(k)
BPHZ[ϕ, m̃, λ] =

(
∂

∂m2

)k
ΓMIR[ϕ,m

2, λ; m̃2]|m2=m̃2

∣∣∣∣∣
m2=m̃2

. (5.339)

For k = 0, according to (5.334), this is simply ΓBPHZ. We shall come back to these functions
at the end of this section and prove that it corresponds to the same diagrams of the original
functional Γ(k)

BPHZ, but with k insertions of an auxiliary two-point vertex with the the value −iκ/2
divided by 1/κk. As we shall see, for the derivation of the renormalisation group equation for
the BPHZ scheme, we need only the fact that each n-point function

Γ
(n,k)
BPHZ12...n[m̃, λ] =

δn

δϕ1 · · · δϕn
Γ
(k)
BPHZ[ϕ, m̃, λ]

∣∣∣∣
ϕ=0

⇒ Γ
(n,k)
BPHZ[p̃, m̃

2, λ] (5.340)

in momentum representation has the dimension (or superficial degree of divergence)

δ
[
Γ
(n,k)
BPHZ

]
= 4− n− 2k. (5.341)

Then we can expand ΓMIR around m2 = m̃2:

ΓMIR[ϕ,m
2, λ; m̃2] =

∞∑

k=0

1

k!
Γ
(k)
BPHZ[ϕ, m̃

2, λ](m2 − m̃2)k. (5.342)
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From (5.338) we find after some algebra

∞∑

k=0

1

k!
(m2 − m̃2)k

[
m̃

∂

∂m̃
+ β̄

∂

∂λ
− γ̄ϕ

∫
d4xϕ(x)

δ

δϕ(x)

]
Γ
(k)
BPHZ[ϕ, m̃, λ]

=

∞∑

k=0

1

k!
(m2 − m̃2)k(2m̃2 + γ̄mm

2)Γ
(k+1)
BPHZ[ϕ, m̃

2, λ].

(5.343)

Setting m = m̃ we find the Callan-Symanzik equation or CS equation:
[
m̃

∂

∂m̃
+ β̄

∂

∂λ
− γ̄ϕ

∫
d4ϕ(x)

δ

δϕ(x)

]
ΓBPHZ[ϕ, m̃

2, λ] = 2m̃2α(λ)Γ
(1)
BPHZ[ϕ, m̃

2, λ]. (5.344)

Here we have introduced
α(λ) = 1 +

γ̄m
2
. (5.345)

We see that the CS equation is of the type of a functional flow equation like the homogeneous
RGE, but it is inhomogeneous due to the right-hand side. It cannot be solved as easily as the
homogeneous RGE, although the approximated coefficients β̄, γ̄ϕ and γ̄m are given explicitly
from the MIR scheme.
The equation for the n-point function is derived as usual by expanding the functionals in powers
of ϕ. With (5.340) the CS equations for the n-point vertex functions read

[
m̃

∂

∂m̃
+ β̄

∂

∂λ
− nγ̄ϕ

]
Γ
(n)
BPHZ[p̃, m̃

2, λ] = 2m̃2αΓ
(n,1)
BPHZ[p̃, m̃

2, λ] (5.346)

From (5.341) we see that the only additional renormalisation part is the two-point function with
one κ insertion, i.e., Γ(2,1)

BPHZ which is logarithmically divergent. In our approach the renormali-
sation condition is completely fixed by the second of the MIR conditions (5.336) which can be
rewritten in terms of Γ(2)

MIR
:

∂m2Γ
(2)

MIR
[p2 = 0,m2, λ,M2]|m2=M2 = −1. (5.347)

Setting herein M2 = m̃2 yields

Γ
(2,1)
BPHZ(p

2 = 0, m̃2, λ) = −1. (5.348)

Then the CS equation (5.346) for m = 2 gives, by setting p2 = 0 the important relation

1− γ̄ϕ = α ⇒ γ̄m = −2γ̄ϕ, (5.349)

where we made use of (5.345). Clearly, the latter relation can be derived directly by specialising
the homogeneous RGE (5.279) to the case n = 2 and s = 0, but now using the MIR- instead of
the MIR scheme.
Deriving (5.343) j times with respect to m2 and setting afterwards m2 = m̃2, we find the
generalised CS equation

[
m̃

∂

∂m̃
+ β̄

∂

∂λ
− (n− 2l)γϕ

]
Γ
(n,l)
BPHZ(p̃, m̃

2, λ) = 2αm̃2Γ
(n,l+1)
BPHZ [p̃, m̃2, λ]. (5.350)
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5.12 · Asymptotic behaviour of vertex functions

Again, (5.349) has been used.
For sake of completeness we shall prove the graphical meaning of the functional (5.339). Since the
counterterms of the MIR scheme are independent ofm2, we can calculate the somehow regularised
unrenormalised functional Γ. Taking the derivative is not affected by the counterterms, and we
have just to renormalise Γ(n,k)[p̃] = ∂m2Γ(n)[p̃] for k = 0 and n ∈ {2, 4} (by the conditions 5.336)
and for n = 2, k = 1 (by the condition 5.348) to obtain all the functions (5.339). We can write

Γ(k)[ϕ,m2, λ] = ∂kκΓ[ϕ,m
2 + κ, λ]

∣∣∣
κ=0

. (5.351)

Thus we define
Z[J, κ] =

∫
dϕ exp

[
iS[ϕ] + i {J1ϕ1}1 −

iκ

2

{
ϕ21
}]
. (5.352)

From this we obtain Γ[φ, κ] in the same way as Γ[φ] from Z, namely as the functional Legendre
transform of W = −i lnZ. But this doesn’t help us to make the κ-dependence explicite. To get
this, we write (5.352) as

Z[J, κ] = exp

[
−i

∫
d2ωx1

κ

2

δ2

(iδJ1)2

]
Z[J ]. (5.353)

The contribution of order κk in an expansion with respect to κ is obviously given by

Z(k)[J, κ] =
1

k!

(
−i
κ

2

)k k∏

j=1

δ2

(iδJj)2
Z[J ]. (5.354)

Now, in the perturbative expansion of Z[J ], each of the k double derivatives takes two Jj away,
joining the two propagators, connecting the external points of these external currents J with the
(disconnected) Green’s functions, together at a new vertex point xj , and this vertex point stands
for the expression −iκ/2. Deriving k times by κ simply yields

(
∂

∂κ

)k
Z[J, κ]

∣∣∣∣∣
κ=0

=
k!

κk
Z(k)[J, κ = 0]. (5.355)

That the same construction rule holds true for connected and for 1PI Green’s functions is shown
in the same way as in section 4.6 for the W - and Γ functionals.
The same result can be obtained from a diagrammatic point of view from the fact that the
counterterms are independent of m2, as the original vertices. A derivative ∂m2 acts only on each
propagator line 1/(p2−m2+iη), which becomes 1/(p2−m2+iη)2. Each time deriving a diagram,
thus one inserts a κ vertex into each propagator and sums up all these contributions.
This diagrammatical meaning of the derivative ∂m2 shows that one obtains the correct subtrac-
tions to a diagram contributing to Γ

(n,k)

MIR
, because one applies k times the insertion procedure to

each renormalised diagram with no insertions contributing to the renormalised function Γ
(n)

MIR
,

i.e., the bare diagram together with the complete subtractions of all subdivergences and all over-
all divergences, due to the BPHZ theorem (corresponding to all forests of the digram). Since
especially the overall counterterms of Γ

(2)

MIR
are cancelled by taking a derivative ∂m2 , because

they do not contain any propagator line, which could suffer an insertion, only the correct overall
subtractions for Γ

(2,1)
BPHZ are generated. All other diagrams with k ≥ 1 do not have any overall

counterterms as it must be due to their dimension 4− n− 2k and the BPHZ description22.
22Note that we have Γ(n=0,k) ≡ 0 due to our convention of setting Γ[ϕ = 0] = 0
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Chapter 6

Quantum Electrodynamics

6.1 Gauge Theory

As we have seen in section 4.1 the massless vector field which describes electromagnetic radiation
in classical electromagnetics1 is necessarily a gauge field which means that there is not a function
Hilbert space which realizes the massless helicity-one representation of P↑

+ but the quotient space

H (0, 1,±) = {Aµ|□Aµ − ∂µ∂νA
ν = 0}/{Aµ|∂µAν − ∂νAµ = 0}. (6.1)

This means in our case of R(1,3) as space-time (which is simply-connected) that for any represent
Aµ in a class of solutions of the wave equations the other members of this class are given by

A′
µ = Aµ + ∂µχ. (6.2)

Now it is rather complicated to deal with the classes of fields whenever we try to quantise it.
In terms of path integral quantisation, which we shall adopt in these notes, the problem is to
integrate over each class rather than over each representative. Since the action is independent of
the representatives of a class for each class there is a redundant integration over the pure gauge
fields ∂χ which is an unphysical (spurious) degree of freedom.
Nevertheless let us start to bring this in the Lagrangian form. From classical electromagnetics
we know that for free fields all can be formulated with help of the antisymmetric second-rank
tensor2

Fµν = ∂µAν − ∂νAµ (6.3)
which is called the Faraday tensor. The field equation defining the quotient space (6.1) can be
expressed in terms of the Faraday tensor as

∂µFµν = 0 ⇔ □Aν − ∂ν∂
µAµ = 0. (6.4)

On the other hand for a correct quantum treatment we need the Lagrangian formalism which
can be set up better with help of the vector field Aµ itself. It is also shown experimentally that
in the quantum case the Fµν does not contain the full information about the field3.

1We prefer the name “electromagnetics” compared to “electrodynamics” since relativistic covariance shows that
there is only one electromagnetic field. The splitting in electric and magnetic field is dependent on the reference
frame it is done.

2It is important to keep in mind that in the Lagrangian formulation of classical electro-magnetics the vector
field enters the game because of the coupling to charges. We shall explain this phenomenon in the next section
from the point of view of gauge theory.

3Aharonov-Bohm effect
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Chapter 6 · Quantum Electrodynamics

Since this equation is gauge-invariant, the solution is not unique. This is ambiguous within the
generating functional formalism even in the so far considered free particle case, because it is
not enough to fix the propagator for these free particles by the causal (Feynman-Stueckelberg)
boundary conditions to result in a unique propagator. This is clear, since only the whole class
of gauge fields is a correct description of the physical degrees of freedom, not the gauge field
itself. Thus we have to fix the gauge at least such that there exists a unique solution of the
inhomogeneous equation for the propagator with causal boundary conditions.
This is shown as follows. The Green’s function is defined by the equation

∂µ[∂µ∆ν
ρ(x)− ∂ν∆µ

ρ(x)] = δ(x)δρν . (6.5)

Trying to solve this equation of motion by the usual Fourier representation ansatz

∆µ
ρ(x) =

∫
d4k

(2π)4
exp(−ikx)∆µ

ρ(k) (6.6)

we obtain in momentum space

(pνp
µ − p2δµν )∆µ

ρ∆ρ
µ = δρν . (6.7)

Now the linear combination
pν(pνp

µ − p2δµν ) = 0 (6.8)

vanishes for all fixed p. Thus the solution of (6.8) cannot be unique. Clearly this ambiguity is
not cured by supposing boundary conditions. If ∆µρ is a solution of (6.7) then any function of
the form ∆′

µρ(k) = ∆µρ(k) + kµfρ(k) with an arbitrary vector field fρ(k) is also a solution. This
reflects the gauge invariance of the equation in terms of the propagator.
All this shows that we have to fix the gauge with help of some constraint like the Lorentz gauge
constraint ∂µAµ = 0. In classical electromagnetics we are ready with this in the case of fields
interacting with a conserved current (current conservation is a consistency condition for the
inhomogeneous Maxwell equations ∂µFµν = jν).
But now we have to quantise the theory and we have also to fix the gauge in some sense but
we have to be careful in order to keep the results gauge-invariant because gauge invariance is
necessary in order to be consistent with the space-time structure of special relativity as we have
shown in appendix B and chapter 4.
We start as usual with the classical Lagrangian which describes the equation of motion by the
stationarity of the corresponding action functional. It is easy to see that the Euler-Lagrange
equations for the Lagrangian

L = −1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ (6.9)

are the desired gauge-independent equations of motion (6.4). Since the Lagrangian is built with
the Faraday tensor only this leads to trouble if we like to quantise the theory because there exists
no unique propagator for the fields, because of gauge invariance.
We use the so called Faddeev-Popov quantisation to get rid of this problem. The main idea is to
integrate over one representative of each gauge class or in other words over each element of the
quotient function space (6.1) which means to integrate over the physical meaningful degrees of
freedom only. This is done by fixing the gauge with help of a gauge-fixing condition

g[A, x] = h(x) (6.10)
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6.1 · Gauge Theory

where g is a functional of A. For technical reasons we shall choose a linear one, but in general
the only condition is that the constraint (6.10) fixes the gauge completely. This fixing of gauge
is forced in the path integral formalism by making use of a functional δ-distribution put into the
path integral and integrating out the spurious degrees of freedom coming from gauge invariance.
On the other hand we like to have a gauge-independent path integral measure to satisfy gauge
invariance for the physical meaningful results (S-matrix elements).
For this purpose we have to look on the problem from another point of view which will become
clearer in the next section and chapter 7, namely to identify the gauge invariance as the invariance
against local U(1)-transformations. In this Abelian case this is very simple, as we can write the
gauge transformation (6.2) with help of an exponential as follows:

AUµ (x) = Aµ(x)−
i

g
U(x)∂µU

−1(x) with U(x) = exp[−igχ(x)]. (6.11)

The main idea is that one can find an invariant measure for integrations over an arbitrary compact
Lie group G. This means that for all U ′ ∈ G:

∫
dUf(U) =

∫
dUf(UU ′) =

∫
dUf(U ′U). (6.12)

In the case of path integrals we apply this so-called Haar measure on each point of space-time.
As we have seen in the last chapter we have always an indefinite constant factor. Thus we can
use the real coordinates of the group defined by g = exp(αkτk), where τk is an arbitrary basis of
the Lie algebra LG. Then we may integrate over the whole space Rn (with n = dimG) instead
of the finite subset which covers the group only one time.
Now we apply this idea to our case of U(1) gauge symmetry for QED. As we have clarified the
naively written path integral

Z[Jµ] = N

∫
DAµ exp{iS[Aµ] + i ⟨JµAµ⟩} (6.13)

does not help us in calculating the action functional because the free photon propagator does
not exist due to gauge invariance.
As we have seen above we can cure this problem by fixing the gauge. But on the other hand we
have to be sure to save gauge invariance for the physical S-matrix elements. For this purpose
we define

∆−1
g [Aµ, h] =

∫
DUδ[g[AUµ , x]− h]. (6.14)

Herein g is a gauge-fixing functional and h an independent function. From the assumed invariance
of the measure at each space-time point, we obtain

∆−1
g [AU

′
µ ] =

∫
DUδ[g[AU

′U − h]] =

∫
DU ′′δ[g[AU

′′
µ ]− h], (6.15)

which is obtained by substituting U ′′ = U ′U . This shows that the functional ∆ is gauge-invariant.
Now we plug a factor 1 into the naive path integral (6.13):

Z[J ] = N

∫
DAµ

∫
DU∆g[A, h]δ[g[A

U , x]− h] exp{iS[A] + i ⟨JµAµ⟩ (6.16)
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and interchange the order of integrations and substitute AU as the integration variable over the
gauge field. Using the gauge invariance of the action functional and ∆ we obtain

Z[J ] = N

∫
DU

∫
DAµ∆g[A, h]δ[g[A, x]− h] exp{iS[A] + i

〈
JµAU

−1

µ

〉
}. (6.17)

By construction the whole expression is independent of the auxiliary field h, so that we may
integrate over it with an arbitrary weight. In order to obtain an exponential which can be
treated with the usual perturbation techniques we chose exp{−i/(2ξ)

〈
g2[A, x]

〉
x
}. This leads to

Z[J ] = N

∫
DU

∫
DA∆g[A, g[A]] exp

{
iS − i

2ξ

〈
g2[A, x]

〉
+ i
〈
JµAU

−1

µ

〉}
(6.18)

and we got rid of the δ-function.
Now the only dependence on U is in the external source term in the exponential. For Jµ = 0 the
inner path integral is gauge-invariant. Since we calculate the S-matrix elements for Jµ = 0 we
expect that those are gauge-invariant and that the integration over the gauge group indeed gives
only an indefinite constant factor which may be put into the overall normalisation constant N .
This can be formally shown by making use of the LSZ reduction formalism. We can write eq.
(4.199) by just plugging in for the source term

⟨Jµ(x)Aµ(x)⟩x =
〈
aν(x′)∆−1

νµ (x
′, x)AU

−1

µ (x)
〉
x′,x

, (6.19)

where aµ is an arbitrary spin-0 function fulfilling g[A] = h and ∆µν is the free photon propagator
which is derived from the photon field equation of motion with a minimally coupled external
current (where the gauge is again fixed by the gauge condition g[A] = h. Then the current

jµ(x) =
〈
aν(x′)∆−1

νµ (x
′, x)

〉
x′

(6.20)

is conserved due to the fact that it fulfils the equation of motion

∂νf
νµ = jµ with fµν = ∂µaν − ∂νaµ (6.21)

by construction of the photon propagator. Thus we have
〈
jµAU

−1

µ (χ)
〉
= ⟨jµ(Aµ − ∂µ)χ⟩ = ⟨jµAµ⟩ . (6.22)

Thus the generating functional for S-matrix elements is indeed gauge-independent as it should
be, and we can just fix the gauge in the external source part in (6.18). The integration over
the gauge group then leads only to an additional infinite constant factor which is put into the
normalisation constant N . Thus the correct gauge-fixed generating functional for disconnected
Green’s functions is given by

Z[Jµ] = N

∫
DA∆g[A, g[A]] exp

{
iS − i

2ξ

〈
g2[A, x]

〉
+ i ⟨JµAµ⟩

}
. (6.23)

Since with this step the gauge was fixed arbitrarily the generating functional and the Green’s
functions are gauge-dependent. But as we have shown explicitly above the S-matrix elements
are gauge-independent as it should be for physical quantities.
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6.1 · Gauge Theory

The next step is to eliminate the functional ∆ which disturbs us in proceeding further with
calculating the generating functional. For this purpose we change the variable of integration to
g in the defining formula (6.14). This is possible because g fixes the gauge by assumption:

∆−1
g [A, h] =

∫
Dg det

(
δU

δg

)
δ[g − h] = det

(
δU

δg

)∣∣∣∣
g=h⇔U=1

(6.24)

Now we chose the coordinates χ for integrating over the gauge group at each point in space-time.
The invariant measure is in that case dχ as one can prove immediately by taking into account
an infinitesimal gauge transformation. We also integrate for χ over the whole real axes which
only gives another indefinite factor absorbed into N . We find

det

(
δg[Aχ, x]

δχ

)∣∣∣∣
χ=0

= N

∫
Dη̄Dη exp


−i

〈
η̄(x)

δg[Aχ, x]

δχ(y)

∣∣∣∣
χ=0

η(y)

〉

x,y


 , (6.25)

where η̄ and η are two independent Grassmann fields making use of eq. (4.165).
Now all is calculable by functional differentiation. We take the Lorentz gauge functional

g[Aχ, x] = ∂µA
µ(x) +□χ(x). (6.26)

Differentiating this with respect to χ(y) we obtain the local result

δg[Aχ, x]

δχ(y)
= □yδ

(4)(x− y). (6.27)

Inserting this to (6.25) we find

det

(
δg[Aχ]

δχ

)∣∣∣∣
χ=0

= N

∫
Dη̄Dη exp

[
i ⟨(∂µη̄(x))(∂µη(x))⟩x

]
. (6.28)

Using this in (6.23) we see that the so-called Feynman ghosts η̄ and η decouple completely from
the rest of the path integral such that it is leading only to another field and external source-
independent factor which is again absorbed into N .
Thus the final result for the generating functional for free photons is

Z[Jµ] = N

∫
DA exp


iS[A]−

i

2ξ

〈
(∂µA

µ)2
〉

︸ ︷︷ ︸
iSeff [A]

+i ⟨JµAµ⟩


 . (6.29)

Now we can calculate the free generating functional for photons as usual, namely finding the
propagator. This is a simple algebraic calculation in momentum space. We have only to satisfy
again the causal boundary conditions with help of the iϵ-description. The effective classical
action is given by

Seff [A] =

∫
d4x

[
−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2
]
. (6.30)

In momentum space this leads to the algebraic equation of motion for the propagator
[
−k2gµν +

(
1− 1

ξ

)
kµkν

]
∆νρ(k) = δµρ (6.31)
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with the usual convention for the Fourier transform

∆νρ(x) =

∫
d4k

(2π)4
exp(−ikx)∆µν(k). (6.32)

For reasons of relativistic covariance (we have chosen a covariant gauge!) the propagator must be
a symmetric second-rank tensor field. This tensor can only be built with help of the momentum
kµ and the metric gµν . Thus we make the ansatz

∆νρ(k) = A(k)Θνρ(k) +B(k)
kνkρ
k2

with Θµν(k) =
kνkρ
k2

− gνρ. (6.33)

Here Θ is the (not normalised) projector to the k-transverse part of the tensor. Now we can
write the equation of motion (6.34) in the form

[
k2Θµν(k)− 1

ξ
kµkν

]
∆νρ(k) = δµρ . (6.34)

With a little bit of algebra we find by putting in the ansatz (6.33)

−k2A(k)Θµ
ρ(k)−

1

ξ
L(k)kµkρ = δµρ . (6.35)

Comparing the coefficients in front of δµρ and kρkµ we find the solution for the propagator of free
photons

∆µν(k) =

[
−gµν + (1− ξ)

kµkν
k2 + iϵ

]
1

k2 + iϵ
, (6.36)

where we have used the iϵ-description for the denominators in order to fix the correct causal
boundary conditions for the propagator.
The class of gauges may be reduced further by choosing a certain value for the gauge constant
ξ. The most convenient choice is obtained by ξ = 1 which is known as the Feynman gauge and
leads to the propagator

∆µν(k) = − gµν
k2 + iϵ

(6.37)

which shows a nice high energy behaviour (it is the same k2 behaviour as for a scalar boson).
Another common choice is the Landau gauge, i.e., ξ = 0 where the propagator is k-transverse:

∆µν(k) = −Θµν(k)

k2 + iϵ
. (6.38)

On the other hand it is a simple check when calculating S-matrix elements to keep ξ as a
parameter, because ξ has to vanish in the final results for physical matrix elements. This is clear
from our derivation where the gauge constant came in only by averaging over the auxiliary field
h the path integral did not depend of from the very beginning.

6.2 Matter Fields interacting with Photons

We now come to the main subject of this chapter, namely the description of the interaction of
electrons with photons.
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At first we shall give another point of view of the gauge invariance which can be extended to the
general non-Abelian case in chapter 7.
For this purpose we write down again the Lagrangian for a free spin-1/2 field already given in
eq. (4.60):

L0F = ψ̄(i/∂ −m)ψ. (6.39)

This Lagrangian is invariant under the transformation

ψ′(x) = exp(ieα)ψ(x), ψ̄′(x) = ψ̄(x) exp(−ieα), (6.40)
δψ(x) = ieδαψ(x), δψ̄ = −ieδα (6.41)

where we have given the infinitesimal version of the transformation in the second line. Due to
Noether’s theorem this leads to the conservation of the current

jµ = −eψ̄γµψ. (6.42)

In the quantised version the conserved operator of the Noether charge is given by eq. (4.75)

Q = −e
∫

d3x⃗ : ψ̄(x)γ0ψ(x) := −e
∑

σ=±1/2

∫
d3p⃗[N−(p⃗, σ)−N+(p⃗, σ)]. (6.43)

Here we have changed the label for the “a-particle” in chapter 4 to − and of this of the antiparticle
to +. We shall call the −-particle electron and the +-particle positron although the QED is
valid for all leptons as long as other interactions than electromagnetism (as are weak and strong
interaction) can be neglected. From (6.43) we read off that an electron carries a charge −e and
a positron a charge +e.
The phase transformation (6.40) is global in the sense that the phase is independent of space
and time, i.e., the change of the phase is the same instantaneously on each space-time point.
Now field theory is based on locality in space and time and thus we try to find a possibility to
keep the Lagrangian invariant under local phase transformations which means to set α = χ(x)
in 6.40. But in this case the Lagrangian (6.39) cannot be invariant under this transformation
because

ψ′(x) = exp[ieχ(x)]ψ(x) ⇒ ∂µψ
′(x) = [ie(∂µχ(x)) + ∂µ]ψ(x) exp[ieχ(x)]. (6.44)

But now this problem can be cured by substituting a covariant derivative instead of the simple
partial derivative into the Lagrangian.4 The covariant derivative will be of the form

Dµ = ∂µ − ieAµ. (6.45)

Looking on (6.44) we find that we have to transform the vector field Aµ in addition to the matter
fields ψ and ψ̄ as follows

ψ′(x) = exp[ieχ(x)]ψ(x), ψ̄′(x) = ψ̄(x) exp[−ieχ(x)], A′
µ(x) = Aµ(x) + ∂µχ(x). (6.46)

Indeed one finds by a simple calculation

D′
µψ

′(x) = exp[ieχ(x)]Dµψ(x). (6.47)

4We shall come back to the geometry underlying this technique when describing the case of general gauge
theories.
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Thus writing
LF = ψ̄(i /D −m)ψ with D = ∂µ − ieAµ (6.48)

we obtain a Lagrangian which is invariant under the local gauge transformation (6.46) which is
the extension of the global phase invariance to a local one. The vector field Aµ is called the
gauge field.
Up to now the gauge field is no dynamical degree of freedom because there is no kinetic term
for it in the Lagrangian (6.48). In order to keep this Lagrangian gauge-invariant we can add the
Lagrangian for a free massless vector field (a naively added mass term would violate the gauge
invariance). This simple procedure leads to the famous QED-Lagrangian

LQED = ψ̄(i /D −m)ψ − 1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ. (6.49)

There is no reason not to add other matter fields, spin-1/2 or scalar fields, with the partial
derivatives substituted by the covariant ones.
Since this Lagrangian is gauge-invariant all the considerations for quantising the gauge field also
applies to this case (including the considerations concerning the external currents when building
the generating functional for for the Green’s function. In that case the only difference is that the
asymptotically free matter field is gauge-independent by itself such that the S-matrix elements
are proven to be gauge-invariant also when coupling matter fields to the photons. It is also
clear that in general the Green’s functions will not be gauge-independent but only the S-matrix
elements.)
The result is the effective Lagrangian

Leff = ψ̄(i/∂ −m)ψ − 1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2

︸ ︷︷ ︸
L0

+eψ̄ /Aψ︸ ︷︷ ︸
LI

(6.50)

which can be quantised with the same rules outlined in the previous chapter. Introducing the
external Grassmann sources η̄ and η for the matter fields and the c-number sources Jµ for the
photon field we give the path integral formula for the generating functional for the disconnected
QED-Green’s functions:

Z[Jµ, η̄, η] = N

∫
DAµDψ̄Dψ exp

{
iSeff [Aµ, ψ̄, ψ] + i ⟨JµAµ⟩+ i ⟨η̄ψ⟩+ i

〈
ψ̄η
〉}
. (6.51)

Now we can read off the Feynman rules in the usual way to be given as in fig. 6.1. The Feynman

p

k

µ ν

= iG(p)

= i∆µν(k)

k

µ
= ieγµ

p1

p2

Figure 6.1: Feynman Rules for spinor quantum electrodynamics.

rules for calculating Green’s functions are derived from the free generating functional as shown
in section 4.7 for a simpler toy model with fermions as follows
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6.2 · Matter Fields interacting with Photons

1. Draw all topologically distinct diagrams with a given number of vertices. The diagram-
matical elements have the meaning given in fig. 6.1. The diagram has to be read against
the direction of the arrows.

2. There is a factor 1/n! for a diagram with n vertices from the Dyson-Wick series. But in
the case of QED these factors are cancelled completely by the number of permutations of
the vertices because there is only one type of vertex with three distinct lines running in
and out. Thus in QED there are no symmetry factors to take into account as long as one
calculates Green’s functions. (Graphs which contain vacuum-to-vacuum amplitudes are to
be neglected by normalisation.)

3. On each vector one has to obey four-momentum conservation as well as for the whole
diagram. Over each independent loop momentum not fixed by this rule is to integrate with
measure d4l/(2π)4.

4. Each loop consisting of a connected line of fermion propagators gives an additional factor
−1. In this case one has to take the trace over the corresponding spinor matrices. The
overall sign for a Green’s function is arbitrary but the relative sign of two diagrams is to
be taken due to the relative permutation of external fermion lines.

5. For calculating S-matrix elements one has to amputate the external legs and substitute
them by normalised one-particle amplitudes according to the diagrammatical rules for
external legs given in fig. 6.2. All external momenta have to be taken on-shell for the given
particle mass.

Here we have used the usual convention for the free Dirac field amplitudes by defining

u(p, σ) = u+(p, σ), v(p, σ) = u−(−p, σ), (6.52)

where the u± are the amplitudes defined in chapter 4, where this convention is better
to show the correct meaning of the Feynman Stückelberg formalism for finding the right
interpretation of the negative energy states.

6.2.1 Ward-Takahashi identities

Now we derive the consequences of the local gauge invariance of the original action starting
from the generating functional (6.51). We split the effective action in a gauge-invariant and the
gauge-fixing part rewriting (6.50) in the form

Leff = Linv + Lfix (6.53)

with

Linv = ψ̄(i /D −m)ψ − 1

4
FµνF

µν , (6.54)

Lfix = − 1

2ξ
(∂µA

µ)2. (6.55)

Now we write (6.51) by integrating over gauge transformed fields with an infinitesimal gauge
transformation,

A′
µ = Aµ + ∂µδχ, ψ′ = (1 + ieδχ)ψ, ψ̄′ = (1− ieδχ)ψ̄. (6.56)
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p, σ

p, σ

p, σ

e−

e−

e+

p, σ
e+

k, λ

k, λ

= v(~p, σ) for outgoing positron in the final state

µ

µ

= u(~p, σ) for incoming electron in the initial state

= v̄(~p, σ) for incoming positron in the initial state

= ū(~p, σ) for outgoing electron in the final state

= eµ(~k, λ) for incoming photon in the initial state

= eµ∗(~p, λ) for outgoing photon in the final state

Figure 6.2: Feynman rules for the external lines when calculating S-matrix elements

This, of course does not change the value of the functional, but now we can use the invariance
of the part Sinv of the action, defined by the Lagrangian (6.54). We also note that since the
gauge field is just shifted by a field that is independent of the fields we integrate over and the
transformations of the Dirac fields is just a (local) redefinition of its overall phase, also the
path-integral measure is invariant. Thus we have

Z[Jµ, η̄, η] = N

∫
DAµDψ̄Dψ exp [iSinv + i(Sfix + δSfix)]

× exp
[
i
〈
Jµ(A

µ + δAµ) + η̄(ψ + δψ) + (ψ̄ + δψ̄)η
〉]

= N

∫
DAµDψ̄Dψ exp

[
iSinv + iSfix + i

〈
JµA

µ + η̄ψ + ψ̄η
〉]

×
[
1 + iδSfix + i

〈
JµδAµ + η̄δψ + δψ̄η]

〉]
,

(6.57)

where all arguments of the functionals have to be taken as the orginal fields Aµ, ψ̄ and ψ. Now
we subtract (6.51) and obtain

∫
DAµDψ̄Dψ exp

[
iSinv + iSfix + i

〈
JµA

µ + η̄ψ + ψ̄η
〉]

×
[
δSfix +

〈
JµδAµ + η̄δψ + δψ̄η]

〉]
= 0.

(6.58)

Now with (6.56) the square bracket reads

δSfix +
〈
JµδAµ + η̄δψ + δψ̄η]

〉
=

∫
d4x

(
−1

ξ
□∂µA

µ − ∂µJ
µ + ieη̄ψ − ieψ̄η

)
δχ. (6.59)

Since this holds true for arbitrary scalar fields δχ, we obtain the local relation
∫

DAµDψ̄Dψ exp
[
iSinv + iSfix + i

〈
JµA

µ + η̄ψ + ψ̄η
〉]

×
[
−1

ξ
□∂µA

µ − ∂µJ
µ + ieη̄ψ − ieψ̄η

]
= 0.

(6.60)
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This we can easily express as an identity for the generating functional:

− i

ξ
∆∂µ

δZ

δξµ
− eJ̄

(
δZ

δη̄

)

L

+ e

(
δZ

δη

)

R

J − i∂µJ
µZ = 0. (6.61)

This is the Ward-Takahashi identity (WTI) for the generating functional for (unconnected)
Green’s functions. Writing Z = exp(iW ) immediately leads to the WTI for the generating
functional of the connected Green’s functions

− i

ξ
□∂µ

δW

δJµ
− eη̄

(
δW

δη̄

)

L

+ e

(
δW

δη

)

R

η − i∂µJ
µ = 0. (6.62)

Finally, we translate this into a WTI for the effective action, the generating functional for
truncated one-particle irreducible Green’s functions. It is defined by the functional Legendre
transformation of W

Γ[Aµ, ψ̄, ψ] =W − JµAµ + ψ̄η + η̄ψ (6.63)

with
Aµ =

δW

δJµ
, ψ̄ =

(
δW

δη

)

R

, ψ =

(
δW

δη̄

)

L

(6.64)

and
Jµ = − δΓ

δAµ
, η = −

(
δΓ

δψ̄

)

L

, η̄ = −
(
δΓ

δψ

)

R

. (6.65)

Plugging (6.64) and (6.65) in (6.62) we finally get the WTI for the effective action

− i

ξ
□∂µA

µ + e

(
δΓ

δψ

)

R

ψ − eψ̄

(
δΓ

δψ̄

)

L

+ i∂µ
δΓ

δAµ
= 0. (6.66)

Taking derivatives of this identity with respect to the “mean fields” and setting ψ = ψ̄ = Aµ = 0,
which are the solutions of the equations Jµ = η = η̄ = 0, given in terms of (6.65) as equations
of motion which determine the stationary points of the effective action, yields the the WTIs for
the corresponding proper vertex functions. E.g., taking the derivative of (6.66) with respect to
Aν(y) and then setting ψ = ψ̄ = Aµ = 0 gives the WTI for the exact interacting Green’s function
Dµν of the photon,

∂

∂xµ
[(D−1(x, y)]µν =

∂

∂xµ
δ2Γ

δAµ(x)δAν(y)
= −1

ξ
□x

∂

∂xν
δ(4)(x− y). (6.67)

In terms the momentum-space Green’s functions this reads

−ikµ[D
−1(k)]µν =

i

ξ
k2kν . (6.68)

For the free propagator we have according to (6.31)

[∆−1]µν = −k2gµν +
(
1− 1

ξ

)
kµkν ⇒ kµ[∆

−1]µν = −1

ξ
k2kν , (6.69)

i.e., the longitudinal part of the photon propagator does not change through the interactions.
Since by definition

[D−1(k)]µν = [∆−1(k)]µν −Πµν(k), (6.70)
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where Πµν is the self-energy (or polarization tensor) of the photon, we conclude from (6.68) and
(6.69) that only the transverse components of the photon are interacting, i.e.,

kµΠ
µν(k) = 0. (6.71)

Another important application of the WTIs is the formal prove that the S matrix is unitary
in the subspace of physical states, particularly only the physical transverse photon-polarization
states. The S-matrix of the gauge-fixed theory is unitary, but it is not trivial that the projection
to the physical subspace Sphys = PphysSPphys obeys SphysS

†
phys = Pphys. In QED this is the

case if in all calculations of S-matrix elements we can sum over all four polarization states, of
which only the transverse ones are physical. The WTI reveals that in the S-matrix elements
(with all electron-positron lines on the mass shell), which for a photon of four-momentum k is
of the form ϵµMµ(k, . . .), obeys the Ward identity kµMµ(k, . . .) = 0, which implies that (for on-
shell photons) the contributions of the time-like and the longitudinal polarization states cancel,
i.e., the S-matrix for physical gauge-invariant observables involves only the physical polarization
states.
For the connected S-matrix elements one also has to build the tree diagrams from the proper
vertices, connected with exact photon propagators. The WTIs also guarantee that the gauge-
dependent piece of the propagator does not contribute.
The most simple example is the full γψ̄ψ vertex. To derive its WTI one just takes a left derivative
with respect to ψ̄ and a right derivative with respect to ψ of the WTI (6.66) and then sets all
the fields to 0. This leads to

−i∂1µΓ
(3)µ

Aψ̄ψ
(x1, x2, x3) = eG−1(x1 − x2)δ

(4)(x1 − x3)− eG−1(x3 − x1)δ
(4)(x1 − x2), (6.72)

which translates via a Fourier transformation to the corresponding expression

−qµΓ(3)µ

A,ψ̄,ψ
(q, p1, p2) = eG−1(p1 − q)− eG−1(p2 + q), (6.73)

where G−1 denotes the inverse electron-positron propagator. In the S-matrix element the
electron-positron legs (which are amputated of course) have to be substituted with on-shell
ū(p1) = ū(p2 + q) and u(p2) = u(p1 − q) (or with corresponding v spinors if one considers
positrons) spinors, which leads to 0 at the right-hand side. So for both on- and off-shell photons
also the left-hand side vanishes as it should according to the above argument. The WTI for ar-
bitrary n-point vertices follows in the same way by taking the corresponding further derivatives
of (6.66). This also generates on the left-hand side the sum over all possible insertion points of
the particular photon with momentum q in the corresponding diagram and the corresponding
appropriate sum on the right-hand side. The WTI thus holds only for these full sums but not
for single diagrams.

6.3 Canonical Path Integral

Now we have shown how to quantise QED with a Dirac field for the “matter particles” (so
far called electrons and positrons, but applicable also to the electromagnetic sector of other
particles, especially the µ- and τ -leptons which are the heavier relatives of the electron) provided
the Lagrangian formulation of the path integral is the correct one. So far we have given only
the handwaving argument that the interaction Lagrangian (and so the Hamiltonian) contains no
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6.3 · Canonical Path Integral

derivative couplings. This chapter shows that this is justified not only for QED with fermionic
but also with scalar bosonic matter fields.
For this purpose it is sufficient to take into account only the pure gauge field, i.e., the free
photons. Using the Hamiltonian formalism we break Lorentz covariance explicitly. Thus there
is no advantage to choose a covariant gauge and we use axial space-like gauge, which is more
convenient for the Hamiltonian formalism:

A3 = 0. (6.74)

We should keep in mind that this fixes the gauge not completely because we can always use a
gauge potential χ which is independent on x3 to define an equivalent gauge field A′

µ = Aµ+ ∂µχ
and A′

µ still fulfils (6.74) if the original field Aµ does so.
The conjugate momenta are calculated from the gauge-independent Lagrangian

L = −1

4
FµνF

µν = −1

2
(∂µAν)F

µν , Πµ =
∂L

∂(∂tAµ)
= F0µ. (6.75)

We find indeed that the Hamiltonian formalism is not applicable directly to the fields Aµ (with
µ = 0, 1, 2, A3 is eliminated using the space-like axial gauge constraint (6.74)). The reason is
the gauge invariance with respect to the above mentioned special gauge transformations. It is
also well-known from optics that there are only two dynamical field degrees of freedom. The so
far obtained result is the formal proof of this from first principles.
The identical vanishing of Π0 shows that we have to keep only A1 and A2 together with the
conjugated field momenta Π1 and Π2 as the independent dynamical degrees of freedom. But
then A0 has to be a functional of these and we have to find this functional. It is determined by
the claim that the Hamiltonian canonical field equations of motion are the same as those from
the Lagrangian formalism.
Thus for this purpose we use the equations of motion for Aµ coming from the least action
principle:

□Aµ − ∂µ∂νA
ν = 0. (6.76)

Especially for µ = 3 we find (making use of the gauge constraint (6.74)):

∂3∂νA
ν = 0 ⇒ ∂νAν = f(x0, x1, x2) (6.77)

and from this we find
∂0A

0 = −∂1A1 − ∂2A
2 + f(x0, x1, x2) (6.78)

and A0 can be expressed in terms of the other fields

A0 = −
∫ t

t0

dt(∂1A
1 + ∂2A

2) + g(x0, x1, x2). (6.79)

g is an arbitrary function of x0, x1, x2 and can be eliminated with help of a special gauge trans-
formation which is consistent with the gauge constraint (6.74).
Taking the formal Legendre transform of the Lagrange density we find the canonical Hamilton
density of the system:

H = Πµ∂tA
µ − L =

1

2
Π2

1 +
1

2
Π2

2 +
1

2
E2

3 [Π1,Π2] +
1

2
B⃗2, (6.80)
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where E⃗ and B⃗ are the fields E⃗ with respect to the now fixed reference frame:

E⃗ = −∂0A⃗−∇A0, B⃗ = ∇×A. (6.81)

At the same time we have used
E1 = −Π1, E2 = −Π2. (6.82)

As we have seen above E3 is a functional of the dynamical degrees of freedom. We shall show
now that this functional depends on Π1 and Π2 only. One equation of motion for E⃗ is ∇E⃗ = 0
and thus

E3[Π1,Π2] =

∫ z

z0

dζ[∂1Π1(x0, x1, x2, ζ) + ∂2Π2(x0, x1, x2, ζ)]. (6.83)

It is also easy to show that with this Hamiltonian the field equations of motion (6.81) follow
from the Hamiltonian principle of least action with the Hamilton density given by (6.80).
Now our Hamiltonian action depends only on the two independent field degrees of freedom and
their canonical field momenta. Thus we can write down the path integral in the Hamiltonian
form, where we have no problem with the gauge dependence because now the gauge is fixed
completely by the boundary conditions for the fields:

Z[Jµ] = N

∫
DΠ1DΠ2

∫
DA1DA2 exp[iS[A,Π] + i ⟨JµAµ⟩]. (6.84)

It is also clear that we could quantise the theory with help of the canonical operator formalism.
The only disadvantage compared to the Lagrangian path integral is the lost manifest covariance.
We shall use this formalism neither to quantise the theory nor doing calculations of practical
interest5, because the covariant formalism is much more convenient. Nevertheless we have to
prove that the path integral (6.84) is equivalent to a Faddeev-Popov path integral of the kind
derived in the first two sections. This is important in order to be sure that one obtains a unitary
S-matrix. If we can show that our covariant Faddeev-Popov formalism is leading to the same
physical S-matrix elements as the covariant formalism. For this purpose we reintroduce the
before eliminated spurious degrees of freedom without changing the generating functional (6.84).
As the first step we introduce a factor one in the form

1 =

∫
DΠ3δ[Π3 + E3[Π1,Π2]]. (6.85)

Since we have defined the functional E3 by using the equation of motion ∇E⃗ = ∇π⃗ = 0 we can
write for the functional δ-distribution

δ[Π3 + E3[Π1,Π2]] = δ(∇Π⃗) det

(
δ∇Π⃗

δΠ3

)
= δ(∇Π⃗) det(∂3). (6.86)

With this we can write (6.84) in the form

Z[Jµ] = N

∫
DΠ1DΠ2DΠ3

∫
DA1DA2δ(∇Π⃗) det(∂3) exp[iS

′[A,Π] + i ⟨JµAµ⟩] with

S′[A,Π] = −
〈
1

2
Π⃗2 +

1

2
B⃗2 + Π⃗∂tA⃗

〉∣∣∣∣
A3=0

.
(6.87)

5except for the important case of non-relativistic approximations in atomic physics
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Next we write the functional δ-distribution as a path integral

δ[∇Π⃗] =

∫
DA0 exp

[
i
〈
A0∇Π⃗

〉]
(6.88)

which leads to

Z[Jµ] = N

∫
D3Π⃗

∫
DA0 · · ·DA2 det(∂3) exp[iS

′′[A, Π⃗] + i ⟨JµAµ⟩] with

S′′[A, Π⃗] =
〈
−1

2
Π⃗2 − Π⃗∇A0 −

1

2
B⃗2 + Π⃗∂tA⃗

〉∣∣∣∣
A3=0

.
(6.89)

Now we can handle the integrals over the “field momenta” Π⃗.6 S′′ is a quadratic functional in
Π⃗ and the coefficient in front of the quadratic part does not depend on the other fields. Thus
we have to calculate the stationary point of S′′ with respect to Π⃗ at fixed A0, A1 and A2, which
leads to

δS′′

δΠ⃗
= 0 ⇒ Π⃗ = ∇A0 − ∂tA⃗. (6.90)

Now we can also add A3 as another variable and fix it to zero with help of another functional
δ-distribution. Using (6.90) for integrating out the momenta in (6.89) we obtain the desired
result

Z[Jµ] =

∫
DAµδ(A3) det(∂3) exp[iS[A] + i ⟨JµAµ⟩] (6.91)

which is in the form (6.17) of the Faddeev-Popov formalism with the choice

g[A, x] = A3(x) (6.92)

for the gauge-fixing functional.
We finish this section with the treatment of scalar electrodynamics. The same line of arguments
given in section 5.2 for Dirac fermions7 leads to the Lagrangian

L = (Dµϕ)
∗(Dµϕ)−m2ϕ∗ϕ− 1

4
FµνF

µν with Dµ = ∂µ + ieAµ and Fµν = ∂µAν − ∂νAµ. (6.93)

This obviously contains derivative couplings between the matter and gauge fields:

(Dµϕ)
∗(Dµϕ) = (∂µϕ)

∗(∂µϕ)− ieAµ[ϕ
∗∂µϕ− (∂µϕ∗)ϕ] + e2AµA

µϕ∗ϕ. (6.94)

But in order to integrate out the canonical field momenta in the Hamiltonian path integral we
have only to assure that the action is a quadratic functional in all field momenta and that the
quadratic part has a field-independent coefficient. In the case of the scalar QED-Lagrangian
(6.93) a glance at (6.94) shows that this is the case for choosing the time-like axial gauge, i.e.,
the gauge-fixing functional

g[A, x] = A0(x). (6.95)

So we see that we can use the Lagrangian form for this special gauge and thus with help of the
Faddeev-Popov formalism which leads to gauge-invariant S-matrix elements any gauge we like.

6One should keep in mind that the reintroduction of the fields Π3 and A0 does not mean to add dynamical
degrees of freedom but only writing the integration variables for the various path integral manipulations in a
suggestive way.

7One calls this shortly “gauging” a field theory with a global symmetry. Thus gauging a theory means to extend
this global symmetry to a local one. In our case of electrodynamics we gauge the phase invariance of the action
for free complex fields which is mathematically the invariance of the action under operations of a representation
of the compact Abelian group U(1).
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6.4 Invariant Cross Sections

Now we are ready to calculate the lowest order perturbative approximations for the transition
amplitudes of QED. We shall use Feynman gauge which leads immediately to covariant ampli-
tudes to calculate physical quantities. In this chapter we shall deal with the simple situation that
two particles are scattered again to two particles (which can be different from the incoming). As
we have shown in chapter 3 and 4 we have to calculate the connected truncated Green’s func-
tions and multiply these with asymptotically free particle amplitudes. From invariance under
translations we know that energy and momentum are conserved for our situation. Thus we write
the S-matrix-element in the following form

Sfi = δfi + i(2π)4δ(4)(Pf − Pi)Tfi. (6.96)

Here we have written Pi and Pf for the sum of the four momenta of the particles in the initial
and final state respectively. The δfi takes into account the part of the S-matrix which represents
the case that the particles are not scattered at all. In the following we consider only asymptotic
free states |i⟩ and |f⟩ which are different. Thus we write

Sfi = i(2π)4δ(4)(Pf − Pi)Tfi for |i⟩ ≠ |f⟩ . (6.97)

Then calculating cross sections for non-relativistic potential scattering we have learnt how to deal
with the problem of squaring this matrix element in order to calculate the probability distribution
out of the transition amplitude: We have to use a finite volume and time where the scattering
takes place. Then the δ-distribution is regularised as follows

(2π)4δ(4)reg(Pf − Pi) =

∫ T/2

−T/2
dt

∫

V
d3x⃗ exp[i(Pf − Pi)x]. (6.98)

Setting Pf − Pi = ∆P we find

|Sfi|2
TL3

= 24
(
2

T

)(
2

L

)3(sin(∆P0T/2)

∆P0

)2 3∏

k=1

(
sin(∆PkL/2)

∆Pk

)2

|Tfi|2. (6.99)

Now we can take the weak limit of this expression for T → ∞ and L→ ∞ using the formula

w-lim
y→∞

sin2(xy)

yx2
= πδ(x). (6.100)

This can be proven simply with help of the Fourier transform
∫

dx
sin2(xy)

yx2
exp(−ipx) =

π

2
Θ(2y − |p|)

(
2− |p|

y

)
, (6.101)

which is shown by using the inverse of this formula. For y → ∞ the right hand side goes to π
which shows the above stated weak limit (6.100).
Using this in (6.99) we find

|Sfi|2
V T

= (2π)4δ(4)(Pf − Pi)|Tfi|2. (6.102)
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Now we like to calculate the cross section for scattering of two particles in the initial state into
n particles in the final state. The incoming momenta are p⃗1 and p⃗2. The corresponding four-
momenta are positive time like and obey the on-shell condition p21 = m2

1 and p22 = m2
2. The

number of asymptotically free final states in the volume V is given by

n∏

k=1

V d3p⃗′k
(2π)3

. (6.103)

Thus the probability to be scattered into this region of the momentum space is given by

dw = (2π)4δ(4)(Pf − Pi)|Tfi|2V
n∏

k=1

V d3p⃗′k
(2π)3

. (6.104)

Any external line represents a particle amplitude which is normalised to one particle contained
in the volume V . According to appendix C the asymptotically free momentum eigenfunctions
contains a normalisation factor 1/

√
2ωV . Leaving out this factor for any of the in- and out-state

amplitudes in the calculation of Tfi, we define the Lorentz-invariant matrix element

Mfi = Tfi
∏

i

√
2ωiV

∏

f

√
2ωfV , (6.105)

where the products have to be taken over all incomming and outgoing particles in the initial or
final state respectively.
With this we can write (6.104) as

dw = (2π)4δ(4)(Pf − Pi)
|Mfi|2
4ω1ω2V

n∏

k=1

d3p⃗′k
2ω′

k(2π)
3
. (6.106)

Now what is usually measured in scattering experiments is the invariant differential (or total)
cross section. This is defined as

dσ =
Particles scattered into the final state in the given momentum space region

Flow of the projectile particle in the rest frame of the target particle
, (6.107)

i.e., in the frame of reference, where the “target particle 2” in the initial state is at rest (“laboratory
frame”). In this frame the three-velocity of the projectile particle is given by

v⃗1 =
p⃗1
ω1
. (6.108)

Thus the flow in the lab frame is

j =
v⃗1
V

=

√
m2

2ω
2
1 − (m1m2)2

ω1m2V
. (6.109)

Since particle 2 is by definition at rest we have m2 = ω2, p2 = (m2, 0, 0, 0), and thus we have
m2ω1 = p1p2. Finally we get

j =

√
(p1p2)2 − (m1m2)2

ω1ω2V
=

I

ω1ω2V
. (6.110)
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Inserting this into (6.107) we find by making use of (6.108)

dσ =
dw

j
= (2π)4δ(4)(Pf − Pi)

|Mfi|2
4I

n∏

k=1

d3p⃗′k
2ω′

k(2π)
3
. (6.111)

This expression is manifestly covariant because |Mfi|2 is a Lorentz scalar and we can write

d3p⃗

2ω
= δ(p2 −m2)θ(p0)d

4p. (6.112)

This shows again that all four momenta of the outgoing particles are to be taken on the mass shell,
while the δ-distribution in (6.111) shows again explicitely the conservation of four-momentum.
Now we look further on (6.111) for the case that we have not only two particles in the initial but
also in the final state. The particle sorts in the initial and final state need not be the same8.
In this case (6.111) reads

dσ =
|Mfi|2
(2π)24I

δ(4)(p1 + p2 − p′1 − p′2)
d3p⃗′1
2ω′

1

d3p⃗′2
2ω′

2

. (6.113)

Using (6.112) for the three-momentum integrals and performing the integration over d4p′2 and
dp′10 we find

dσ =
|Mfi|2

64π2Iω′
1ω

′
2

δ(ω1 + ω2 − ω′
1 − ω′

2)d
3p⃗′1. (6.114)

Now we go to the centre of mass system where

p⃗1 = −p⃗2 = p⃗, p⃗1
′ = −p⃗′2 = p⃗′. (6.115)

To get rid of the last δ-distribution in (6.114) we use polar coordinates for p⃗′1 and the fact that

p⃗′2d|p⃗′| = |p⃗′|ω′
1dω

′
1 = |p⃗′|ω′

2dω
′
2. (6.116)

Setting ω = ω1 + ω2 and ω′ = ω′
1 + ω′

2 we can use this to derive

p⃗′2d|p⃗′| = |p⃗′|ω′
1ω

′
2

ω′ dω′. (6.117)

Then we have
dσ

dΩ
=

|Mfi|2
64π2I

|p⃗′|
ω
. (6.118)

In the CMS we are calculating this we have

I = |p⃗|ω (6.119)

and thus
dσ

dΩ
=

|Mfi|2|p⃗′|
64π2|p⃗|ω2

. (6.120)

8For instance you may think on the process eē → µµ̄
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This is the form the cross section has in a certain system, namely the centre of mass system and
is thus not manifestly covariant. We want to write this result in terms of covariant quantities,
which are known as Mandelstam variables:

s = (p1 + p2)
2 = (p′1 + p′2)

2,

t = (p1 − p′1)
2 = (p′2 − p′1)

2,

u = (p1 − p′2)
2 = (p′1 − p2)

2.

(6.121)

In the centre of mass system we have

t = (p1 − p′1)
2 = m2

1 +m′
1
2 − 2ω1ω

′
1 + 2|p⃗||p⃗′| cos θ. (6.122)

For fixed energy we have
−dt = 2|p⃗||p⃗′| sin θ dθ, (6.123)

and with this we have

dσ =
|Mfi|2
128π2I2

d(−t)dφ, (6.124)

where we have again introduced the invariant flux I defined in (6.110):

I2 = (p1p2)
2 −m2

1m
2
2 =

1

4
[s− (m1 +m2)

2][s− (m1 −m2)
2]. (6.125)

With help of this invariant form it is simple to calculate the cross section in any reference frame
we like.

6.5 Tree level calculations of some physical processes

Starting with this section we calculate the cross sections for some physical processes to lowest
order. Restricting to tree-level diagrams we are sure not to run into difficulties with infinities
which are subject of the next chapter about renormalisation theory.

6.5.1 Compton Scattering

We calculate the cross section for scattering of a photon with an electron or positron. This
process is also known as Compton scattering, which was one of the most important experimental
results (1923) to convince the physicists that there is a particle structure in electromagnetic
waves which where introduced in 1905 by Einstein in his famous explanation of the photo effect.
The first calculation of the cross section we shall do now in the framework of Feynman diagrams
of QED was undertaken by Klein and Nishina in 1929 using the methods of Dirac’s hole-theory.
The Compton scattering is described on the tree-level by the diagrams shown in fig. 6.3.
The right diagram is the same as the left one but with interchanged photon lines. Thus both
diagrams go with the same relative sign into the sum for the transition amplitude. In the following
we can always use the on-shell conditions for the momenta:

p2 = p′2 = m2, k2 = k′2 = 0 (6.126)

and the energy-momentum conservation of the whole process

p+ k = p′ + k′. (6.127)
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Figure 6.3: The tree-level diagrams for Compton scattering

We find for the modified T -matrix element, defined in the previous section, for the given process:

Mfi = −e2ū(p′, σ′)γµ /p+ /k +m

(p+ k)2 −m2
γνu(p, σ)Aν(k, π)A

∗
µ(k

′, π′) + {(k, π) ↔ (k′, π′)}. (6.128)

Herein σ and σ′ are the polarisations of the incoming and outgoing electron while π and π′ are
those of the incoming and outgoing photon respectively.
The next station of the calculation is to take the modulus squared. To shorten this procedure
we define

Mfi = ūp′,σ′A∗
µ(k

′, π′)Q̂µνu(p, σ)Aν(k, π). (6.129)

Now we have
(ū1Q̂u2)

∗ = u†∗1 γ
0Q̂∗u∗2 = u†2Q̂

†γ0u1 = ū2
¯̂
Qu1. (6.130)

Since we want only to know the cross section for scattering of unpolarised beams of electrons and
photons we have to average over the initial polarisations and to sum over the final polarisations
which can be done by substituting the polarisation matrices for unpolarised particles and taking
the trace:

|Mfi|2 = 4Tr
[
ρ
(e)
0 (p)

¯̂
Qµνρ

(e)
0 (p′)Q̂ρσ

]
ρ(γ)νσρ(γ)µρ, (6.131)

where due to appendix C

ρ(γ)µρ = −1

2
gµρ, ρ(e)(p) =

1

2
(/p+m) (6.132)

and the factor 4 takes account that we want to sum over the final polarisations rather than
to average (two polarisations of the outgoing electron and two polarisations for the outgoing
photon).
Further we define the following invariants:

s = (p+ k)2, t = (p− p′)2, u = (p− k′)2, (6.133)

which are known as Mandelstam-variables.
Now with help of (6.128) and (6.133) we write

Q̂µν = e2

(
γµ
/p+ /k +m

s−m2
γν + γν

/p− /k
′
+m

u−m2
γµ

)
. (6.134)

Further it is simple to see that for a product of γ matrices we have

γµ1γµ2 · · · γµn = γµnγµn−1 · · · γµ1 . (6.135)
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Inserting this into (6.131) we find

|Mfi|2 =
e4

4
tr

{
(/p+m)

[
γν(/p+ /k +m)γµ

s−m2
+
γµ(/p− /k

′
+m)γν

u−m2

]
×

× (/p
′ +m)

[
γµ(/p+ /k +m)γν

s−m2
+
γν(/p− /k

′
+m)γµ

u−m2

]}
.

(6.136)

Thus to evaluate the transition probability we have only to perform the trace over the product
of various γ-matrices. The appropriate formulas are given in appendix C.
The first observation is that we have only to calculate two traces, namely

F1(s, u) = tr[(/p
′ +m)γµ(/p+ /k +m)γν(/p+m)γν(/p+ /k +m)γµ]

F2(s, u) = tr[(/p+m)γν(/p+ /k +m)γµ(/p
′ +m)γν(/p− /k

′
+m)γµ].

(6.137)

Here we let F1 and F2 depend on the Mandelstam variables s and u because the sum of the two
diagrams shown in figure 6.3 are symmetric under exchange of these variables. Furthermore it
is clear that we can express all invariant quantities with two of the three Mandelstam variables,
because with help of the on-shell conditions of the particles one finds

s+ t+ u = 2m2. (6.138)

Applying the formulas in appendix C, using the on shell-conditions (6.126) and the conservation
law for four momentum (6.127):

F1(s, u) = 8[2m4 + 2m2s− (s−m2)(u−m2)], F2(s, u) = 8m2(2m2 + s+ u). (6.139)

With help of these two functions we can write

|Mfi|2 =
e4

4

[
F1(s, u)

(s−m2)2
+

F1(u, s)

(u−m2)2
+
F2(s, u) + F2(u, s)

(s−m2)(u−m2)

]
, (6.140)

which shows explicitely the already mentioned symmetry in s and u. Using the results from
section 5.3 we finally find for the differential cross section:

dσ =
e4

64π2I2

[
2m4 + 2m2s− (s−m2)(u−m2)

(s−m2)2
+

2m4 + 2m2u− (s−m2)(u−m2)

(u−m2)2
+

+
2m2(2m2 + s+ u)

(s−m2)(u−m2)

]
d(−t)dφ,

(6.141)

where because of the masslessness of the photon the invariant flow reduces to

I2 = (pk)2 =
(s−m2)2

4
. (6.142)

In order to calculate the total cross section it is more convenient to express this in the laboratory
frame which is defined such that the electron in the initial state is at rest. Then the Mandelstam
variables are given as

s = (p+ k)2 = m2 +2mω, u = (p− k′)2 = m2 − 2mω′, t = (k′ − k)2 = 2ωω′(1− cos θ). (6.143)
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Herein ω and ω′ are the energy of the incoming and the outgoing photon respectively and θ is
the scattering angle between the directions of the incoming and the outgoing photon.
Squaring the conservation equation for energy and momentum

p′ = p+ k − k′ ⇒ m2 = s− 2k′(p+ k) (6.144)

we find by solving for ω′

ω′ =
m

m
ω + 1− cos θ

. (6.145)

Using (6.143) and (6.145) we have for fixed energy of the incoming photon ω:

t = −2ω(1− cos θ)
m

m
ω + 1− cos θ

, −dt = 2ω′2d(cos θ) = −2mdω′. (6.146)

Introducing

x =
s−m2

m2
=

2ω

m
and re =

e2

4πm
(6.147)

and integrating (6.141) over θ and φ we find for the total cross section

σ =
πr2e [x(16 + 32x+ 18x2 + x3) + 2(1 + x)2(x2 − 4x− 8) ln(1 + x)]

x3(1 + x)2
. (6.148)

This result was obtained by Klein and Nishina in 1929 using Dirac’s hole theory and therefore
known as Klein-Nishina cross section.
Especially for small x, i.e. in the low energy region, we obtain the well-known result for photon
scattering from classical electro-dynamics, namely the Thomson cross section:

σ ∼=
x→0

8π

3
r2e(1− x) = σThom(1− x). (6.149)

The cross section (6.148) is shown in fig. 6.4.

6.5.2 Annihilation of an e−e+-pair

With the very same calculation we can find the cross section of the process that an electron and
a positron are annihilated to two photons. The diagram is the same as in figure 6.3. The only
difference to Compton scattering is that we have to use a positron wave function v̄(−p2, σ2) for
the incoming positron instead of the wave function ū(p′, σ′) of an outgoing electron in (6.128)
and the corresponding polarisation matrix for an ensemble of unpolarised positrons in (6.136):

ρ(e
+)(p) =

1

2
(/p−m). (6.150)

Then it turns out that we can use the very same matrix element as for Compton scattering with
the qualification that now the Mandelstam variables have to be defined as follows:

s = (p1 − k1)
2 = (k2 − p2)

2

t = (p1 + p2)
2 = (k1 + k2)

2

u = (p1 − k2)
2 = (p2 − k1)

2.

(6.151)
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Figure 6.4: The Klein-Nishina total cross section for Compton scattering
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Figure 6.5: The tree-level diagrams for e−e+-annihilation

The invariant current (6.125) reads

I2 = (p1p2)
2 −m4 =

t(t− 4m2)

4
. (6.152)

Instead of d(−t) in (6.124) we have to write d(−s) according to our changed definition of the
Mandelstam variables cf. (6.151). Thus the final result reads

dσ =
e4

64π2I2

[
2m4 + 2m2s− (s−m2)(u−m2)

(s−m2)2
+

2m4 + 2m2u− (s−m2)(u−m2)

(u−m2)2
+

+
2m2(2m2 + s+ u)

(s−m2)(u−m2)

]
d(−s)dφ,

(6.153)

To find the total cross section we have to give the physical range of s-values at a given t (which
is now the square of the centre of mass energy). Together with s + t + u = 2m2 at the end we
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find
m2 − −t

2
− I ≤ s ≤ m2 − t

2
+ I (6.154)

and the total cross section for e−e+-annihilation becomes

σ =
2πr2e

τ2(τ − 4)

[
(τ2 + 4τ − 8) ln

(√
τ +

√
τ − 4√

τ −
√
τ − 4

)
− (τ + 4)

√
τ(τ − 4)

]

with re =
e2

4πm
, τ =

t

m
.

(6.155)

This result was found first by Dirac in 1930 within his hole theoretic formulation of QED.

6.6 The Background Field Method

So far our definitions of the generating functionals are not gauge invariant. Especially the
effective action is not invariant under gauge transformations of its field arguments. This is due
to their construction by the Faddeev-Popov gauge fixing formalism. It is clear that nevertheless
in principle for all physical purposes they are very useful since we have shown that the generating
functional for the S-matrix elements is gauge invariant as it must be, because it contains the
physical information.
Nevertheless it is very customary to have a manifestly gauge invariant formalism, especially an
invariant effective action. For instance if we try to prove the renormalisability of the theory
we must show that all counter terms are consistent with the gauge invariance of the classical
action and with the gauge fixing procedure of the Faddeev Popov formalism. Fortunately there
exists a manifest gauge invariant formalism which uses a special choice of gauge fixing within the
Faddeev-Popov formalism. It is known as the background field method, and we follow the line of
arguments in Abbott’s papers [Abb81, Abb82, AGS83]. Originally the method was invented by
DeWitt and ’t Hooft (for references see Abbott’s papers).

6.6.1 The background field method for non-gauge theories

In order to explain the method we go again back to our most simple model of ϕ4-theory. Here
the background field method does not give any differences or advantages to the conventional
functional approach given in chapter 4, but it shows clearly the idea of the method without the
complications of gauge symmetries.
As is well known to the reader now the Lagrangian is given by

L =
1

2
(∂µϕ)(∂

µϕ)− m

2
ϕ2 − λ

4!
ϕ4. (6.156)

Then we introduce the background field generating functional as follows

Z̃[J, φ̃] = N

∫
Dϕ exp[iS[ϕ+ φ̃] + i {J1ϕ1}1]. (6.157)

We see that the only difference to the usual definition is that in addition to the usual classical
source J we introduced also a classical background field φ̃ as an external quantity, and the
background field generating functional becomes additionally dependent on the background field.
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The relation to the usual generating functional is very simple. This can be seen by substituting
ϕ′ = ϕ+ φ̃ in the path integral:

Z̃[J, φ̃] = N

∫
Dϕ′ exp[iS[ϕ′] + i

{
J1(ϕ

′
1 − φ̃1)

}
1
] = Z[J ] exp[−i {J1φ̃1}1]. (6.158)

From this we find immediately after a functional Legendre transformation

Γ̃[φ, φ̃] = Γ[φ+ φ̃] with W̃ [J, φ̃] = −i lnZ[J, φ̃], φ1 =
δW̃ [J, φ̃]

δJ1
. (6.159)

Setting φ = 0 we find the background field representation of the usual effective action:

Γ[φ̃] = Γ̃[φ = 0, φ̃]. (6.160)

The background field method does not give much simplification in this case, but as we shall show
now with the introduction of the background field for gauge fields we can find a special gauge
fixing such that the effective action is manifestly gauge invariant.

6.6.2 Gauge theories and background fields

Now we shall use the background field method for QED. In later chapters we shall also treat
more general gauge field theories with non-abelian gauge groups and also there this method is
of great advantage.
We start with the Faddeev Popov path integral (6.23) with a background field for the gauge
field added. For the gauge invariant classical action we chose fermionic electrodynamics given
by (6.49):

Z̃[J, η∗, η; a] =
∫
DADψ̄Dψ Det

(
δg̃[Aχ, a]

δχ

)
exp

[
iSQED[A+ a, ψ̄, ψ]−

− i

2ξ

{
g̃21[A]

}
1
+ i
{
j1µA

µ
1 + iη̄1ψ1 + iψ̄1η1

}
1

]
.

(6.161)

It is clear that we can do the same manipulations with scalar electrodynamics. Note that we did
not add background fields for the matter fields ψ̄ and ψ.
Now the trick is to chose the covariant Landau-Feynman gauge condition only for the “quantum
field” A and not for the sum A+ a of both the quantum and the background field, which latter
choice would result if we simply shifted the fields in the gauge fixed action (6.51):

g̃[A] = ∂µA
µ. (6.162)

This special choice of gauge leads to an effective Lagrangian

Leff =ψ̄
[
i/∂ + e( /A+ /a)−m

]
ψ − 1

4
(Fµν + fµν)(F

µν + fµν)−

− 1

2ξ
(∂µA

µ)(∂νA
ν) + jµA

µ + η̄ψ + ψ̄η
(6.163)

which is invariant under the local transformation

δAµ = 0, δaµ = ∂µδχ, δψ = ieδχψ, δψ̄ = −ieδχψ̄, δη = ieδχη, δη̄ = −ieδχη̄. (6.164)
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Note that only the background field is transformed, not the quantum field. Since only the quan-
tum field is gauge fixed the generating functional is invariant under this gauge transformation.
Now the functional matrix in the Faddeev-Popov determinant reads

δg̃1[A
χ]

δχ2
= □1δ12 (6.165)

and is thus independent of all fields and sources. Thus it can be taken out of the path integral as
another indefinite factor. This feature is unique to abelian gauge theories, in non-abelian ones
they will give rise to the introduction of the famous Faddeev-Popov ghost terms.
Now we perform the infinitesimal background field gauge transformations (6.164) for the sources
and the background field aµ accompanied by the change of functional integration variables Aµ,
ψ and ψ̄ given in the same equation. This yields the Ward-Takahashi-identity for the generating
functional: {

ieδχ1

[
η̄1

(
δZ̃

δη̄1

)

L

−
(
δZ̃

δη1

)

R

η1

]
− ∂µ

δZ̃

δaµ
δχ1

}

1

= 0 (6.166)

Since δχ1 is arbitrary we find the local identity

ie

[
η̄1

(
δZ̃

δη̄1

)

L

−
(
δZ̃

δη1

)

R

η1

]
− ∂µ

δZ̃

δaµ
= 0. (6.167)

Now we define the generating functional for connected Green’s functions as usual by

W̃ = −i ln Z̃ (6.168)

and also the effective action, i.e., the generating functional for proper one-particle irreducible
vertex functions by

Γ̃[
〈
ψ̄
〉
, ⟨ψ⟩ , ⟨Aµ⟩ ; aµ] = W̃ [η̄, η, jµ]−

{
η̄1 ⟨ψ1⟩+

〈
ψ̄1

〉
η1 + ⟨Aµ1⟩ jµ1

}
(6.169)

with

⟨ψ1⟩ =
(
δW̃

δη̄1

)

L

, ⟨ψ1⟩ =
(
δW̃

δη1

)

R

, ⟨Aµ1⟩ =
δW̃

δjµ1
. (6.170)

Since from (6.169) we get

η1 = −
(

δΓ̃

δ
〈
ψ̄1

〉
)

L

, η̄1 = −
(

δΓ̃

δ ⟨ψ1⟩

)

R

, jµ1 = − δΓ̃

δ ⟨Aµ1⟩
,
δW̃

δaµ1
=

δΓ̃

δaµ1
(6.171)

we find from (6.167) which holds true equally well for W̃ :

∂µ
δΓ̃

δaµ1
− ie

[(
δΓ̃

δ ⟨ψ1⟩

)

R

⟨ψ1⟩ −
〈
ψ̄1

〉
(

δΓ̃

δ
〈
ψ̄1

〉
)

L

]
= 0. (6.172)

This means nothing else than that Γ̃ is invariant under a special local gauge transformation of
its arguments

δ
〈
ψ̄1

〉
= −ieδχ1

〈
ψ̄1

〉
, δ ⟨ψ1⟩ = ieδχ1 ⟨ψ1⟩ , δaµ1 = ∂µδχ1, δ ⟨Aµ1⟩ = 0. (6.173)
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The usual generating functional to calculate one-particle irreducible vertex functions can now be
defined by setting ⟨Aµ1⟩ = 0:

Γbfg[
〈
ψ̄
〉
, ⟨ψ⟩ , aµ] = Γ̃[

〈
ψ̄
〉
, ⟨ψ⟩ , ⟨Aµ⟩ = 0, aµ]. (6.174)

This corresponds to a calculation of the usual Faddeev-Popov action making use of the special
gauge fixing condition

∂µ(A
µ − aµ) = 0. (6.175)

and setting ⟨Aµ⟩ = aµ at the end of the calculation.
From this we conclude that in the background field gauge we can calculate the proper vertex
functions perturbatively from the explicitly gauge invariant action (6.174) where the internal
lines correspond to propagators with respect to the quantum field Aµ (and of course the usual
fermion propagators), derived from the term quadratic in Aµ (and ψ) in the effective Lagrangian
(6.163). The price we have to pay is the introduction of one more vertex except the usual one
with ψ̄, ψ, and Aµ-lines: namely one with ψ̄, ψ and an external field aµ. In vertex functions the
external photon lines are always arising from the vertices of the latter case. So far the gauge is
only fixed for the quantum vector fields Aµ determining the propagator for inner lines, while the
fields aµ are completely arbitrary.
To calculate (connected) S-matrix elements now we have to fix the gauge for the background field
aµ which determines the propagator used to connect the gauge invariant 1PI-vertices as well as
the asymptotically free gauge fields connected with the external legs.
In our choice of (6.162) the Feynman rules thus read as follows:

k
µ ν = i∆µν(k) := i

[
−gµν + (1− ξ)

kµkν
k2 + iη

]
1

k2 + iη
,

k = iG(k) := i
/k +m

k2 −m2 + iη
,

p

kp+ k
µ =

p

kp+ k
aµ = ieγµ.

(6.176)

The external lines for the calculation of S-matrix elements are the same as given in figure 6.2
with the qualification that now any gauge fixing for the external gauge fields and its propagator
can be chosen, independent from the previous choice for the quantum field (6.162).
The propagator of the background field is used to connect the proper vertex functions, which
propagator we call the external propagator to distinguish it from the propagator of the quantum
field which is used to calculate the proper vertex functions perturbatively. It is clear that only
the on-shell polarisation vectors eµ(p⃗, λ) for the external legs in the S-matrix Feynman rules have
to be chosen according to the same gauge-fixing condition as the external propagator. Thus for
the quantum field we can use ’t Hooft’s class of covariant renormalisable gauges (“Rξ-gauges”) cf.
6.162 to calculate the proper vertex functions which due to the background field method fullfil
the naive Ward-Takahashi identities (WTIs) of the tree-level Lagrangian which are simpler than
the WTIs for the analogous choice of gauge fixing in the usual method described before. It is
clear that nevertheless the proper vertex functions calculated with this method depend on the
choice of gauge for the quantum fields but as shown above for any choice of gauge within the
Faddeev Popov method the on-shell S-Matrix elements are gauge independent and only those
are used to calculate physical quantities such as life times of unstable states or cross sections.

229



Chapter 6 · Quantum Electrodynamics

6.6.3 Renormalisability of the effective action in background field gauge

Now we like to show that the effective action in background field gauge is renormalisable in the
sense that we can render all proper vertex diagrams finite with local counter terms and that
these are gauge invariant as the bare effective action in background field gauge. It is clear that
this depends on the gauge choice for the quantum fields (6.162). In our case we have chosen a
so called renormalisable gauge which leads to a photon propagator of momentum power −2 as
for scalar fields. As we shall see below this is crucial for the proof of renormalisability.
We have to start with power counting. Each internal e+e−-line has a momentum power (superfi-
cial degree of divergence) −1, each γ-line one of −2 (in our choice of the gauge-fixing condition!),
each vertex counts with a power of 0 since there are no derivative couplings in fermionic QED.
Now we define

Eγ : Number of external photon legs
Ee : Number of external electron/positron legs
Iγ : Number of internal photon legs
Ie : Number of internal electron/positron legs
L : Number of loops
V : Number of vertices

(6.177)

Since each vertex has one internal or external photon leg and two electron/positron legs we have:

2V = 2Ie + Ee = 2(2Iγ + Eγ), (6.178)

where we have taken into account that each internal line belongs to two legs of one (“tadpole
diagrams”) or two vertices. Further the number of loops is given by

L = Ie + Iγ − V + 1, (6.179)

because we have (Ie+ Iγ) internal momenta, which are restricted by momentum conservation at
each vertex but overall momentum conservation is always implied in the definition of the proper
vertex functions. The superficial degree of divergence is

δ = 4L− Ie − 2Iγ (6.180)

Using (6.178) and (6.179) to eliminate L, Iγ and Ie from this equation we find

δ = 4− Eγ −
3

2
Ee. (6.181)

Now we use the fact that we can define γµ-matrices in any space time dimension and thus have
no problem to regularise quantum electrodynamics with help of dimensional regularisation. This
means that we can be sure that the regularised bare vertex functions obey the background field
gauge Ward-Takahashi identities which can be derived from (6.172) by taking further functional
derivatives. Now we shall give a typical inductive argument: In zeroth loop order, i.e., for the tree
diagrams of vertex functions by definition all is finite when using the renormalised normalisations
for the wave functions, the renormalised electron, and the renormalised coupling constant. We
remark that we only think about the UV-divergence problem in this section. The IR-divergences
which are due to the masslessness of the photon are regularised by dimensional regularisation but
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can only be cancelled for physical quantities by defining realistic inclusive cross sections where in
addition to a process with a fixed number of electrons, positrons and photons in the final state
all processes with an arbitrary number of additional soft photons in the final state is taken into
account which cannot be resolved due to the finite energy resolution of the detector. This was
first shown in the famous paper [BN37].
Now suppose we have renormalised all proper vertex functions up to L loops with gauge symmetric
counter terms of the same form as in the original QED-Lagrangian. Thus we can renormalise
each subdivergence of a proper vertex diagram Γ with such gauge symmetric counter terms
and we know that the remainder R̄Γ has only overall counter terms which are polynomials in the
external momenta. Further we know that R̄Γ fulfils its Ward Takahashi identity (WTI) contained
in (6.172). To finish the proof of renormalisability we only have to show that all monomials to
the effective action Lagrangian which fulfil these WTIs (and the additional symmetries of the
effective Lagrangian like C- and P-invariance) and are renormalisation parts, i.e., which have a
superficial degree of divergence δ(Γ) ≥ 0 are of the same form as LQED cf. (6.49).
To this end we simply have to investigate the finite set of vertex functions which have δ(γ) ≥ 0
according to (6.181).
We start with the diagrams with Ee = 0, i.e., all pure photon vertices. First we show that in
QED for Ee = 0 all vertices with an odd number of photon lines vanish due to charge conjugation
invariance. Indeed: Since the charge conjugation for the ψ-field (see section 4.4.1) changes the
sign of the current ψ̄γµψ while the kinetic term for the fermions remains invariant we have to
set (AC)µ = −Aµ, so that the full QED-Lagrangian is invariant under charge conjugation9.
Thus we have for Ee = 0 the following renormalisation parts in the set of proper vertices:
Eγ = 2 and Eγ = 4. The first case is the inverse photon propagator. According to (6.181) it
is of dimension 2. It depends on only one momentum p due to momentum conservation and is
a symmetric tensor field. Since the overall divergence is a polynomial of the momentum with
dimension 2 it must be of the form

(D−1
γ )µν(p) = (Ap2 + C)gµν +Bpµpν + finite (6.182)

with A and B constants of mass dimension 0 and C of mass dimension 2 containing the divergent
parts at L + 1-loop order ∝ 1/ϵL+1. Here and in the following the bar over the symbol means
that we have subtracted all subdivergences at loop orders ≤ L.
Now the infinite part must fulfil the WTI for D−1

γ for itself since the 1/ϵ-expansion of dimensional
regularisation is consistent with the gauge symmetry. From (6.172) we find by taking a derivative
with respect to a2ν and setting ⟨ψ⟩ =

〈
ψ̄
〉
= aµ = 0 (where we use the fact that the vacuum is

Lorentz invariant and thus admits no expectation values of non-scalar fields):

∂µ1(D
−1
γ )

µν

12 = 0

pµ(D
−1
γ )(p)µν = 0.

(6.183)

For the infinite part this means
pν [(A+B)p2 + C] = 0, (6.184)

9This is also heuristically clear from classical electromagnetics: Charge conjugation means to change the sign
of all charges and thus also of all currents. The electromagnetic field produced by the charge conjugated matter
is thus opposite of the field which is produced by the original matter state.
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and comparing the coefficients on the left and the right hand side of this equation yields the
Ward identities

A = −B, C = 0 ⇒ (D−1
γ )µν(p) = A(p2gµν − pµν) + finite. (6.185)

This means that there is no mass-counter term for the photon, which remains massless to any
order as it should be due to gauge invariance, and we need to add only a logarithmically divergent
wave-function normalisation counterterm:

1

4
δZγfµνf

µν (6.186)

to the effective Lagrangian which is of the same gauge invariant form as the bare Lagrangian we
started with.
The other renormalisation part with Ee = 0 is the four-photon vertex which is absent in the orig-
inal QED-Lagrangian since there does not exist a gauge invariant four-photon term of dimension
≤ 4 which is necessary for superficial renormalisability. We have to show that we do not need
a counter term for the four-photon vertex which is superficially logarithmically divergent. Since
its overall counter term is of momentum order 0 and a totally symmetric tensor with respect to
its four Lorentz indices the four-photon-vertex must be of the form

(Γ(4γ))µνρσ(p1, p2, p3) = D(gµνgρσ + gµρgνσ + gµσgρν) + finite, (6.187)

where the momenta p1, p2, p3 are the independent four-momenta and D is a divergent constant
of mass dimension 0. Deriving (6.172) three times with respect to the gauge field a with the
appropriate space-time arguments and transforming to momentum space we find the simple
condition

pµ1 (Γ
(4γ))µνρσ(p1, p2, p3) = 0 → D(pνgρσ + pρgνσ + pσgρν) = 0 (6.188)

which by comparison of coefficients leads to D = 0. Due to the WTI for the four-photon vertex
it thus is finite and in accordance with gauge invariance no four-photon counterterm is needed !
This does not mean that the four-photon vertex vanishes completely, but that the scattering of
photons at photons (Delbrück scattering) is a pure quantum effect and absent at tree level (i.e.,
classical electrodynamics) due to the lack of a superficially renormalisable local gauge invariant
four-photon interaction term.
We now come to the case Ee = 2. The inverse electron-positron propagator has no restriction for
itself due to gauge invariance, which also formally can be seen by looking at (6.172). It is clear
from (6.181) that it is of divergence degree 1. Further the QED-Lagrangian is invariant under
spatial reflections (parity conservation). Thus we have

(G−1
e )(p) = E/p+ Fm+ finite (6.189)

where E and F both are constants of mass dimension 0. While E is the electron wave function
counter term F is a contribution to the mass renormalisation factor.
Now there remains only one divergence left, namely this with Ee = 2 and Eγ = 1, i.e., the counter
term of the only local vertex already present in the original QED-Lagrangian. Our description
of the gauge field as an covariant derivative (6.45) in order to enforce not only global but local
gauge symmetry, yields the conclusion that E must be related to the counter term for the vertex:

(Γµ(γeē))(k, p) = eGγµ + finite, (6.190)
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where the kinematics of the momenta is chosen as in (6.176).
Deriving (6.172) with a left sided derivative with respect to

〈
ψ̄2

〉
and a right sided derivative

with respect to ⟨ψ3⟩ after some algebra with the Fourier transform we find the WTI for the
vertex which connects it to the inverse electron-positron propagator:

kµ(Γ
µ
(γeē)) = e[(G−1

e )(k + p)− (G−1
e )(p)] (6.191)

For the infinite part this means

eG/k = eE/k ⇒ E = G, (6.192)

which again tells us that indeed also the counter terms necessary to renormalise the γeē-vertex
and the electron-wave function connected to each other such that gauge invariance is guaranteed.
This finishes the proof that QED in background field gauge is renormalisable with local gauge
invariant counter terms, i.e., the renormalised Lagrangian is gauge invariant to any order and of
the same form as the original Lagrangian (6.49).

6.7 One-loop corrections in QED

Now we can look at some of the one-loop radiative corrections in QED. We shall restrict ourselves
to investigate the parts that have to be renormalized, i.e., the photon polarization tensor (or
photon self-energy), the electron-positron self-energy, and the electron-positron-γ vertex. We
shall use dimensional regularisation and discuss both the on-shell and the minimal-substraction
renormalization renormalization schemes.
The usual definition of the multiplicative renormalisation for the Lagrangian reads

L = −Z3

4
FµνF

µν + Z2ψi/∂ψ − Zmmψψ + Z1eµ
ϵψ /Aψ, d = 4− 2ϵ, (6.193)

which implies the relation between the bare and the renormalized quantities

Aµ0 =
√
Z3A

µ, ψ0 =
√
Z2ψ, m0 =

Zm
Z2

m, e0 =
Z1

Z2

√
Z3
eµϵ. (6.194)

For the following perturbative calculations, it is more convenient to write the counter-term
Lagrangian in the form

δL = −δZ3

2
FµνF

µν + δZ2ψi/∂ψ − δmψψ + eµϵδZ1ψ /Aψ. (6.195)

This implies

Z1 = 1 + δZ2, Z2 = 1 + δZ2, Z3 = 1 + δZ3, Zm = 1 +
δm

m
. (6.196)

The counter-terms are evaluated as a power series in ℏ or α = e2/(4π).

233



Chapter 6 · Quantum Electrodynamics

The Feynman rules for the counter-terms read

p
= i(/pδZ2 − δm), (6.197)

k

µ ν

= −ik2δZ3Θ
µν(k), (6.198)

µ

= ieµϵδZ1γ
µ (6.199)

with the projection matrix to four-transverse vector components

Θµν(k) = gµν − kµkν

k2
. (6.200)

We note that the Ward identity (6.192) implies in this notation

Z1 = Z2, e0 = eµϵZ
−1/2
3 . (6.201)

We define the photon-polarization tensor such that the one-particle irreducible diagrams with
two amputated photon lines reads +iΠµν(k) = +ik2Π(k)Θµν(k), which implies that the Dyson
equation for the transverse part of the full photon propagator reads10

Dµν
⊥ (k) = − Θµν(k)

k2[1−Π(k)]
. (6.202)

In one-loop approximation for the regularized photon polarization we have to evaluate only one
diagram,

iΠµνreg(k) =

k k

µ ν
(6.203)

Applying the Feynman rules, including the factor (−1) for the fermion loop leads to

Πµνreg(k) = −e2µ2ϵ
∫

d2ωl

(2π)2ω
tr
γµ[(/l + /k) +m]γν(/l +m)

[m2 − (l + k)2](m2 − l2)
. (6.204)

Of course, we could simplify our calculation by using the Ward-Takahashi identity 6.183 for the
photon-polarization tensor, which tells us that it must be transverse, but we want to explicitly
confirm this in our calculation.

10Note that in the background-field gauge the Lagrangian in the effective action is gauge invariant and thus the
free as well as the full inverse photon propagator is transverse. Due to the Ward-Takahashi identities for proper
vertex functions we never need to fix the gauge for the background-gauge field to connect the 1PI diagrams
and provide external legs to express the (connected) Green’s functions in terms of proper vertex functions and
propagators.
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The Dirac trace in the numerator gives

Πµνreg(k) = −4e2µ2ϵ
∫

d2ωl

(2π)2ω
kµlν + kν lµ + 2lµlµ + [m2 − l · (l + k)]gµν

[m2 − (l + k)2](m2 − l2)
. (6.205)

Now we use the first Feynman-parametrization formula (C.16) to write

iΠµνreg(k) = −4e2µ2ϵ
∫

d2ωl

(2π)2ω

∫ 1

0
dx
kµlν + kν lµ + 2lµlµ + [m2 − l · (l + k)]gµν

[M2 − (l + xk)2]2
(6.206)

with
M2 = m2 − x(1− x)k2. (6.207)

Now we shift the momentum-integration variable to q = l + xk and interchange the q and x
integration, which is allowed because the integral converges in the sense of dimensional regular-
ization. Since the denominator is an even function in the new integration variable q we can omit
all expressions linear to q in the numerator, because the dimensionally regularized integration
over an odd function vanishes. This leads to

iΠµνreg(k) =− 4e2µ2ϵ
∫ 1

0
dx

×
∫

d2ωq

(2π)2ω
2qµqν − 2x(1− x)kµkν + gµν [m2 − q2 + x(1− x)k2]

(M2 − q2)2
.

(6.208)

Using (C.8), (C.10) and (C.14) and (C.15) to do the Laurent expansion around ϵ = (4− d)/2 =,
we get after some algebra

Πµνreg(k) = − e2

4π2
k2Θµν(k)

∫ 1

0
dxx(1− x)

(
1

ϵ
− γ + ln

4πµ2

M2

)
= k2ΘµνΠreg(k). (6.209)

As we see, the photon-polarization tensor is indeed transverse as it should be according to the
Ward-Takahashi identity. The x integral can be done in closed form leading to

Πreg(k) =
e2

36π2k2

[
− 3k2

ϵ
+ 3γk2 − 12m2 − 5k2 + 3k2 ln

(
m2

4πµ2

)

+ 6

√
1− 4m2

s
(s+ 2m2) arcoth

(√
1− 4m2

s

)]
.

(6.210)

The tradiational renormalization scheme is the on-shell scheme. According to (6.202) the
photon propagator has a pole at k2 = 0, i.e., it describes a massless quantum. The on-shell
renormalization scheme is defined such that the particle propagators should have a residuum of
1 at their pole mass. This means that the renormalization condition for this scheme reads

ΠOS(k)|k2=0 = 0, (6.211)

which implies according to the Feynman rule for the corresponding counter term (6.200)

δZ
(OS)
3 = lim

k2→0
Πreg(k) =

e2

12π2

[
γ − 1

ϵ
+ ln

(
m2

4πµ2

)]
, (6.212)
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and thus

ΠOS(k) =
e2

36π2s

[
−12m2 − 5k2 + 6

√
1− 4m2

s
(s+ 2m2) arcoth

(√
1− 4m2

s

)]
. (6.213)

The disadvantage of this renormalization scheme is that the photon-wave-function counterterm
becomes mass dependent and thus it is not so convenient in investigating the running of the renor-
malized parameters with the renormalization-group equation. For this purpose the minimal-
subtraction renormalization scheme is more convenient, because it is a mass-independent
renormalization scheme and thus the renormalization-group parameters only depend on the di-
mensionless coupling e. Here the choice is to just subtract the divergent part when ϵ → 0,
i.e.,

δZ
(MS)
3 = − e2

12π2ϵ
, (6.214)

i.e.,

ΠMS(k) =
e2

36π2k2

[
3γk2 − 12m2 − 5k2 + 3k2 ln

(
m2

4πµ2

)

+ 6

√
1− 4m2

s
(s+ 2m2) arcoth

(√
1− 4m2

s

)]
.

(6.215)
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Chapter 7

Nonabelian Gauge fields

In this chapter we come to the heart of modern particle physics, namely the notion of general
local gauge symmetry based on compact semi-simple Lie groups as local symmetry groups. The
paradigm of gauge symmetry is taken from the example of QED which is contained in the general
case with the abelian gauge group U(1).
We shall start with the description of some toy models which aim to show the reader the main
mathematical contents on hand of the most simple examples. Together this mathematics gives
the ingredients for the standard model: local gauge invariance of the classical action, the Faddeev-
Popov quantisation procedure, BRST-symmetry of the quantised theory and the Anderson-Higgs
mechanism for massive gauge vector particles without breaking gauge symmetry and so keeping
the theories renormalisable and physically consistent.
We shall also treat the question of anomalies which we have neglected so far in these notes.
With this mathematical fundament we shall describe the standard model of elementary particles
which is based on the gauge group SU(3)×SU(2)×U(1) and a choice of the representation and
realization of this group which is given by the collected empirical knowledge about all the particles
produced and observed so far in accelerators.

7.1 The principle of local gauge invariance

In this section we shall introduce the concept of local gauge invariance at the level of the clas-
sical field theory. For sake of convenience we shall work with a multiplet of fermions. Its free
Lagrangian

L0f =

N∑

i=1

ψ̄i(i/∂ −m)ψi (7.1)

is invariant under the action of the fundamental representation of the group SU(N):

ψ′(x) = Uψ(x), ψ̄′ = Uψ(x) = ψ̄U † with U ∈ SU(N). (7.2)

The idea of local gauge theories was invented by Yang and Mills in 1954. They argued that the
transformation U in (7.2) has to be constant in space and time. Because of the derivative in
(7.1) indeed a space-time dependent U would not be a symmetry transformation of the action
defined from L0f .
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On the other hand, they argued, observers should be allowed to choose the basis of the multiplet
independently on each place and at each time. The invariant object is

ψ(x) = bi(x)ψ
i(x). (7.3)

The product in the multiplet space is a sesquilinear form and thus all observers will choose an
orthonormalised basis on each space-time point. Due to the symmetry group SU(N) underlying
the symmetry the change of the basis at space-time point x compared to one at an arbitrary
reference point (we shall take x = 0 for it) is given by an arbitrary smooth function U : R4 →
SU(N):

bi(x) = bj(0)U
j
i(x). (7.4)

The derivative of the field components with respect to the local basis is obtained from this by
simple calculation:

∂µψ(x) = (∂µψ
i)bi + ψi(x)bj(0)∂µU

j
i(x) =

= (∂µψ
i)bi + ψi(x)[U−1(x)]j

k
[∂µU

j
i(x)]bj .

(7.5)

We define
igAµ(x) = U−1(x)∂µU(x) = igAaµT

a. (7.6)

The vector field Aµ is called the gauge field and is LSU(N) = su(N)-valued. Since SU(N) is a
semi-simple Lie group there exists a basis T a of the Lie-algebra such that

tr(T aT b) =
1

2
δab. (7.7)

In the appendix we give a proof for this theorem by E. Cartan. It holds true for any semi-simple
Lie algebra. It is also shown there that in this basis the structure constants fabc, defined by

[
T a, T b

]
= ifabcT c, (7.8)

are totally anti-symmetric with respect to reordering of its indices.
Now we define the covariant derivative

Dµ = ∂µ + igAµ. (7.9)

If we substitute the partial derivative in the Lagrangian (7.1) by this covariant one by construction
the Lagrangian becomes invariant under general local gauge transformations:

Lf = ψ̄(i/D −m)ψ. (7.10)

Here and in the following ψ denotes the column vector with the spinor-valued components ψi

while ψ̄ is the corresponding vector with components ψ̄i.
To show that (7.10) is indeed gauge invariant we have to find the transformation law for the
gauge field (7.6). A gauge transformation is given by a change of the choice of the basis (7.4) in
7.4 by means of an SU(N) space-time dependent transformation V (x):

bi(x) = b′j(x)V
j
i(x). (7.11)

It is easy to see that for the matrix U in (7.4) this means

U ′(x) = V (0)U(x)V −1(x). (7.12)
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It is important to keep in mind that U(x) does not transform with the local adjoint representation
of the group since the matrices V (0) and V (x) are different!
Using the definition (7.6) of the gauge field yields together with (7.12):

igA′
µ(x) := U ′(x)∂µU ′−1(x) = igV (x)AµV

−1(x) + V (x)∂µV
−1(x)]. (7.13)

From (7.11) we derive immediately that the components of the fermion fields transform with the
matrix V (x):

ψ′(x) = V (x)ψ(x). (7.14)

With (7.13) and (7.15) we see

(Dµψ)
′ = D′

µψ
′ = VDµψ ⇒ D′

µ = VDµV
−1, (7.15)

and from this it is clear that the Lagrangian (7.10) is invariant not only under global but also
under local gauge transformations. The substitution of the partial derivative in (7.1) by the
covariant one in (7.10) is known as the principle of minimal substitution.
For later use we specialise the transformation rules (7.13) and (7.14) for infinitesimal gauge
transformations:

V (x) = 1− igδχa(x)T
a. (7.16)

Inserting this in (7.13) and omitting all terms in higher than linear order of δχa we find

δAµ = −igδχa [T
a,Aµ] + ∂µχaT

a. (7.17)

Using the definition of the structure constants (7.8) we obtain for the transformation law of the
gauge-field components

δAcµ = ∂µδχ
c + gf cabδχaAbµ. (7.18)

From a differential-geometrical point of view the gauge field igAµ is a local connection in the
SU(N) bundle: At each point of space-time a “charge space” is located which is in our example
realised by the multiplet of matter-field components ψ.
It is clear from (7.15) that Dµ is an SU(N)-vector operator. Although Aµ is not a vector under
the adjoint representation the construct

Fµν =
1

ig
[Dµ,Dν ] =

(
∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν

)
T a (7.19)

is a vector under the adjoint representation. Indeed it is easy to prove the behaviour of Fµν
under a gauge transformation. Using (7.15) we obtain immediately

F ′
µν = V FµνV −1, (7.20)

i.e., F transforms under the adjoint representation of the underlying gauge group SU(N).
To make the gauge field to a dynamically interacting field we have to add a kinetic term to
the Lagrangian (7.10) which must be gauge invariant. The most simple possibility, already very
successful in the case of QED, is

LYM = −1

2
tr (FµνFµν) = −1

4
F aµνF

aµν , (7.21)
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the so called Yang-Mills action. While mathematically the construction we used is the same
in both cases, QED and nonabelian Yang-Mills gauge theory: The fields Fµν define the local
curvature from the affine connection Aµ.
Physically there are important differences: first of all due to (7.19) for nonabelian gauge groups
the Lagrangian (7.21) describes interacting fields since if not all of the fabc vanish (7.21) con-
tains expressions with three and four gauge fields. Thus the nonabelian gauge fields are always
interacting, i.e., they carry charges determined by the adjoint representation of the gauge group.
From the point of view of model building it is important to realise that due to (7.19) for non-
abelian gauge groups Fµν contains the gauge coupling g which determines the strength of in-
teraction. This means that the coupling has to be the same for all matter fields. Each matter
field must be grouped in a multiplet on which a representation of the gauge group operates. The
only possibility to change the coupling strength from one multiplet to the other is to change
the representation. But this does not mean too much freedom, because the choice of the gauge
group determines uniquely the possible multiplets and the charge patterns in each of them; they
are fixed by the Lie-algebra matrices T a in the chosen representation which are normalised due
to (7.7), but one is not allowed to change the gauge coupling g from one multiplet to another1,
because otherwise the gauge-symmetry is explicitely broken and, as we shall see in the next
section, then the physical content of the quantised theory is completely lost. This feature of the
nonabelian gauge theories is known as universality of the gauge coupling.
In the abelian case of the group U(1), the gauge group of QED, the gauge coupling g (which in
this case is −e for the electron-positron matter field) is not necessarily universal. It is one of the
big remaining enigmas within the standard model why all observable particles come in integer
multiples of e/3.
Remark : Not e is the “elementary electromagnetic charge” but e/3 since the quarks which con-
stitute the observed hadrons carry electric charges of −e/3 and +2e/3, while their anti-particles
of course carry the opposite sign of charges. It is due to the remarkable feature of nonabelian
gauge theories, in this case of quantum chromodynamics which is a Yang-Mills theory with the
gauge group SU(3) to be “confining”. The charges of SU(3) are called the colour. The quarks are
grouped in the fundamental representation of this colour SU(3) gauge group and thus for them
there exist three colours (red, green, blue). Confinement means that only “colour-less objects”
are observable in nature, i.e., only bound states of such a configuration of quarks which are
found in the physical spectrum, which are colour-charge neutral. If one tries to split these bound
objects such strong forces have to be used that immediately a bunch of new particles, among
them a lot of quarks and the QCD-gauge fields, which quanta are called “gluons”, such that those
can again be bound to colourless objects. Indeed up to now no free quarks have been observed,
but from deep inelastic scattering experiments we know that the hadrons are bound states of a
quark anti-quark pair (the mesons) or of three quarks of different colour (the baryons). These
experiments show also that the strong interaction becomes weakly coupled in the regime of high
scattering energies, i.e., the “running coupling constant” is small if the renormalisation scale is
chosen high enough. This means that for QCD perturbation theory is applicable for high-energy
processes. We shall show this property of asymptotic freedom of nonabelian gauge theories when
we come to the issue of quantisation and renormalisation of gauge theories.
Before we come to the important question, how to describe massive gauge vector fields, in the
next section we shall treat the quantisation of gauge field theories which can be formulated in

1it is clear that one is allowed change the sign of the gauge coupling
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7.2 · Quantisation of nonabelian gauge field theories

the same way using the Faddeev-Popov formalism already described for QED in chapter 6.

7.2 Quantisation of nonabelian gauge field theories

The naive path integral expression for the expectation value of a time ordered product of local
gauge invariant operators reads

⟨TA(x1)B(x2) . . .⟩ = N

∫
DΦ[A(x1)B(x1) . . .] exp(iS[Φ]), (7.22)

where we have abbreviated the fields ψ, ψ̄ and A with Φ.
This path integral is not well defined due to the fact that it contains an additional infinite factor
caused by the gauge copies of the fields, i.e., one integrates over all field configurations although
only those are physically distinct which are not connected by a local gauge transformation.
From the perturbative point of view this can be observed by the fact that there does not exist a
free propagator for the gauge fields because in momentum space its putative “inverse” reads

(∆−1)abµν(k) = δab(kµkν − k2gµν), (7.23)

which has no inverse because it maps the vector k to 0, i.e., it has a vanishing eigenvalue.
The way out of this is simple: Since the integration over the gauge orbits yields only an field
independent constant it is irrelevant for the calculation of expectation values of the type (7.22).
We have only to integrate over the gauge group selecting an arbitrary gauge fixing. This idea is
due to Feynman, Faddeev and Popov. For that purpose we introduce the gauge fixing condition

ga[x; Φ] = ca(x), (7.24)

where ca is a set of arbitrary functions. For now the local functional g has only to be chosen
such that it really fixes the gauge (at least in the here developed perturbative sense), i.e., the
condition (7.24) on the fields Φ should uniquely determine the member of each gauge orbit.
Now we define the functional

∆−1
g [Φ] =

∫
DUδ[ga[x,ΦU ]− ca], (7.25)

where DU is the Haar measure of the gauge group G, taken at each space-time point x. This
measure is by definition invariant under left- and right operations of the group, which feature
makes it gauge invariant:

∆−1
g [ΦU

′
] =

∫
DUδ[ga[x, (ΦU

′
)U ]− ca]

U ′′=UU ′
=

∫
DU ′′δ[ga[x; ΦU

′′
]− ca] := ∆−1

g [Φ]. (7.26)

We can parameterise the gauge group elements with the χa of Eq. (7.16), which reads, e.g., for
the matter field ψ:

U(χ) = exp(−igχaT a) (7.27)

In this parameterisation the Haar measure is simply defined by the usual integral measure dnχ
since then an infinitesimal transformation reads χa → χa + δχa. Further we can by definition
choose the fields Φ such that the gauge condition (7.24) is fulfilled. Thus we have

∆−1
g [Φ] =

∫
DgaDet

(
δχb

δga

)
δ[ga[Φχ]− ca] = Det

(
δχb

δga

)∣∣∣∣
χa=0

(7.28)
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due to our choice of gauge for the fields Φ within the gauge orbits.
Thus we have

∆g[Φ] = Det

(
δga

δχb

)
. (7.29)

With this preparation we can introduce a clever factor 1 into the naive path integral (7.22):

⟨TA(x1)B(x2) . . .⟩ = N

∫
DΦDU∆g[Φ]δ[g

a[ΦU ]− ca](A(x1)B(x2) . . .) exp(iS[Φ]) (7.30)

Substituting herein Φ by ΦU
−1 yields

⟨TA(x1)B(x2) . . .⟩ = N

∫
DΦDU(A(x1)B(x2) . . .)∆g[Φ]δ[g

i[Φ]− ci] exp(iS[Φ]), (7.31)

where we have used the invariance of the path-integral measure, the action functional S[Φ] and
∆g (see (7.26)) as well as the local operators A,B, . . .. We have thus to prove the invariance of
the path-integral measure under local gauge transformations. It is sufficient that this holds true
for infinitesimal transformations:

Det

[
δ

δΦ2
(Φ1 + δΦ1)

]
= Det

[
δ2ω(x1 − x2)(δ

ab + gfabcδχb)

× (δik − igδχa(T a)ik)(δ
i
k + igδχa(T a)ik)

]

= 1 +O(δχ2)

(7.32)

Here we have made use of the behaviour of the various fields under infinitesimal local gauge
transformations cf. (7.16) for the ψ and (7.18) for the Aµ-fields.
Now in (7.31) the infinite factor coming from the integration over the gauge group is explicit and
can be lumped into the overall normalisation constant N . Further by construction the expression
is independent of the arbitrary function ci, so that we can functionally integrate over it with
an arbitrary weight giving rise for another field-independent factor which again can be absorbed
into N . For the weight factor we use an exponential, which for linear gauge fixing functions gi

is a Gaussian:

⟨TA(x1)B(x2) . . .⟩ = N ′
∫
DΦ∆g[Φ][A(x1)B(x2) . . .] exp(iS[Φ])×

× exp

(
− i

2ξ

{
gi1[Φ]g

i
1[Φ]

}
1

)
.

(7.33)

To obtain perturbatively calculable expressions we have to express the Faddeev-Popov determi-
nant ∆g (7.29) with help of scalar Grassmann fields, the so called Faddeev-Popov ghosts. They
have to be Grassmannian since the determinant appears in the numerator of the path integral.

⟨TA(x1)B(x2) . . .⟩ = N ′
∫
DΦDη∗Dη[A(x1)B(x2) . . .] exp(iS[Φ])×

× exp

(
− i

2ξ

{
gi1[Φ]g

i
1[Φ]

}
1
− i

{
η∗i1

δgi[Φχ]

δχa2

∣∣∣∣
χ=0

ηa2

}

12

)
.

(7.34)

It is clear that the expression with the Faddeev-Popov ghosts is local since gi is local by assump-
tion, and thus the functional derivative is ∝ δ(2ω)(x1 − x2).
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7.2 · Quantisation of nonabelian gauge field theories

(7.34) tells us that we can evaluate expectation values of time ordered products of gauge inde-
pendent local operators with the usual Feynman-Kac formula when we use the effective action

Seff[Φ, η
∗, η] = S[Φ]− 1

2ξ

{
gi1[Φ]g

i
1[Φ]

}
1
−
{
η∗i1 Mia

12η
a
2

}
12

with Mia
12 =

δgi1[Φ
χ]

δχa2

∣∣∣∣
χ=0

(7.35)

As an example we choose the covariant ’t Hooft gauge

gi = ∂µA
iµ. (7.36)

Then we have

Mia
12 =

δgi[x1, A
χ]

δχa(x2)
=

∫
d4x3

δgi[x1, A]

δAbν(x3)

δAχbν (x3)

δχa(x2)

=

∫
d4x3∂x1,νδ

(4)(x1 − x3)δ
ib

×
[
∂νx3δ

(4)(x3 − x2)δ
ba + gf bcaAcν(x3)δ

(4)(x3 − x2)
]

= □1δ
(4)(x1 − x2) + gf cabAcν(x2)∂1νδ(x1 − x2).

(7.37)

Thus we have
Sgh =

{
−η∗i1 Mia

12η
a
2

}
12

=
{
(∂µη

∗
1)D

µ
Aη1
}
1
, (7.38)

where
(DAµη)

a = ∂µη
a + igT caA bA

cµηb = ∂µη
a + gf cabAcµηb (7.39)

is the covariant derivative, which applies to a matter field that transforms under the adjoint
representation of the local gauge group.

7.2.1 BRST-Invariance

Although in principle it is possible to use local gauge invariance of the original action S[Φ] to
derive the Ward-Takahashi-identities for nonabelian gauge theories as we have done in QED it is
much more convenient to use a symmetry of the effective gauge-fixed action Seff[Φ, η

∗, η], which
is named after Becchi, Rouet, Stora and Tyutin the BRST-symmetry. To simplify the analysis
we use the fact that we can write

exp[i
{
gi1g

i
1

}
1
] = N

∫
Dh exp

[
iξ

2

{
hi1h

i
1

}
1
+ i
{
gi1h

i
1

}]
. (7.40)

Herein the hi1 are auxiliary fields, often named after their inventors Nakanishi-Lautrup fields.
With help of these fields we write

S′
eff[Φ, η

∗, η, h] = S[Φ] +
ξ

2

{
hi1h

i
1

}
1
+
{
gi1h

i
1

}
−
{
η∗i1

δgi[Φχ]

δχa2

∣∣∣∣
χ=0

ηa2

}

12

(7.41)
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For the following we note that the Nakanishi-Lautrup fields hi are usual commuting c-number
fields. The BRST transformations read

δΘψ(x) = −igΘηa(x)T aψ(x),

δΘA
a
µ(x) = Θ[∂µη

a(x) + gfabcAc(x)ηb(x)] = Dµη
a

δΘη
a(x) =

g

2
Θfabcηb(x)ηc(x)

δΘη
∗a(x) = Θha

δΘh
a = 0.

(7.42)

The last two lines show that the introduction of the Nakanishi-Lautrup fields is customary,
because they make the BRST transformation as a whole homogeneous. We also used the fact
that ηa is a field transforming under the adjoint representation of the gauge group:

Dµη
a = ∂µη

a + gf cabAcµηb, (Tad)
ca
b = −if cab. (7.43)

Since ηa are Grassmann-valued fields the parameter Θ must also be Grassmannian in order to
keep the bosonic or fermionic nature of the fields consistent with the BRST-transformed fields.
In the following we define for any local expression F1[Ξ] of the fields Ξ ∈ {ψ,Aaµ, ηaη∗i, hi}:

δΘF1[Ξ] = ΘδBRSTF1[Ξ]. (7.44)

The most important feature of BRST-transformations is their nil-potency, i.e. for any expression
F1[Ξ] we have

δ2BRSTF1[Ξ] = 0. (7.45)

To prove this we start with the elementary fields Ξ themselves. From (7.42) we find

δΘδBRSTψ = −igηaT a(−ig)ΘηbT bψ +
g

2
Θfabcηb(−ig)ηcT aψ. (7.46)

Since Θ is a Grassmannian and the same is true for the Spin-1/2-Dirac fields ψ we have a change
of sign by bringing δΘ to the left in the first expression. In the first expression we can also
substitute T aT b by 1/2

[
T a, T b

]
= i/2fabcT c because of the Grassmannian nature of the ghost

fields ηa. Thus we have

δΘδBRSTψ =
ig2

2
fabcΘ(ηaηbT c − ηbηcT a)ψ = 0. (7.47)

The last operation was to interchange the summation indices a and c in the last expression and
using the total antisymmetry of the structure constants fabc. This proves (7.45) for F1 = ψ1.
For the gauge fields we find

δΘδBRSTA
a
µ =

g

2
Θfabc∂µ(η

bηc)+

+ gfabcΘ(∂µη
c + gf cb

′c′Ac
′
ηb

′
)ηb+

+ gfabcAcΘ
g

2
f bc

′a′ηc
′
ηa

′
.

(7.48)

Since the fields Aaµ are bosonic Θ commutes with them and we can bring Θ without changes of
signs to the left of the whole expression. Further we sort with respect to g and g2:

δΘδBRSTA
a
µ = Θ

g

2
fabc

[
(∂µη

b)ηc + ηb∂µη
c + 2(∂µη

c)ηb
]
+

+Θ
g2

2
fabc

[
f cb

′c′Ac
′
ηb

′
ηb +

1

2
f bc

′a′Acηc
′
ηa

′
] (7.49)
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The term ∝ g vanishes identically because we have for the second term

fabcηb∂µη
c = −fabc(∂µηc)ηb = +fabc(∂µη

b)ηc, (7.50)

where we have used that the ηa are anti-commuting fields and the total anti-symmetry of the
fabc. For the third term we use also the anti-symmetry of the structure constants to obtain 0
for the first line in (7.49). The second line ∝ g2 is a little bit more involved, but using again
the anti-symmetry of the structure constants the anti-commuting of the ghost fields we find by
renaming the summation indices:

second line of (7.49) = −Θ
g2

2
Ac

′
ηb

′
ηb(f cb

′c′f bca + f cc
′bf b

′ca + f cbb
′
f c

′ca) = 0, (7.51)

which latter equation follows from the definition of the structure constants (7.8) and the Jacobi
identity [[

T a, T b
]
, T c
]
+
[[
T b, T c

]
, T a

]
+
[
[T c, T a], T b

]
= 0, (7.52)

which holds true for any three operators T a, T b and T c:

f cb
′c′f bca + f cc

′bf b
′ca + f cbb

′
f c

′ca = 0. (7.53)

The next identity is for the ghost field itself:

δΘδBRSTη
a =

g2

4
fabc(Θf bb

′c′ηb
′
ηc

′
ηc + f cb

′c′ηbΘηb
′
ηc

′
=

= Θ
g2

2
fabcf bb

′c′(ηb
′
ηc

′
ηc − ηc

′
ηcηb

′
) = 0,

(7.54)

where we have used again the Grassmannian nature of the ghost fields and the anti-symmetry
of the structure constants as well as the fact that also the parameter Θ is anti-commuting with
the ghost fields.
From (7.42) we immediately find

δΘδBRSTη
∗a = δΘh

a = 0,

δΘδBRSTh
i = δΘ0 = 0.

(7.55)

Thus (7.45) holds true for all linear forms of fields. Since we can write derivatives as limits of
fields it also holds true if the linear forms contain derivatives of fields.
Now the rest of the proof follows by induction: Suppose we have proven (7.45) for a monomial
F

(n)
1 [Ξ] with n fields. Then for a monomial with (n+ 1)-fields we can write

F
(n+1)
1 [Ξ] = Ξj1F

(n)
1 [Ξ]. (7.56)

For this we have

δΘF
(n+1)
1 [Ξ] = (ΘδBRSTΞ

j
1)F

(n)
1 [Ξ] + Ξj1ΘδBRSTF

(n)
1 [Ξ] =

= Θ{(δBRSTΞ
k
1)F

(n)
1 [Ξ] + σ(Ξk1)Ξ

k
1δBRSTF

(n)
1 [Ξ]},

(7.57)

where we have introduced the sign of the field Ξk1 which is 1 for commuting and −1 for anti-
commuting (i.e., Grassmannian valued) fields. From this we find

δΘδBRSTF
(n+1)
1 [Ξ] = δBRSTΞ

k
1 ·ΘδBRSTF

(n)
1 [Ξ] + σ(Ξk1)ΘδBRSTΞ

k
1 · δBRSTF

(n)
1 [Ξ] =

= ΘδBRSTΞ
k
1 · δBRSTF

(n)
1 [Ξ][−σ(Ξk1) + σ(Ξk1)] = 0.

(7.58)
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In the step to the last line we have used the fact that

σ(δBRSTΞ
k
1) = −σ(Ξk1). (7.59)

This proves for all polynomials of fields and their derivatives that indeed the BRST-transforma-
tion is nil-potent, i.e., Eq. (7.45).
To show that the action (7.41) is invariant under BRST transformations first we realise that it
is a usual local gauge transformation with infinitesimal parameters

δχa(x) = Θηa(x) (7.60)

for the fields Φ ∈ {Aaµ, ψ}, so that the classical action S[Φ] is indeed BRST-invariant.
To prove that also the rest of the action, i.e., Sgh + SNL with

Sgh = −
{
η∗i1

δgi1[Φ
χ]

δχa2

∣∣∣∣
χa=0

ηa2

}

12

,

SNL =
ξ

2

{
hi1h

i
1

}
1
+
{
hi1g

i
1[Φ]

}
1

(7.61)

is gauge invariant, we show that it can be written as δBRSTΨ[Ξ].
To this end we calculate

δΘg
i
1[Φ] =

{
δgi1[Φ

χ]

δχa2

∣∣∣∣
χ=0

Θηa2

}

2

= Θ
{
Mia

12η
a
2

}
2
, (7.62)

where we firstly have used that for the original fields Φ the BRST transformation is a gauge
transformation with local infinitesimal gauge parameters (7.60) and secondly that gi1 and χa2 are
both c-number valued, so that there is no change of sign when bringing Θ to the left. Comparing
(7.62) with the upper line of (7.61) we find

Sgh = −
{
η∗i1 δBRSTg

i
1[Φ]

}
1
= +δBRST

{
η∗i1 g

i
1[Φ]

}
1
−
{
hi1g

i
1[Φ]

}
1

(7.63)

and thus
Sgh + SNL = δBRST

{
η∗i1

(
gi1(Φ) +

ξ

2
hi1

)}

1

(7.64)

Thus from the above proven nil-potency of the BRST-transformation we find also

δΘ(Sgh + SNL) = 0, (7.65)

i.e., the invariance of the modified action (7.41).

7.2.2 Gauge independence of the S-matrix

Now we want to show that we can use the above elaborated formalism to calculate S-matrix
elements in the usual way, i.e., by defining the generating functional for Green’s functions by2

Z[Jk] = N

∫
DΞexp

[
iS′

eff[Ξ] + i
{
Jk1Ξ

k
1

}
1

]
(7.66)

2From now on we understand always functional derivatives to the left (right) with respect to the auxiliary
sources (the mean fields ξk1 =

〈
Ξk

1

〉
).
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and then making use of the LSZ reduction formalism. It is important that we have introduced
sources for all fields, including the Faddeev-Popov ghost fields η∗i and ηa and the Nakanishi-
Lautrup fields hi.
To show that our formalism leads to a physically sensible definition of an S-matrix, at least in
the sense of perturbative quantum field theory, we have to show three features

1. The independence of the regularised S-matrix from the choice of gauge, i.e., its indepen-
dence from the choice of a gauge fixing functional gi[Φ].

2. The unitarity of the regularised S-matrix.

3. Existence of a gauge for which the theory is renormalisable in the sense of the BPHZ-
formalism.

All points together ensure that the unitary S-matrix is renormalisable independently of the choice
of gauge and the renormalised physical quantities are thus also independent from the choice of
gauge.
To prove the gauge-independence of the S matrix we need a special Ward-Takahashi identity
which was firstly derived by Slavnov and Taylor. Since η∗i are Grassmann fields we have

∫
DΞη∗i1 exp[iSeff′ [Ξ] + i

{
J1kΞ

k
1

}
1
] = 0. (7.67)

To see this we expand the part of the exponential containing η∗j . Then all terms with η∗i1 are
cancelled by the anticommuting character of this field and because for Grassmann numbers the
integration rule ∫

dcjck = δjk (7.68)

holds true by definition.
Now we substitute the BRST-transformed fields in (7.67) which does not change the value of the
integral. Using the BRST-invariance of Seff′ and the BRST transformation for η∗ we find

∫
DΞ

(
hi1 − i

{
Jk2 η

∗i
1 δBRSTΞ

k
2

}
2

)
exp[iSeff′ [Ξ] + i

{
Jk1Ξ

k
1

}
1
] = 0. (7.69)

Again we have made use of the fact that δBRST is anti-commuting and that σ(Jk) = σ(Ξk).
Now we look what happens if we infinitesimally distort the gauge fixing functionals gi1[Φ] by
∆gi1[Φ]. We look now for the effect of this change of gauge on the generating functional (7.66).
First we use (7.64) to obtain

∆S′
eff[Ξ] = ∆(Sgh + SNL) = δBRST

{
η∗i1 ∆gi1[Ξ]

}
1
, (7.70)

which leads to first order in ∆g to

∆Z = iN

∫
DΞδBRST

{
η∗i1 ∆gi1[Ξ]

}
1
exp

[
iS′

eff[Ξ] + i
{
Jk2Ξ

k
2

}
2

]
=

= iN

∫
DΞ

{
hi1∆g

i
1 − η∗i1

{
δ∆gi1[ξ]

δΞk2
δBRSTΞ

k
2

}

2

}

1

exp
[
iS′

eff[Ξ] + i
{
Jk2Ξ

k
2

}
2

] (7.71)

247



Chapter 7 · Nonabelian Gauge fields

The second term can be written with help of the Slavnov-Taylor identity (7.69):
∫

DΞ

{
η∗i1

{
δ∆gi1[ξ]

δΞk2
δBRSTΞ

k
2

}

2

}

1

exp
[
iS′

eff[Ξ] + i
{
Jk2Ξ

k
2

}
2

]
=

= ∆gi1

[
1

i

δ

δJ

] ∫
DΞhi1 exp

[
iS′

eff[Ξ] + i
{
Jk2Ξ

k
2

}
2

]
=

= i∆gi1

[
1

i

δ

δJ

] ∫
DΞ

{
Jk2 η

∗i
1 δBRSTΞk

2

}
2
exp

[
iS′

eff[Ξ] + i
{
Jk2Ξ

k
2

}
2

]
(7.72)

Further we note that since ∆gi1 is by assumption a local functional

∆gi1

[
1

i

δ

δJ

]
(iJ2) exp

[
i
{
Jk2Ξ

k
2

}
2

]
= δ2ω(x2 − x1)

∂gi1[Ξ]

∂Ξk
exp

[
i
{
Jk2Ξ

k
2

}
2

]
(7.73)

Plugging (7.72) and (7.73) into (7.71) yields

∆Z = iN

∫
DΞ

{
iJk1∆g

i
1[Φ]η

∗i
1 δBRSTΞ

k
1

}
exp

[
iS′

eff[Ξ] + i
{
Jk2Ξ

k
2

}
2

]
(7.74)

From this we find due to the infinitesimal character of ∆g:

Zg+∆g = N

∫
DΞexp

{
iS′

eff[Ξ] + i
{
Jk1

(
Ξk1 + i∆gi1[Φ]η

∗i
1 δBRSTΞ

k
1

)}
1

}
(7.75)

The equivalence theorem, proved in section 4.6.2, shows that although the Green’s functions
are of course gauge dependent the S-matrix calculated with help of the functional (7.66) is
gauge-independent.
The proof for the unitarity of the regularised S-matrix can be taken from the treatment of QED
in section 6.3. There are only a few modifications due to the nonabelian group structure. So we
can come directly to the renormalisability proof.

7.3 Renormalisability of nonabelian gauge theories in BFG

In this section we shall prove the renormalisability of nonabelian gauge theories for the back-
ground field gauge. This proof goes exactly along the lines of arguments used for abelian gauge
theories (here given in Sect. 6.6.3).

7.3.1 The symmetry properties in the background field gauge

We look at a gauge theory which is defined by the classical Lagrangian

Lcl = −1

4
F aµνF

aµν + ψ̄(i /D −m)ψ. (7.76)

All the ingredients are defined as above by

Dµψ = (∂µ + igT aAaµ)ψ, F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν . (7.77)

The Lagrangian Lcl was constructed such that it is invariant under a local gauge transformation

δψ = −igδχaT aψ, δψ̄ = igδχaψ̄T a, δAaµ = (Dµδχ)
a = ∂µδχ

a + gfabcAcµδχ
b. (7.78)
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The application of a covariant derivative to an infinitesimal gauge transformation parameter
δχ is meant to belong to the adjoint representation. Note that the generators for the adjoint
representation are given by

(T aA)
b
c = −ifabc (7.79)

As in the abelian case we now choose the background-field gauge for quantisation and look at
the classical action shifted by a background gauge field, i.e., S[Aaµ + aaµ, ψ̄, ψ], where aaµ is the
background field and Aaµ is the gauge field, over which we will integrate in the path integral, i.e.,
the “quantum gauge field”.
Before we can integrate over the quantum gauge field we need to fix the gauge in the way
explained above. Here the trick is to use

ga[A, x] = (D̃µAµ)a := ∂µA
aµ + gfabcacµAbµ (7.80)

as the gauge fixing functional. Note that D̃µ denotes the background-field covariant derivative,
here acting on the quantum gauge field, corresponding to the adjoint representation. Then we
have to use (7.35) to calculate the effective action which can be plugged into the path integral with
the naive measure. To calculate M we have to apply the “true gauge transformation”, keeping
the action S[Aaµ + aaµ, ψ, ψ̄] invariant, which are given by (7.78), but with the last equation
substituted by

δAaµ = ∂µδχ
a + gfabc(Acµ + acµ)δχ

b = [D̃µδχ]
a + gfabcAcµδχ

b. (7.81)

Due to (7.61) we find from (7.81)
∫

d4xLgh = −
{
η∗a1 Mab

12η
b
2

}
12

=
{
(D̃µη

∗)a1
[
(D̃µη)

a
1 + gfabcAc1µη

b
1

]}
1
. (7.82)

Here we have used the fact that we can handle the D̃µ, which acts on the Faddeev-Popov ghost
fields in the same way as on Aµ, c.f. (7.80), like a partial derivative with respect to partial
integrations, i.e., for instance

{
η∗a1 (D̃µD̃µ)abηb1

}
1
= −

{
(D̃µη

∗)a1(D̃µη)
a
1

}
1
. (7.83)

The great feature of the choice (7.80) for the gauge fixing functional is that the effective back-
ground field gauge (BFG) classical action, given due to (7.35) by

Sbfg[A
a
µ, ψ, ψ̄, η, η

∗; aaµ] = Scl[A
a
µ + aaµ, ψ, ψ̄]−

1

2ξ
{ga[A, x]ga[A, x]}x + Sgh[A

a
µ, η, η

∗; aaµ], (7.84)

is invariant under the following background field gauge transformation:

δψ = −igδχaT aψ, δψ̄ = igδχaψ̄T a,

δaaµ = [D̃µδχ]
a = ∂µδχ

a + gfabcacµδχ
b,

δAaµ = gfabcAcµδχ
b,

δη∗a = gfabcη∗cδχb,

δηa = gfabcηcδχb.

(7.85)

While the background field transforms like a local gauge field, the quantum gauge field transforms
just under the adjoint representation. The same holds true for the Faddeev-Popov ghost fields.
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The invariance of the action (7.84) is easy to see: the classical action is invariant, since there
the gauge field always appears as Aaµ+ aaµ, and this sum transforms due to a normal local gauge
transformation. Indeed, (7.85) tells us that

δ(Aaµ + aaµ) = ∂µδχ
a + gfabc(Aaµ + aaµ)δχ

b. (7.86)

Since also the matter field transforms under its local fundamental representation, thus Scl is
invariant under (7.85). Further, since the gauge fixing functional (7.80) is the background-field
covariant derivative of the quantum gauge field, transforming according to the homogeneous
adjoint representation in (7.85), it transforms according to the adjoint representation. Thus
gaga is an invariant under (7.85), since the background field appearing in D̃µ transforms as a
local gauge field. The same holds true for the ghost term. If one likes to check this explicitely,
one has to use the Jacobi identity (7.53).
Now the generating functional for quantum field expectation values is given by

Z[Jk; a
a
µ] =

∫
DΞk exp

[
iSbfg[Ξ

k; aaµ] + i
{
J1kΞ

k
1

}
1

]
. (7.87)

Since the action is invariant under the transformations (7.85) we can show in the usual manner
that Z is invariant under the contragredient transformations for the currents, i.e.,

δJψ = igδχaT aJψ, δJψ∗ = −igδχaT aJψ∗ , δJA,η∗,η = gfabcJcA,η∗,ηδχ
b (7.88)

and the local gauge transformation for the background field, already given in (7.85). Of course,
introducing the transformed background field aaµ and the transformed currents into (7.87) and
using a substitution of the quantum fields to the transformed values given by (7.88) shows, that
Z is indeed an invariant:

Z[Jk + δJk; a
a
µ + δaaµ] = Z[Jk; a

a
µ]. (7.89)

Of course, the same holds true for

W [Jk; a
a
µ] = −i lnZ[Jk; a

a
µ]. (7.90)

Finally we obtain the BFG generating functional

Γbfg[
〈
Ξk
〉
; aaµ] =W [Jk; a

a
µ]−

{
J1k

〈
Ξk1

〉}
1

with
〈
Ξk1

〉
=
δW [Jk; a

a
µ]

δJ1k
. (7.91)

From the latter definition of the mean quantum fields
〈
Ξk
〉
, it follows that they transform

contragrediently to the external currents Jk, i.e., like to the quantum fields given by (7.85).
Finally, as in Sect. 6.6 we can show that the usual effective action, generating the 1PI truncated
vertex functions, is given by

Γ[aaµ, ψ, ψ̄, η, η
∗] = Γbfg[

〈
Ξk
〉
; aaµ]

∣∣∣⟨Aa
µ⟩=0

. (7.92)

Since Γbfg is invariant under the transformation (7.85) and especially the
〈
Aaµ
〉

transforms ho-
mogeneously, Γ[aaµ, ψ, ψ̄, η, η∗] is invariant under local gauge transformations, where the matter
fields ψ and ψ̄ transform under the fundamental representation, the Faddeev-Popov ghosts like
matter fields under the adjoint representation, and the gauge field aaµ as a local gauge field.
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As we shall see in a moment, the background field gauge is particularly nice to prove manifest
renormalisability since Γ obeys the naive Ward-Takahashi identities (WTIs) like the abelian gauge
field theories. The WTIs follow directly from the local gauge invariance of the functional (7.92).
Now we shall be more specific with the source term, concerning the left- and right derivatives
for fermions. We write the source term as

JkΞ
k = jaµA

aµ + k̄ψa1 + ψ̄a1ka + l∗aη
a + η∗ala. (7.93)

Now we write the invariance of (7.92) under the infinitesimal local gauge transformation (7.85)
explicitly in the following form:

{
δΓ

δabµ(x)
(D̃µδχ(x))

b − ig

(
δΓ

δψ(x)

)

R

T bψ1(x)δχ
b(x) + igψ̄(x)T b

(
δΓ

δψ̄(x)

)

L

δχ(x)b

+ gfabc
(

δΓ

δηa(x)

)

R

ηc(x)δχb(x) + gfabcη∗c(x)
(

δΓ

δη∗a(x)

)

L

δχb(x)

}

x

= 0.

(7.94)

Since this holds true for any δχa(x), after an integration by parts, we find the local version of
the WTI:

(
D̃µ

δΓ

δaµ(x)

)b
+ ig

[(
δΓ

δψ(x)

)

R

T bψ(x)− ψ̄(x)T b
(

δΓ

δψ(x)

)

R

]

− gfabc
[(

δΓ

δηa(x)

)

R

ηc(x) + η∗c(x)
(

δΓ

δη∗a(x)

)

L

]
= 0.

(7.95)

These are simple, QED-like WTIs for the nonabelian gauge theory! The only difference to the
abelian case is that here the Faddeev Popov ghosts must be treated like a usual matter field,
which transforms under the adjoint representation of the gauge group, because it is an interacting
field. As we shall see, it is important to compensate for contributions of unphysical parts of the
quantum gauge fields within loops, leading to vertex functions fulfilling all WTIs, derivable from
(7.95) order by order in ℏ.

7.3.2 The BFG Feynman rules

The effective Lagrangian in the background field gauge is given by (7.84). We get practicable
Feynman rules for calculating the 1PI vertex corrections by putting all pieces containing the
background gauge field aaµ to the vertices. We can omit all contributions with only one quantum-
field leg, because these vertices can never appear in 1PI diagrams.
The free propagator for the gauge field is thus given by that of the quantum field Aaµ. Of course,
only this one exists, because we fixed the gauge only for the quantum field. It is identical to the
Landau-’t Hooft gauge propagator3:

∆ab
µν(p) = −δab 1

p2

[
gµν − pµpν

p2
(1− ξ)

]
. (7.96)

The ghost propagator is that of a set of massless scalar fields, diagonal in the adjoint represen-
tation of the gauge group:

∆̃ab(p) =
δab

p2
. (7.97)

3The appropriate i0+ expression in the denominators is implicitly understood.
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The propagator for the Dirac matter field is also the usual one:

Gab(p) = δab
/p+m

p2 −m2
. (7.98)

The vertices must be distinguished for those legs standing for a quantum gauge field and a
background field. Thus it is more convenient to give them directly in a diagrammatic form.
We start with the pure quantum gauge-field vertices. These are the same as in the usual Landau-
’t Hooft gauge:
The four-gluon vertex is given by4

a, µ

b, ν

d, σ

c, ρ

= − ig2

4!
[ fxabfxcd(gµρgνσ − gµσgνρ) (7.99)

+fxadfxcb(gνσgρµ − gνµgρσ) (7.100)

+fxdbfxca(gσρgµν − gµσgνρ)] (7.101)

The three-gluon vertex reads

b, ν c, σ

a, µ

p

q r

=
g

3!
fabc[(pν − rν)gµρ + (qρ − pρ)gνµ + (rµ − qµ)gρν ] (7.102)

The vertices containing a background gauge field are

a

b, ν

a, µ

d, σ

c, ρ

= − ig2

3!
[ fxabfxcd(gµρgνσ − gµσgνρ) (7.103)

+fxadfxcb(gνσgρµ − gνµgρσ) (7.104)

+fxdbfxca(gσρgµν − gµσgνρ)] (7.105)

a

b, ν

qr

a, µ

p

c, ρ

=
g

2!
fabc[(pν − rν − qν/ξ)gµρ

+ (rµ − qµ)gνρ

+ (qρ − pρ + rρ/ξ)gµν ]

(7.106)

4In the Feynman diagrams all gluon momenta are oriented to flow into the vertex.
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a a

b, ν

a, µ c, ρ

d, σ

= − ig2

4
[ fxabfxcd(gµρgνσ − gµσgνρ) (7.107)

+fxadfxcb(gνσgρµ − gνµgρσ) (7.108)

+fxdbfxcd(gσρgµν − gµσgνρ)] (7.109)

+fxabfxcd(gµνgρσ − gµσgνρ)/ξ (7.110)

The vertices including ghosts are

c, µ

qp

ba

= gfabcpµ (7.111)

a

qp

b

c, µ

a

= gfabc(pµ + qµ) (7.112)

a

ba

d, ν

c, µ
= −ig2fxacfxdbgµν (7.113)

a a

ba

c, µ d, ν
= −ig2(fxacfxdb + fxadfxcb)gµν (7.114)
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c, µ

ji

=

a

ji

c, µ

= −igT cijγµ (7.115)

As an example we calculate the one-loop approximation for the gauge-boson self-energy. We
neglect the matter fields, i.e., doing pure Yang-Mills theory. We use dimensional regularisation.
In this regularisation all tadpole diagrams with massless propagators in the loop are vanishing.
Thus in the gauge-field and ghost sector of the model we are left with only two diagrams:

iΠaa
′

µµ′(p) = a a

p p

a, µ a′, µ′

q, b, ν

p+ q, c, ρ

+ a a

p p

a, µ a′, µ′

q, b, ν

p+ q, c, ρ

(7.116)

The calculation is most easy in the Feynman gauge, ξ = 1. Then the first graph leads to the
contribution to the gauge-field polarisation tensor

iΠ
(1)aa′

µν′ (p) = a a

p p

a, µ a′, µ′

q, b, ν

p+ q, c, ρ

= −g
2

2
µ2ϵ
∫

ddq

(2π)d
[−2pνgµρ + (2q + p)µgνρ + 2pρgµν ]

× [2pνδρµ′ − (2q + p)µ′g
νρ − 2pρδ

ν
µ′ ]

CAδ
aa′

p2(p+ q)2
.

(7.117)

Here we have used
fabcfa

′bc = CAδ
aa′ , CA = N for SU(N). (7.118)

Multiplying out the numerator and, after Feynman parameterising, using the integrals in Ap-
pendix C one finds

Π
(1)aa′

µµ′ (p) =
10CAg

2

48π2ϵ
(p2gµµ

′ − pµpµ
′
) + finite. (7.119)

The ghost-loop diagram in (7.116) evaluates to

iΠ
(2)aa′

µµ′ (p) = a a

p p

a, µ a′, µ′

q, b, ν

p+ q, c, ρ

= −g2CAδaa
′
µ2ϵ
∫

ddq

(2π)

(2q + p)µ(2q + p)ν
q2(q + p)2

(7.120)
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with the final result

Π
(2)aa′

µµ′ (p) =
CAg

2

48π2ϵ
(p2gµµ

′ − pµpµ
′
) + finite. (7.121)

Note that (7.120) contains an additional − sign from the “fermion-loop rule”, which applies here
for the “scalar” Faddeev-Popov ghost loop, because the corresponding fields in the path integral
are Grassmann-number valued.
Last but not least there is a contribution from the fermions. For each fermion we find

iΠ
(3)aa′

µµ′ (p) = a a

p p

a, µ a′, µ′

q

p+ q

= −g
2δaa

′

2
µ2ϵ
∫

dd

(2π)d
tr
γµ(/q + /p+m)γµ

′
(/q +m)

(q2 −m2)[(q + p)2 −m2]
,

(7.122)

which leads after the standard evaluation techniques to

Π
(3)aa′

µµ′ (p) = − 2g2

48π2ϵ
(p2gµµ′ − pµpµ′) + finite. (7.123)

Since kinetic part of the original gauge-invariant action for the background-gauge field reads

Sbfg,kin = −
∫

d4x
1

2
(∂µA

a
ν)(∂

µAaν − ∂νAaµ +

∫
d4x

1

2
Aaν(□A

a
ν − ∂ν∂µA

aµ) (7.124)

and thus the operator between the field binary form in the momentum space translates to
−(p2gµν − pµpν) the infinite part of the gauge-field polarisation contributions (7.119), (7.121)
and (7.123) leads in the minimal-subtraction renormalization scheme to the back-ground field
renormalization factor

Z
(MS)
A = 1 +

g2ℏ
48π2ϵ

(11CA − 2NF) = 1 +
αℏ
ϵ
, (7.125)

where we have reintroduced the factor ℏ to count the number of loops, which need in the next
section to calculate the β function of the renormalization group.

7.4 Asymptotic freedom

Now we use the techniques of the renormalization group as detailed for the simpler ϕ4 theory in
Subsection 5.11.2 to study the change of the renormalized coupling constant with the change of
the renormalization scale µ of dimensional regularization. The great simplifying feature of the
background-field gauge fixing worked out in the previous section is the local gauge invariance of
the effective action, which leads to a very simple relation between the background-gauge field
renormalization factor (7.125) and the coupling-constant renormalization factor, i.e., a Ward
identity as in the case of the Abelian gauge symmetry as discussed for QED in Section 6.6.3.
While in QED we have only a relation between the fermion-wave-function renormalization factor
and the coupling-constant renormalization factor, for the non-Abelian case we have also such a
relation between the gauge-field and the coupling-constant renormalization factors, because here
the gauge field is self-interacting. Since the background-field-gauge action is invariant under
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local gauge transformations the local part must be built with the bare field-strength tensor,
which reads

(F aµν)0 =
√
ZA[∂µA

a
ν − ∂νA

a
µ +

√
ZAZggf

abcAbµA
c
ν ]. (7.126)

This transforms correctly under the adjoint representation of the local gauge symmetry, if
√
ZAZg = 1 ⇒ Zg = Z

−1/2
A . (7.127)

Now we can evaluate the β function which determines the running of the coupling in the MS-
renormalization scheme. The bare coupling is related to the renormalized coupling by

g0 = Zgµ
ϵg, (7.128)

where we have introduced the renormalization scale of dimensional regularization. Because of
d = 4− 2ϵ the factor µϵ keeps g dimensionless for any space-time dimension d. Now we have

µ
∂

∂µ
g0 = 0 = µϵZg

(
ϵg + gµ

∂

∂µ
lnZg + µ

∂

∂µ
g

)
. (7.129)

Now
β = µ

∂g

∂µ
= −ϵg − gµ

∂

∂µ
lnZg. (7.130)

Further we have
µ
∂

∂µ
lnZg = µ

∂g

∂µ

∂

∂g
lnZg = β

∂

∂g
lnZg. (7.131)

Plugging this into (7.130) we find

β = −ϵg − gβ
∂

∂g
lnZg = −ϵg + g

2
β
∂

∂g
lnZA, (7.132)

where in the last step we have used the background-field gauge Ward identity (7.127). Plugging
in (7.125), solving for β we find to O(ℏ) in the physical limit ϵ→ 0

µ
∂g

∂µ
= β = −αg3. (7.133)

This differential equation is easily solved by separation of variables

g2 =
1

α ln(µ2/Λ2)
=

1

11CA−2NF
48π2 ln

(
µ2

Λ2

) . (7.134)

Here, Λ is an integration constant, defining the scale, where the renormalized coupling diverges.
The remarkable feature of this result is that g decreases with increasing renormalization scale, if
NF becomes not too large, so that 11CA−2NF > 0. This finding is known as asymptotic freedom,
i.e., the interaction becomes small at large momentum transfers in interactions [Pol73, GW73]
(Physics Nobel Prize 2004 to Gross, Wilczek and Politzer).
One should note that the running dimensionless coupling is now given as a function of the renor-
malization scale µ which as the dimension of energy. This feature is also known as “dimensional
transmutation”. One should note that the result (7.134) is independent of the fermion mass.
Thus the renormalization-scale dependence occurs also in the limit of massless fermions, i.e.,
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a scale-free theory after quantization becomes dependent on a dimensionful energy-momentum
scale.
These findings find their application in the Standard Model of elementary particles in quantum
chromodynamics (QCD), the theory describing the strong interaction. In this context (7.134) is
given in terms of the strong fine-structure constant

αs =
g2

4π
=

1

11CA−2NF
12π ln

(
µ2

Λ2

) . (7.135)

The simplification of this calculation due to the choice of the background-field gauge comes to
its full advantage also at higher loop orders [Abb81, Abb82, AGS83]. For a review of the most
recent results, also see [O+14].

7.5 Renormalisability of nonabelian gauge theories (BRST)

To show the renormalisability of nonabelian gauge theories in more general renormalisable gauges,
which must be chosen such that the gauge fixing term does not spoil the condition of superficial
renormalisability, i.e., it must be of mass dimension 4 or less, we have to use the Ward-Takahashi
identities due to BRST invariance. This is much more complicated than the simple argument of
the previous chapter, but the renormalisability of nonabelian gauge field theories is so important
that we show it twice.

7.5.1 The Ward-Takahashi identities

For sake of completeness we also admit scalar matter fields ϕi in addition to the fermionic matter
fields treated so far. Of course the ϕi build a representation of the gauge group. Then the most
general gauge fixing functions are given by

ga = ∂µAaµ + fai ϕ
i +

ξ

2
ha + ca, (7.136)

where ca are arbitrary external fields not contained in the set of matter, gauge and ghost fields
Ξk. The various parts of the Lagrangian now read

Lgauge = −1

4
F aµνF

aµν + Lmatter(ϕ, ψ,Dµϕ, /Dψ),

Lgf = ha(∂µAaµ + fai ϕ
i + wa) +

ξ

2
haha,

Lgh = η∗a[−∂µ(Dµ)η
a − igfai (T

b)ijϕ
jηb].

(7.137)

The matter part is given by substituting ∂µ in the free Lagrangian by Dµ, i.e.,

(Dµϕ)
j = ∂µϕ

j + igAaµ(T
a)j iϕ

i and analoguous for the ψj ,

Lmatter = (Dµϕ)
†(Dµϕ)− m2

1

2
ϕ†ϕ− λ

8
(ϕ†ϕ)2 + ψ̄(i /D −m2)ψ.

(7.138)

Note that the T a for the scalar and the fermionic fields may build different representations of
the gauge Lie algebra and that for the bosonic fields we need a gauge-invariant quartic self-
interaction due to renormalisability. Without restriction of generality we have assumed a semi-
simple nonabelian gauge group so that there occurs only one gauge coupling g.
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In the following we use a short-hand notation for the fields, namely (φI) = (Aaµ, ϕ
i, ψj) and

fI = (∂µ, f
a
i , 0).

Now we introduce not only external sources for the fields themselves but also for the composite
operators δBRSTΞ which are given by (7.42). The source term Lagrangian thus reads

Lsource = JΞ +KδBRSTΞ. (7.139)

Note that each J has the same Grassmann sign as its corresponding field whileK has the opposite
sign: σ(Jξ) = σ(ξ), σ(Kξ) = −σ(ξ). Since δBRSTh

a ≡ 0 we set Ka
h ≡ 0. Then the new generating

functional reads
Z[J,K] =

∫
DΞexp(iSgauge + iSgf + iSgh + iSsource) (7.140)

As we have shown in the last section all δBRSTΞ are BRST-invariant. Thus when doing a
substitution Ξ → Ξ + θδBRSTΞ only the JΞ-term gives a contribution. Using the invariance of
the path-integral measure DΞ under this transformation we obtain




∑

ξ∈Ξ
σ(ξ)Jξ

δZ

δKξ1





1

= 0. (7.141)

Here and in the following all derivatives with respect to Grassmann fields or currents are to be
read as left derivatives. Writing W [J,K] = −i ln(Z[J,K]) and using the Legendre transformation

Γ[Ξ,K] =W [J,K]− {J1Ξ1}1 with ξ1 =
δW

δJξ1
. (7.142)

It follows immediately
δΓ

δξ1
= −σ(ξ)Jξ,

δW

δKξ
=

δΓ

δKξ
. (7.143)

Since in (7.141) only first derivatives appear, which is the main advantage to introduce the
additional sources K, (7.141) holds true for W . Using (7.143) one finds the generalised Ward-
Takahashi-identities ∑

ξ

{
δΓ

δξ1

δΓ

δKξ1

}

1

= 0. (7.144)

A little bit more explicit this reads
{
δΓ

δφI

δΓ

δKφ1I
+
δΓ

δηa1

δΓ

δKa
η1

+
δΓ

δη∗a1
ha1

}

1

= 0 (7.145)

Now we use the fact that the Lagrangian (7.137) is quadratic in ha and linear in η∗ which leads to
a almost trivial dependence of the quantum action Γ on these fields. Using the invariance of the
path-integral measure with respect general shifts of the fields h and η∗ we get taking advantage
of (7.143)

δΓ

δha
= ∂µA

aµ + fai φ
i + wa + ξha (7.146)

δΓ

δη∗
= ∂µ

δΓ

δKa
Aµ

+ fai
δΓ

δKi
. (7.147)
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From (7.146) we find

Γ[φ, η∗, η, h;K] = Γ̃[φ, η∗, η;K] +

{
ha1∂µA

aµ
1 + ha1(f

a
i φ

i
1 + wa) +

ξ

2
ha1h

a
1

}

1

, (7.148)

where Γ̃ is independent of h. It is clear that (7.147) holds true for Γ̃. Now we define

K̃a
Aµ = Ka

Aµ − η∗a∂µ, K̃i = Ki − η∗afai . (7.149)

Then we find, using the chain rule for functional derivatives
(
δΓ̃

δη∗a

)

K̃=const

=

{
δKI1′

δη∗a1

δΓ̃

δKI1′

}

1

+
δΓ̃

δη∗a1
= −∂µ

δΓ̃

δKa
Aµ1

− fai
δΓ̃

δKi1
+

δΓ̃

δη∗a1
= 0. (7.150)

From now on we shall regard Γ̃ as a function of the fields and K̃. For sake of brevity we write
K̃η = Kη Then (7.150) tells us that Γ̃ is a functional of the fields φI , η and the external sources
K̃I and K̃η, i.e., that it is independent of η∗. (7.145) thus reads for Γ̃ in these new variables

{
δΓ̃

δφI1

δΓ̃

δK̃I1

+
δΓ̃

δηa1

δΓ̃

δK̃a
1

}

1

= 0. (7.151)

Now we define generalised “coordinates” and “momenta” due to

QA = (Aaµ, ϕ
i,Kψi ,Ka

η ), PA = (K̃aµ
A , K̃ϕi, ψi, η

a) (7.152)

and the antibracket
F ∗G =

{
δF

δQA1

δG

δPA1
+ (−1)[F ] δF

δPA1

δG

δQA1

}

1

, (7.153)

where F and G can be arbitrary Grassmann even or Grassmann odd functionals of the fields and
sources. Since the QA are even and PA are odd we have

G ∗ F = −(−1)[F ] [G]F ∗G (7.154)

F ∗ (G ∗H) + (−1)[F ]([G]+[H])G ∗ (H ∗ F ) + (−1)[H]([F ]+[G])H ∗ (F ∗G) = 0. (7.155)

where we define [F ] as 0 for odd and 1 for even functionals F .
From (7.154) we read off that we can write (7.151) as

Γ̃ ∗ Γ̃ = 0. (7.156)

7.6 Anomalies

So far we have investigated only symmetries which are not only valid in the classical field theory
but also “survive” quantisation, i.e., the quantum effective action is also symmetric under the
corresponding symmetry transformation on the fields, implying that the Noether theorem holds
true also in the quantum field theory, which implies the Ward-Takahashi identities (WTIs) for
both global and local symmetries. One formal way to derive this result is to use the path-integral
analysis of the generating functionals for Green’s functions Z[J ], connected Green’s functions
W [J ] and proper vertex functions Γ[φ], where J are some external sources and φ the mean fields
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at presence of these sources. To derive the WTIs, including Noether’s theorem for the expectation
values of the conserved charge corresponding to the Noether current associated with the theory,
we used the invariance of the path-integral measure under the typical symmetry transformations
acting on the fields. We did not pay too much attention to this point, but as it will become
clear in this Chapter, there are cases, where the path-integral measure is not invariant under
a transformation that is a symmetry of the classical field theory. Then the WTIs will contain
additional terms, leading to the conclusion that the Noether theorem does not hold, i.e., the
corresponding Noether charge is not conserved in this case and the symmetry is explictly broken
[Fuj80, Fuj79].
Originally anomalies have been discovered in perturbation theory [Adl69, BJ69] in the context
of a puzzle concerning the decay of neutral pions to two photons π0 → γγ in the context of the
otherwise very successful hypothesis of the “partially conserved axial vector current” (PCAC),
according to which the pions are approximately the Goldstone bosons of a chiral symmetry. The
prediction of the decay width Γπ0→γγ from a naive QED model, not making use of the PCAC
hypothesis, lead to a very good agreement with the experimental value [Ste49]. Including the
PCAC hypothesis, however leads to a decay width that is several orders of magnitude lower. The
resolution was the discovery of anomalies by Adler, Bell and Jackiw [Adl69, BJ69].
In this case the anomaly of the chiral UA(1) symmetry, which we will explain in a moment, comes
to the rescue of a physically important approximate symmetry, namely the chiral SU(2)L×SU(2)R
symmetry of the strong interactions, which is very important to build models for hadrons at
low energies (“chiral perturbation theory”). Nowadays it is well understood as an “accidental
symmetry” of Quantum Chromodynamics, which describes the interaction between quarks and
gluons. The approximate chiral symmetry is based on the fact that the light quarks (up, down
and to lesser accuracy also strange) have masses of the order of some MeV, which is much smaller
than typical hadronic scales of order 1GeV.
On the other hand, we have seen the vital importance of local gauge invariance for the consistency
of models with vector bosons. Thus, it is important to make sure that local gauge symmetries
are not broken by anomalies.

7.6.1 Motivation: The decay of neutral pions to photons (π0 → γγ)

We start with the “naive” evaluation of the decay width of the neutral pion decaying to two
photons. The most simple model is QED with protons as charged particles with the Lagrangian

L = ψ̄(i /D −M)ψ − 1

4
FµνF

µν , Dµ = ∂µ + ieAµ, Fµν = ∂µAν − ∂νAµ. (7.157)

This is an effective model, treating the proton as an elementary particle, which can be considered
a valid approximation for not too large reaction energies.
To guess a reliable pion coupling, it is sufficient to know that a pion is a pseudoscalar particle,
and thus the neutral pion, also treated as an elementary particle can be represented by a real
pseudoscalar field π. Then the most simple coupling, which is even renormalisable, of this field
to a Dirac spinor is of the Yukawa type to the pseudoscalar bilinear form,

LπN = igπψ̄γ5ψ. (7.158)
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To lowest order the matrix element for the decay π → γγ is given by the two triangle diagrams

iMπγγ = −(−λ)(−ie)2ϵµ(q1, λ1)ϵν(q2, λ2)iMµν

=

q1

π0p

q2q1

l

l + q1

π0p

q2

γ γ
l

l − q1 l + q2

µ ν µ ν

l − q2

(a) (b)

+

(7.159)

The Feynman rule for the interaction (7.158) of the pion with protons obviously reads

π0

= −λγ5 (7.160)

For diagram (a) in (7.159) we can write

iMµν
a = i3

∫
d4l

(2π)4
Tr

[
γµ(/l +M)γν(/l + /q2 +M)γ5(/l − /qq +M)

(l2 −M2)[(l + q2)2 −M2][(l − q1)2 −M2]

]

= 4Mq1ρq2σϵ
µνρσ

∫
d4l

(2π)4
1

(l −M2)[(l + q2)2 −M2][(l − q1)2 −M2]
.

(7.161)

The other diagram iMµν
b follows by interchanging µ and ν as well as q1 and q2, which finally

leads to the same result as (7.161). The integral is obviously convergent, and we can use the
standard formulae in Appendix C.2 directly for d = 2ω = 4, leading to

Mµν =
ϵµνρσq1ρq2σ
2π2M2

∫ 1

0
dx

∫ 1−x

0
dy

1

M2 −m2
πxy

∼=
m2

π≪M2

ϵµνρσq1ρq2σ
4π2M2

. (7.162)

Since obviously q1µMµν = q2νMµν = 0, as dictated by the WTIs of electromagnetic gauge invari-
ance and also expected from the conservation of the electric current, we can apply the usual rules
for the polarisation vectors ϵµ(q, λ) of the electromagnetic field, i.e.,

∑
λ=1,2 ϵ

∗
µ(q, λ)ϵν(q, λ) →

−gµν in (7.159). Thus the squared matrix element, summed over the polarisation states of the
final photons, finally results in

M2
π0→γγ

=
g2e4m4

π

32π4M2
=
g2α2

emm
4
π

2π2M2
. (7.163)
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The total decay width, including the appropriate symmetry factor 1/2 for the identical photons
in the final state is finally given by

Γ =
1

2

∫
dΩ

M2

32π2
|q⃗1|
m2
π

=
g2α2

emm
3
π

64π3M2
. (7.164)

Here we have used that for the decay of the pion at rest |q⃗1| = E1 = mπ/2.
On the other hand the pion is the Goldstone boson of the spontaneously broken chiral SU(2)L ×
SU(2)R symmetry of the strong interaction. Keeping the hadronic effective-field theory version
of this symmetry, the SU(2) groups are related to the isospin symmetry, which is the unbroken
subgroup of the chiral group which. The most simple realization of such a model the proton and
neutron form an isospin doublet.
The most simple realization of chiral symmetry is the socalled linear σ model, which we have
already discussed in Sect. 5.10. For our purpose here, we formulate it in the following way. In
the mesonic sector we introduce a scalar field σ ∈ R in addition to the three pseudo-scalar fields
π⃗ ∈ R3, representing the charged pions, π± = (π1 ± iπ2)/

√
2, and the neutral pion π0 = π3.

The chiral group is represented by SO(4) matrices acting on the fields ϕ = (π⃗, σ)T ∈ R4. To
make contact with the SU(2)L × SU(2)R representation, we introduce the C2×2-valued vector
Σ̂ = (12, ˆ⃗σ), where σ⃗ are the usual Pauli matrices. Then we write Φ̂ = σ1 + iˆ⃗σ · π⃗. Because of
Tr(Σ̂jΣ̂k) = 2δjk the Lagrangian (5.235) of the mesonic part of the linear σ model can be written
in the form

Lmes =
1

4
Tr[(∂µΦ̂

†)(∂µΦ̂) + m̃2Φ̂†Φ̂]− λ

32
[Tr Φ̂†Φ̂]2. (7.165)

The SO(4) transformations can now be represented with two independent transformations gL, gR ∈
SU(2),

Φ̂ → gLΦ̂g
†
R. (7.166)

The minimum of the potential is given by σ2 = v2 = 2m̃2/λ =: F 2
π , cf. (5.238), and to derive

Feynman rules, one has to shift the σ field by this vacuum expectation value, as detailed in Sect.
5.10. For our purposes it is more convenient to stay with the manifestly chirally symmetric form.
To describe the protons and neutrons we introduce the isospin doublet Ψ = (ψp, ψn) with the
Dirac-spinor fields for proton and neutron. We can split any Dirac spinor in two pieces, which are
the eigenvectors of the γ5 matrix with eigenvalues ±1 (defining the quantum number chirality),
called the right- and left-handed parts,

ΨR/L =
1

2
(1± γ5)Ψ, (7.167)

where the unit matrix and γ5 act in spinor space. Now we have

Ψ̄γµΨ = Ψ̄Lγ
µΨL + Ψ̄Rγ

µΨR, Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL, (7.168)

which tells us that the kinetic term Ψ̄i/∂Ψ is invariant under the chiral transformation

ΨL → gLΨL, ΨR → gRΨR (7.169)

with independent SU(2) matrices gL and gR acting in flavour space. The mass term Ψ̄MΨ, breaks
this symmetry explicitly. This term stays symmetric only under the SU(2) transformation with
gL = gR = gV . However, we can provide a mass to the nuclons via the spontaneous breaking
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of the symmetry, i.e., the presence of the vacuum expectation value FΠ of the σ field by writing
the Lagrangian for the nucleons as

Lnucl =
M

Fπ
(ψ̄LΦ̂ψR + ψ̄RΦ̂

†ψL). (7.170)

Indeed, because of (7.168), by shifting the σ field via σ = Fπ + σ̃, we find that (7.170) reads

Lnucl =
M

Fπ
[Ψ̄(Fπ + σ̃)Ψ + iΨ̄π⃗ · ˆ⃗σγ5Ψ]. (7.171)

For our purposes, we can introduce the explicit symmetry breaking of chiral symmetry, which
is necessary to provide the pions with their small but finite masses by simply introducing an
additional mass term

LχSB = −m
2
π

2
π⃗2. (7.172)

This is invariant under the unbroken “vector part” of the chiral symmetry, i.e., for gL = gR = gV ,
which just translates into an SO(3) rotation of the pion fields π⃗, but it obviously violates full
chiral symmetry since for gL ̸= gR the σ and pion fields get mixed under the chiral transformation.
We should, however, note that this say to introduce the explicit breaking of chiral symmetry is
not the way it is realized in nature, as a more detailed analysis of the chiral-symmetry pattern
of the underlying fundamental theory of the strong interaction, QCD, reveals. For details, see
the excellent review on chiral symmetry [Koc97].
The only point of this detour into chiral symmetry is that we can relate the coupling constant g
in (7.158) to measurable physical parameters, the pion-decay constant Fπ and the nucleon mass
M ,

g =
M

Fπ
. (7.173)

This follows from the identification of π in (7.158) with the component π3 of the pion field (which
represents the neutral pion) in (7.171) The constant Fπ can (at least in principle) measured by
comparing to the pion-nucleon cross section as following from the chiral model. The value
of the pion-decay constant is Fπ ≃ 92.21MeV. With αem ≃ 1/137.036, M ∼ 938MeV and
mπ0 ≃ 135MeV we find from (7.164) with (7.173)

Γπ0→γγ = 7.76 eV, (7.174)

which is in excellent agreement with the measured value of (7.73± 0.16) eV [O+14].

7.6.2 The PCAC hypothesis and trouble with π0 → γγ

To understand the problem concerning the decay π0 → γγ in connection with modern hadron
theory, we consider Quantum Chromodynamics (QCD) with two flavors, i.e., up- and down-

quarks. Writing ψ =

(
ψu
ψd

)
, where each of the Dirac fields also carries an SU(3)color index, to

which the non-Abelian gauge-boson field (gluon field) couples,

LQCD = −1

4
GaµνG

aµν + ψi/Dψ − ψM̂ψ, (7.175)

where we write Gaµ for the gluon gauge fields and Gaµν for the non-Abelian field-strength tensor,
and Dµ = ∂µ+igGaµT

a for the covariant derivative which are defined as in Sect. 7.1. The matrix
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M̂ = diag(mu,md) acts in flavor space. The light-quark masses have values of a few MeV and
thus are small compared to typical masses of hadrons of O(1 GeV) and thus can be considered
as a perturbation. In the limit of massless quarks, the QCD Lagrangian shows a chiral symmetry
with the symmetry group SU(2)L × SU(2)R × U(1)V × U(1)A, i.e., the left- and right-handed
parts of the quark fields can be independently transformed as defined in (7.159) and via

U(1)V : ψ′ = exp(iα)ψ, ψ
′
= ψ exp(−iα)

U(1)A : ψ′ = exp(iβγ5)ψ, ψ
′
= ψ exp(+iβγ5).

(7.176)

As we shall see, the crucial difference between the vector and axialvector transformation is
that in the latter case both ψ and ψ have to transform with the same sign in the exponential.
This is because only then ψ/∂ψ is invariant under the U(1)A transformation, because the γ5
matrix anticommutes with /∂ = ∂µγ

µ. So the U(1)A is not a unitary but a “pseudo-unitary”
transformation in Dirac-spinor space.
Since the Lagrangian (7.175) in the limit M̂ → 0 is invariant under these transformations the
corresponding Noether currents (the isoscalar-vector and isoscalar-vector currents) are conserved
in this limit. With the classical equations of motion indeed one finds that the currents

jµV = ψγµψ, jµA = ψγµγ5ψ (7.177)

fulfill
∂µj

µ
V = 0, ∂µj

µ
A = 2ψγµγ5M̂ψ (classical). (7.178)

The latter relation is known as the “partial conservation of the axial-vector current” (PCAC).
The chiral SU(2)L × SU(2)R also leads to the isovector Noether vector and axialvector currents

JaµV = ψγµτaψ, JaµA = ψγµτaγ5ψ (7.179)

and a PCAC relation for the isovector-axialvector current

∂µJ
aµ
A = 2ψγµγ5τ

aM̂ψ. (7.180)

Here τa = σa/2 denote the SU(2) matrices acting in flavor space. The strong force, however, is
attractive in the quark-antiquark channel, and thus the chiral symmetry is spontaneously broken
due to the formation of a quark condensate, i.e.,

〈
Ω
∣∣ψψ

∣∣Ω
〉
̸= 0. (7.181)

The symmetry of the vacuum thus reduces from SU(2)L × SU(2)R to SU(2)V even in the chiral
limit. According to the Goldstone theorem, there must be three pseudoscalar massless Nambu-
Goldstone bosons in the chiral limit, which are identified with the pions. Their finite mass is due
to the small explicit symmetry breaking due to the light-quark masses.
Now the modern way to define the pion decay constant is by the PCAC hypothesis

〈
Ω
∣∣∣JaµA (x)

∣∣∣πb(p⃗)
〉
= i exp(ip · x)pµFπδab, p0 =

√
m2
π + p⃗2. (7.182)

Then via the PCAC relation (7.181) we have

pµ

〈
Ω
∣∣∣JaµA (x)

∣∣∣πb(p⃗)
〉
= i exp(ip · x)m2

πFπδ
ab. (7.183)
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So we can identify the (real) pion fields to be πa = 1
Fπ
∂µJ

aµ
A (x).

But then according to our evaluation of the triangle diagrams (7.159) we’d have to assume

〈
ψqγ5ψq

〉
Aµ =

ie2

32π2
1

mq
ϵµνρσFµνFρσ (7.184)

and on the other hand through the PCAC relation for the isoscalar-axialvector current (7.178)

∂µ
〈
ψqγ

µγ5ψq
〉
= − e2

16π2
ϵµνρσFµνFρσ, (7.185)

which is independent of the quark mass, but this in turn violates the naive PCAC relation (7.178)
in the chiral limit, because then the Noether theorem seems to imply that the isoscalar axial
current is conserved for both massless QCD and QED.
The only conclusion can be that the naive PCAC relation is violated in the quantized theory.
As we will see in the next two sections this is indeed the case. First we will look at the violation
of the PCAC relation in the perturbative approach with massless quarks. There we have to
calculate the matrix element

〈
Tcj

µ
Aj

ρ
Vj

σ
V

〉
, because through contraction with the pion momentum

pµ we should get the pion field due to the PCAC hypothesis (7.183) for the matrix element
Mπ0→γγ , and the vector currents are the electric currents (up to the appropriate quark charges
qqe with qu = 2/3 and qd = −1/3). The above expectation value in leading-order perturbation
theory is linearly divergent, which brings up the question of how to regularize this divergence
properly.

7.6.3 The U(1)A anomaly: perturbative analysis

If now one tries to verify the conservation of the Ward-Takahashi identities for the above writ-
ten triple-current correlation function it turns out that it is impossible to find a regularization
prescription which keeps both the isoscalar vector and axialvector transformations a symmetry.
E.g., in dimensional regularization it is not clear, how to define the generically four-dimensional
γ5 matrix in space-time dimensions different from 4.
Trying to use BPHZ renormalization, i.e., subtracting the linear divergences yields to a result
which depends on the choice of the loop momenta in the two triangle diagrams. As we shall
see, contracting with the momenta referring to the different currents in the correlation function,
leads to a finite result without any subtractions, which however depends on the choice of the
loop momenta. Now it is clear that the conservation of the vector current must be fulfilled at
any cost, because it is the current the electromagnetic field couples to, and violating current
conservation of a local gauge symmetry leads to an explicit breaking of the gauge invariance and
renders the theory physically inconsistent, and the usual interpretation of the S-matrix elements
breaks down, because the unphysical photon-field degrees of freedom would become interacting.
So the right choice of the loop momenta and ofthe renormalization prescription must be such as
to preserve the vector-current conservation Ward-Takahashi identity, and this necessarily violates
the naive Ward-Takashi identity for the axialvector current, i.e., within this description the U(1)V
symmetry stays intact, as forced by the local electromagnetic gauge invariance, while the U(1)A
symmetry is broken in the quantum theory in precisely the way given by (7.185), which renders
the PCAC description of the pion as a (pseudo-) Nambu-Goldstone boson of the spontaneously
broken (approximate) chiral SU(2)L × SU(2)R compatible with the successful evaluation of the
π0 → γγ decay rate.

265



Chapter 7 · Nonabelian Gauge fields

To see, how (7.185) comes about we calculate the perturbative one-loop contribution to the
triple-current correlation function

iMαµν
AV V (q1, q2) =

q1

p

q2q1

l

l + q1

p

q2

γ γ
l

l − q1 l + q2

µ ν µ ν

l − q2

(a) (b)

+

(7.186)
The first diagram translates into

iMαµν
aAV V (q1, q2) = −i3

∫
d4l

(2π)4
Tr

[
γµ/lγν(/l + /q2)γ

αγ5(/l − /q1)

l2(l + q2)2(l − q1)2

]
, (7.187)

where we work in the chiral limit, i.e., with massless fermions. The second diagram is then given
by interchanging q1 ↔ q2 and µ ↔ ν. The integral (7.187) is linearly divergent, but we do not
regularize it, because it is not clear how to do this in a way which keeps both the U(1)V and
U(1)A symmetries intact. We are also not interested in (7.187) itself, but in the contractions
pαMαµν

AV V and q1µMαµν
AV V which probe the conservation of the axialvector and the vector current

within the correlation function. As we shall see, this leads to finite results, which however are
not unique, because they depend on the arbitrary choice of the loop momentum, of which (7.187)
realizes only one special simple choice.
To evaluate pαMαµν

AV V we use the identity

/pγ5 = (/q1 + /q2)γ5 = (/q1 − /l)γ5 + (/l + /q2)γ5 = γ5(/l − /q1)− (/l + /q2)γ5 (7.188)

in the numerator, leading to

pαMαµν
AV V =

∫
d4l

(2π)4
Tr

[
γµ/lγν(/l + /q2)γ5

l2(l + q2)2
+
γµ/lγνγ5(/l − /q1)

l2(l − q2)2
+ exch

]
, (7.189)

where “exch” means to add the same expression with the interchanges q1 ↔ q2 and µ ↔ ν.
Performing the Dirac traces, one finds

pαMαµν
AV V = 4iϵµνρσ

∫
d4l

(2π)4

[
lρq1σ

l2(l − q1)2
− lρq1σ
l2(l + q1)2

+
lρq2σ

l2(l + q2)2
− lρq2σ
l2(l − q2)2

]
. (7.190)

Now both integrals are of the form

I(a) =

∫
d4l

(2π)4
[fρ(l + a)− fρ(l)], (7.191)
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where for the first two terms we have

fρ(l) = 4iϵµνρσ
lρq1σ

l2(l + q1)2
, a = q1. (7.192)

Now, if each of the two terms in the integral (7.191) were convergent, we could shift the integration
variable to l′ = l+a, leading to I(a) = 0. However, this part of the integral is linearly divergent.
To analyse (7.191) further we first Wick rotate to Euclidean momentum space,

I(a) = i

∫
d4 l̃

(2π)4
[fρ(l̃ + ã)− fρ(l̃)]. (7.193)

For a rational function of l linear divergence of the integral over fρ means it must have the
asymptotic behavior

f(l̃) ∼=
l̃2→∞

A
lρ

l4
. (7.194)

Now we can regularize the integral by integrating over a sphere with radius Λ and afterwards
letting the regulator Λ → ∞. Now Taylor expansion of the integrand leads to

I(a) = i

∫

|l̃|<Λ

d4 l̃

(2π)4

[
ãµ

∂

∂l̃µ
fρ(l) +

ãµãν
2

∂2

∂l̃µ∂l̃ν
fρ(l) . . .

]
. (7.195)

Now we can apply the four-dimensional Gauss’s integral theorem, leading to

I(a) =
iãµ
(2π)4

∫

Ω(4)

d3Ω(4)

(2π)3

[
l̃µΛ

2fρ(l̃) + . . .
]

∼=
Λ→∞

iãµ
(2π)4

∫

Ω(4)

d3Ω(4)A
l̃µ l̃ρ

Λ̃2
. (7.196)

Here we could omit the higher-order terms in the Taylor expansion, because according to the
asymptotic behavior (7.194) these terms go to 0 with a power larger than 1/Λ̃3 for Λ → ∞ and
thus do not contribute in this limit. For symmetry reasons we can substitute l̃µ l̃ρ → Λ2δµρ/4.
Since the three-dimensional unit sphere in four-dimensional space has a surface of Ω(4) = 2π2,
we finally get

I(a) =
iAaρ
32π2

, (7.197)

where we have Wick rotated ãρ back to Minkowski space aρ.
Since in (7.190) the shift in the integrands of the first to terms is q2 and for the third and forth
two terms q1, using (7.197) leads indeed to 0.
This is, of course not the desired result, because it would not solve the discrepancy between
the otherwise successful PCAC relation between the axial vector current and the pion and the
π0 → γγ decay rate. Of course, formally there is nothing wrong with the above calculation,
but we have overlooked a subtle hidden problem with writing down the Feynman rules for
the triangle diagrams (7.186), because we have arbitrarily chosen the loop momentum in an
apparently convenient way. Now the contraction with pα in (7.189) to check the axial Ward-
Takahashi identity for the three-current correlation function on the other hand lead to integrals
of type (7.193) with the single integrands linearly divergent. The final result is proportional to
the shift aµ in the arguments of the two linearly divergent integral.
Thus we have to investigate, how the triangle-loop diagram changes if we choose an arbitrary
loop momentum. Now, if we choose for the first diagram in (7.186) the loop momentum as

lµ = kµ + qµ3 with q3 = λ1q1 + λ2q2 (7.198)
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with arbitrary real coefficients λ1 and λ2, then because we have to keep the Bose symmetry in
the exchange of the external photon lines, we must use

lµ = k̄µ + q̄µ3 with q̄3 = λ1q2 + λ2q1. (7.199)

A reanalysis of the corresponding Feynman integral expressions in the very same way as per-
formed above with the special choice of the loop momentum, finally leads to

pαMαµν
AV V =

1

4π2
ϵµνρσq1ρq2σ(λ1 − λ2), (7.200)

which is already of the right shape for the expected “anomalous contribution” to the PCAC π0γγ
amplitude, cf. (7.185), but the coefficient depends on the arbitrary choice of the loop momentum,
i.e., the coefficients λ1 and λ2.
This means that we have to find a criterion for choosing the loop momentum, and the solution
is that the vector current must be conserved at any cost, because otherwise the gauge symmetry
of QED would be lost. The corresponding Ward-Takahashi identity,

q1µMαµν
AV V

!
= 0 (7.201)

thus must hold in any case. Of course, the convergence properties are the same as for the expres-
sion (7.200) and thus it also depends on the choice of the loop momentum, i.e., the parameters
λ1 and λ2. A completely analogous lengthy calculation as for the contraction (7.200) for the
WTI of the axial current leads to

q1µMαµν
AV V = − 1

4π2
ϵανρσq1ρq2σ(λ1 − λ2 − 1)

!
= 0 → λ1 − λ2

!
= 1. (7.202)

Plugging this result into (7.200) we finally get

pαMαµν
AV V =

1

4π2
ϵµνρσq1ρq2σ. (7.203)

This is indeed in accordance with (7.185), when dressing the photon legs with the corresponding
amplitudes, using ϵµνρσq1ρq2σϵµ(q1)ϵν(q2) ∼ ϵµνρσFρµFσν/4 = −ϵρµσνFρµFσν/4.
In conclusion we note that the renormalization condition in the case of a linearly divergent matrix
element of vector and axial-vector currents (current-correlation functions) is undefined without
the further constraint that the vector current must be conserved due to electromagnetic gauge
symmetry. Without this constraint one can get a renormalization prescription leading to the
“normal” Ward-Takahashi identity (WTI) corresponding to the conservation of either current or
an arbitrary linear combination of the vector and axial-vector currents. On the other hand the
constraint that the WTI for the vector current must be fulfilled, leads to a unique determination
of the anomalous Ward-Takashi identity that corresponds to the relation (7.185), which makes
the apparent discrepancy between the PCAC conjecture about the pion as a Goldstone boson
of the spontaneously broken approximate global SU(2)L × SU(2)R symmetry in the light-quark
sector of QCD compatible with the observed π0 → γγ decay rate.

7.6.4 The U(1)A anomaly: path-integral analysis

With the hindsight of the somewhat cumbersome perturbative analysis, we investigate the deriva-
tion of the Ward-Takahashi identities (WTIs) for the vector and axial-vector current in Quantum
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Electrodynamics with massless fermions. The Lagrangian

L = ψ(i/∂ + q /A)ψ − 1

4
FµνF

µν (7.204)

is invariant under the global U(1)V transformation

ψ → ψ′ = exp(−iα)ψ, ψ → ψ
′
= ψ exp(+iα), Aµ → A′

µ = Aµ (7.205)

as well as under the global axial-vector or chiral transformation U(1)A

ψ → ψ′ = exp(−iβγ5)ψ, ψ → ψ
′
= ψ exp(−iβγ5), Aµ → A′

µ = Aµ. (7.206)

The corresponding Noether currents of these symmetries are

jµ = ψγµψ and j5µ = ψγµγ5ψ. (7.207)

On the classical level both corresponding charges are conserved due to the equations of motion,
i.e., the continuity equations ∂µjµ = ∂µj

µ
5 = 0. From the perturbative analysis in the previous

section we know, however, that the naive WTIs for expectation values of time ordered products
of the form ⟨Tcj5µ(x)O(x1, . . . , xn)⟩, where O is a gauge-invariant operator (e.g., products of
vector or axial-vector currents) is not fulfilled, provided we insist on the validity of the WTI’s
for the vector currents, which is a necessary condition for the invariance of the theory under the
local gauge symmetry U(1)em, which must not be broken in any way.
We start the analysis with the Feynman-Kac path-integral formula for the expectation value of
time-ordered operators,

⟨TcO(x1, . . . , xn)⟩ =
1

Z(0)

∫
Dψ

∫
Dψ

∫
DA exp(iS)O(x1, . . . , xn) (7.208)

with the generating functional of disconnected Green’s functions with vanishing external sources

Z(0) =

∫
Dψ

∫
Dψ

∫
DA exp(iS). (7.209)

We first consider the U(1)V transformations (7.205) but now making α = δα(x) “infinitesimal”
but dependent on the space-time variables, but not treating the symmetry as the local gauge
symmetry but as for the global transformations letting A′

µ = Aµ. Now we can write (7.208) in
terms of the “new” fields

⟨TcO(x1, . . . , xn)⟩ =
1

Z(0)

∫
Dψ′

∫
Dψ

′
∫

DA exp(iS′)O(x1, . . . , xn). (7.210)

Now we substitute back the “old” fields. For the action we have

S′ = S + i
{
ψ(x)γµψ(x)∂µδα

}
(7.211)

and for the path-integral measure

Dψ′Dψ
′
= DψDet−1 exp(−iδα)DψDet−1 exp(+iδα). (7.212)

Of course, the functional determinant (which occur in the denominator, because the Dirac-spinor
fields are represented by Grassmann numbers in the path integral) is highly divergent and has to
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be regularized, but no matter how we regularize it, the contributions for the transformation of
Dψ and Dψ cancel each other, and thus the path-integral measure for the fermions is invariant
undert the U(1)V transformations. Thus we have

⟨TcO(x1, . . . , xn)⟩ =
1

Z[0]

∫
Dψ

∫
Dψ

∫
DA exp(iS)

[
1− i {jµ(x)∂µδα(x)}x

]

×O(x1, . . . , xn).

(7.213)

With (7.208) we conclude that

1

Z[0]

∫
Dψ

∫
Dψ

∫
DA exp(iS) {jµ(x)∂µ(x)δα(x)}xO(x1, . . . , xn)

=

〈
Tc

∫
d4xjµ(x)∂µδα(x)O(x1, . . . , xn)

〉
= 0.

(7.214)

Now we can integrate by parts and take the integral out of the expectation value, which leads to
∫

d4xδα(x)∂µ ⟨Tcjµ(x)O(x1, . . . , xn)⟩ = 0. (7.215)

Since this holds for any δα(x) we have the “normal” Ward-Takahashi identity for the Noether
current of the global U(1)V symmetry

⟨Tcjµ(x)O(x1, . . . , xn)⟩ = 0. (7.216)

This is also a necessary condition for the local electromagnetic gauge invariance, which must be
preserved in any case, because otherwise the physical interpretability of the formalism in terms
of the S matrix breaks down.
Now we consider the chiral U(1)A symmetry, which is not really unitary because of the occurance
of the γ5 matrix in (7.206). This is the deeper reason for the occurance of the anomaly, because
now the path-integral measure is not invariant as in the case of the U(1)V symmetry:

Dψ′Dψ
′
= DψDψDet−2 exp[−2iδβ(x)γ5]. (7.217)

The functional determinant is quite undefined, because using the general identity

ln det ∆̂ = Tr ln ∆̂ (7.218)

in our case leads to

Tr δβ(x)γ5 = tr γ5

∫
d4xδβ(x), (7.219)

which is undefined, because for a general function δβ(x) the integral does not converge, while
the Dirac trace tr γ5 = 0.
This forces us to regularize the functional trace (7.219), but we are forced to do that in a way
that preserves the local U(1)em gauge invariance. A possible choice for a regularized version of
(7.219) is

Treg(Λ) = Tr[δβ(x)γ5 exp(−/D2
/Λ2)]. (7.220)
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Now we have

/D
2
ψ = γµγν(∂µ − iqAµ)(∂µ − iqAµ)

=
1

2
[{γµ, γν}+ [γµ, γν ]] (∂µ − iqAµ)(∂µ − iqAµ)

= (gµν − iσµν)(∂µ − iqAµ)(∂µ − iqAµ)

= DµD
µψ − q

2
σµνFµν .

(7.221)

This implies

Treg(Λ) =

∫
d4x tr

〈
x
∣∣∣β(x)γ5 exp

(
−DµD

µ − q

2
σµνFµν

)∣∣∣x
〉
. (7.222)

Here we have introduced a fictitious one-particle Hilbert space with |x⟩ as generalized time-
position eigenvectors (x ∈ R4). Inserting a complete set of momentum eigenvectors gives

Treg(Λ) =

∫
d4xβ(x)

∫
d4p

(2π)4

〈
x

∣∣∣∣β(x)γ5 exp
(
−DµD

µ

Λ2
+

q

2Λ2
σµνFµν

)∣∣∣∣ p
〉
⟨p |x⟩

=

∫
d4xβ(x) tr

∫
d4p

(2π)4

〈
x

∣∣∣∣γ5 exp
(
−DµD

µ

Λ2
+

q

2Λ2
σµνFµν

)∣∣∣∣ p
〉
exp(−ip · x)

︸ ︷︷ ︸
A(x)

.
(7.223)

Now using the position representation of the operators in the exponential we get

A(x) =

∫
d4p

(2π)4
exp(−ip · x) tr

[
γ5 exp

(
−DµD

µ

Λ2
+

q

2Λ2
σµνFµν

)
exp(ip · x).

]
(7.224)

Now for any function χ we have

Dµ[χ(x) exp(ip · x)] = exp(ip · x)(ipµ +Dµ)χ(x). (7.225)

This implies

A(x) =

∫
d4p

(2π)4
tr

[
γ5 exp

(
(k − iD)2

Λ2
+

q

2Λ2
σµνFµν

)
1

]
. (7.226)

Now
tr γ5 = tr γ5γ

µ = tr γ5γ
µγν = tr γ5γ

µγνγρ = 0,

tr γ5γ
µγνγργσ = −4iϵµνρσ.

(7.227)

Also all traces with a γ5 multiplied with a product of an odd number of γµ matrices vanish.
Thus expanding the operator exponential and applying the Dirac trace gives

A(x) =

∫
d4p

(2π)

[
q2

8Λ4
tr(γ5σ

µνσρσFµνFρσ) +O(Λ−6)

]
exp

(
k2

Λ2

)

=
q2

32π2
ϵµνρσFµν(x)Fρσ(x).

(7.228)

Finally, plugging this result into the path-integral expression analogous to (7.213) we find the
anomalous WTI for the U(1)A-Noether current

∂µ ⟨Tcjµ5 (x)O(x1, . . . , xn)⟩ = − q2

16π2
⟨TcϵµνρσFµν(x)Fρσ(x)O(x1, . . . , xn)⟩ , (7.229)

which is precisely (7.185) again, as it should be.
In the path-integral approach the anomaly is thus due to the non-invariance of the path-integral
measure under U(1)A transformations [Fuj80, Fuj79].
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Appendix A

Variational Calculus and Functional Methods

A.1 The Fundamental Lemma of Variational Calculus

One of the most fundamental mathematical concepts is that of functions. Functions can be seen
as unique maps from one set to another, i.e. if A and B are maps then a function f : A → B
means that there is a rule which maps an element of A uniquely to an element in B.
In our context functions are less general defined as maps from a given set of numbers or vectors
to the real numbers R or the complex numbers C or to vectors of such numbers.
Now in modern mathematics one investigates general structures, i.e., sets with operations defined
on and mappings between such structures obeying some special features connected to these
structures. This point of view makes it possible to look on the various concepts of classical
mathematics from a generalised point of view.
On the other hand a physicist needs objects which can be handled for practical purposes but
one should have an idea about the structures behind. So in this appendix we like to define
some mathematical concepts which are used in the main part. Again we do not care too much
about rigour but the ideas should become clear. Here we want to give a sense to functionals
and variational calculus from a modern point of view which makes it much easier to handle the
physical calculations. The ideas are quite old and brilliantly given in Courant’s and Hilbert’s
books about the mathematical methods in physics. We put the things only in a somewhat more
modern language.
A wide range of physics (if not all fundamentals of our modern theories) can be formulated in
terms of so called variational calculus. The first ingredient is a functional which is a map from a
certain space of functions to real numbers. In our case the space of functions used can be thought
to be the set of all smooth functions with one or more real or complex arguments. The integrals
used further on are Lebesgue integrals but it does not matter if one thinks in the more intuitive
concept of Riemann integrals because we will not be very strict in our proofs. One should only
get an idea how to handle the stuff in practice.
The rest of the chapter will deal with variational calculus used to formulate classical point
mechanics. It may be enough to look on one-dimensional problems to keep the story short. The
more general case of more dimensions is a straightforward generalisation. In canonical mechanics
we define the action functional S which is a map from the smooth functions x : (t1, t2) → R to
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the real numbers given by

S[x] =

∫ t2

t1

dtL(x, ẋ, t). (A.1)

Thereby (t1, t2) is an open interval of real numbers and L : R3 → R a smooth function. The
Hamilton principle tells us that the particle will move along that special path which minimises
the action and fulfils the boundary condition

x(t1) = x1, x(t2) = x2. (A.2)

So in other words we have to find a minimum of the functional S. This is what is called a
variational problem, namely to find a (local) extremum of a functional, i.e. a function which
minimises or maximises the functional.
To solve this problem let us remember the analogous situation in the case of ordinary functions
f : R → R. In the context of basic calculus one learns that a necessary condition for x0 ∈ R to
be a (local) minimum of f is that the first derivative of f vanishes at the point x0.
Now we want to apply these ideas to our variational problem. For this purpose we introduce an
ordinary function F : R → R by

F (ϵ) = S[ξ + ϵη] =

∫ t2

t1

dtL(ξ + ϵη, ξ̇ + ϵη̇, t), (A.3)

where we have chosen ξ to be a solution of the variational problem and η : (t1, t2) → R an
arbitrary smooth function. Now a necessary condition for ξ to be a minimal point of the functional
S in the function space of smooth functions is that

∀η : (t1, t2) → R smooth with η(t1) = η(t2) = 0 :
dF

dϵ

∣∣∣∣
ϵ=0

= 0. (A.4)

If ξ fulfils this necessary condition we call it a stationary point of the functional. Now an appli-
cation of the chain rule of differential calculus and the fact that we can interchange integration
with respect to t with differentiation with respect to ϵ leads to the condition

dF

dϵ

∣∣∣∣
ϵ=0

=

∫ t2

t1

dt

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
η = 0 (A.5)

to hold for all smooth functions η vanishing at the end points of the interval. In the last step we
have partially integrated and used the vanishing of η at the end points of the integral’s interval.
Now we claim that this can only be fulfilled for all “allowed” functions η if the expression in the
parenthesis vanishes identically, i.e., if

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (A.6)

This is indeed the well known Euler-Lagrange equation for our problem. Now we like to prove our
claim. In other words we have to show the following fundamental lemma of variational calculus:
If for all smooth functions η vanishing at the end points and a given continuous function f the
condition ∫ t2

t1

dtf(t)η(t) = 0 (A.7)
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is valid then f is necessarily vanishing identically. It should be emphasised that this is by no
means trivial because the restriction of η to be smooth is a very strong restriction because there
are not very much smooth functions compared to all continuous functions.
Nevertheless the proof is not too difficult. At first we see that the condition (A.7) is a global one
because it contains the integral over the whole interval (t1, t2). The only freedom we have is to
vary the functions η. Since we want to conclude a local property about f , namely to vanish at
any given point τ ∈ (t1, t2), we have to localise the integral by choosing the η cleverly. This will
be constructed with help of the function

M(x) =

{
exp

(
− 1

1−x2
)

for |x| < 1

0 for |x| ≥ 1

}
. (A.8)

One can show easily (as an exercise in calculus) that this function is a smooth function defined
on R which is nowhere < 0.
Now let ϵ be an arbitrary positive real number. Then the function

Mϵt(τ) =M

(
τ − t

ϵ

)
(A.9)

is a smooth nowhere negative function which is vanishing outside the interval (t − ϵ, t + ϵ).
Now assume that f is not 0 everywhere. Suppose without loss of generality that f(t) > 0
for a t ∈ (t1, t2). Because f is continuous we know that there exists a neighbourhood of t
contained in (t1, t2) where f is greater than 0. Now we can chose this neighbourhood to be of
the form (t− ϵ, t+ ϵ) ⊂ (t1, t2) with a sufficiently small positive real number ϵ. Now it is allowed
to chose η(τ) = Mϵt(τ) because the function Mϵt is a smooth function vanishing outside the
neighbourhood, which is lying completely in the interval (t1, t2), so that η is vanishing at the
endpoints because this has been shown for Mϵt before. Now since f is positive in (t − ϵ, t + ϵ)
and η is nowhere negative and vanishing outside (t− ϵ, t+ ϵ) we can write

∫ t2

t1

dτf(τ)Mϵt(τ) =

∫ t+ϵ

t−ϵ
dτf(τ)Mϵt(τ) > 0. (A.10)

But this is a contradiction against the condition (A.7) assumed to hold true for all allowed
functions η. From this we conclude that f has to vanish everywhere in (t1, t2). This finishes our
proof that a necessary condition for ξ to be a (local) extremal point of the action functional S
is, that it fulfils the Euler Lagrange equations.

A.2 Functional Derivatives

With help of the fundamental lemma of variational calculus we can easily define the functional
derivative. Let A be a functional mapping a function space to the set of real or complex numbers.
Then the functional derivative at the point x in the function space is the distribution δA/δx(t)
which is uniquely defined by

∀η : (t1, t2) → R(C) smooth :
d

dϵ
A[x+ ϵη]

∣∣∣∣
ϵ=0

=

∫ t2

t1

dt
δA

δx(t)
η(t). (A.11)
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The uniqueness of this expression follows directly from the fundamental lemma of variational
calculus. With help of this definition we can express the fact that ξ is a stationary point of the
action functional by

δS

δx

∣∣∣∣
x=ξ

= 0. (A.12)

From the arguments above one sees immediately that this is nothing else than a short hand
notation for the validity of the Euler-Lagrange equation of the variational problem. In physics
this determines the equations of motion. The great advantage of the formulation of physical
problems in terms of variational principles lies in the fact that the Euler-Lagrange equations do
not change their form under general transformations of the variables. This is what is called a
covariant description of physical laws with respect of a given class of variable transformations. In
the case of the description with help of variational principles this class consists of all coordinate
transformations which is a rather big one. This makes it possible to prove such far reaching
consequences as Noether’s theorem and its quantum analogue1 .
With our definition of functional derivatives it is easy to find that the most rules known from
calculus with ordinary functions can be taken over to the case of functionals. For example let us
look on the product rule:

δ

δx(t)
(AB) =

δA

δx(t)
B +A

δB

δx(t)
. (A.13)

This is proven with help of the definition (A.11) by applying the product rule to the function
F (ϵ) = A[x+ ϵη]B[x+ ϵη].
One important example of a functional is

A[x] = x(τ), (A.14)

where τ is a fixed point τ ∈ (t1, t2). Now we calculate the functional derivative of this functional:

d

dϵ
A[x+ ϵη] = η(τ) =

∫ t2

t1

dtη(t)δ(t− τ). (A.15)

From the definition of the functional derivative we obtain

δA

δx(t)
= δ(t− τ). (A.16)

In a sloppy form we identify this special kind of functionals with the function x itself. Because
of this the functional derivative of a function is defined to be the δ distribution:

δx(τ)

δx(t)
= δ(t− τ). (A.17)

In the same manner we can define the higher functional derivatives of the functional A. If

∀η : (t1, t2) → R(C) smooth:
dn

dϵn
A[x+ ϵη]

∣∣∣∣
ϵ=0

=

∫ t2

t1

dt1 . . . dtn
δnA

δx(t1) . . . δx(tn)
η(t1) . . . η(tn) (A.18)

1Of course one must be sure that the quantisation procedure itself does not destroy the symmetry which holds
true for the classical theory. The phenomenon that the quantum theory of a classical system is not symmetric
under a symmetry transformation of the classical theory is called anomaly and we shall come back in the main
text to this important topic.
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then we call δnA/(δx(t1) . . . δx(tn)) the nth functional derivative of A.
It is also straight forward to define functional derivatives of functionals depending on two or
more functions. For instance in the case of a functional depending on to functions we define
δS[x, y]/δx(t) as the functional for which

∀η1, η2 : (t1, t2) → R(C) smooth:
∂

∂ϵ1
A[x+ ϵ1η1, y + ϵ2η2]

∣∣∣∣
ϵ1,ϵ2=0

=

∫ t2

t1

dt
δA

δx(t)
η1(t). (A.19)

As a last example we look on the chain rule for functional derivatives. If x[y, t] is a function
which is a functional of y, we can define the functional B with help of another functional A to
be

B[y] = A[x[y, t]]. (A.20)

Now we like to find the functional derivative of B with respect to y. For this purpose we apply
the general definition:

d

dϵ
B[y + ϵη]

∣∣∣∣
ϵ=0

=
d

dϵ
A[x[y + ϵη, t]]

∣∣∣∣
ϵ=0

. (A.21)

Now we expand x in the argument of A with respect to ϵ:

x[y + ϵη, t] = x[y, t] + ϵ

∫ t2

t1

dτ
δx

δy(τ)
η(τ) +O(ϵ2), (A.22)

where we have used the definition for the functional derivative of x with respect to y. Now
inserting this into (A.21) we obtain

d

dϵ
B[y + ϵη]

∣∣∣∣
ϵ=0

=

∫ t2

t1

dt

∫ t2

t1

dτ
δA

δx[y, τ ]

δx[y, τ ]

δy(t)
η(t), (A.23)

and since this should hold true for all η we have the desired chain rule

δB

δy(t)
=

∫ t2

t1

dτ
δA

δx[y, τ ]

δx[y, τ ]

δy(t)
. (A.24)
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Appendix B

The Symmetry of Space and Time

In this appendix we shall investigate the symmetries of the special-relativistic space time man-
ifold, the Minkowski space, from a mathematical point of view. It should be emphasised that
this appendix which bases completely on one of E.P. Wigner’s most important papers, written
in 1939 about this topic, is on the heart of relativistic quantum field theory since it determines
all possible one-particle Hilbert spaces which are consistent with the structure of the Minkowski
space. The reason that it is taken to the appendix is, that it is rather involved and not easy to
read. The reader not so familiar with group theory and the representation theory of groups can
omit this appendix in the first reading. It is also possible to follow the line of reasoning only
reading chapter 4. Put it in the other way it might be useful for understanding this appendix to
have a physical picture about the mathematics.

B.1 The Lorentz Group

As we have seen in the beginning of chapter 3 the Lorentz group is the invariance group of the
Minkowski space which is R4 with the fundamental bilinear form

R4 × R4 → R : (xµ, yν) 7→ xy = gµνx
µyν (B.1)

with (gµν) = diag(1,−1,−1,−1). This space will be denoted by R(1,3). The Lorentz group
contains all invertible real 4 × 4-matrices which leave the bilinear form (B.1) invariant. This
group is called O(1, 3), that means the orthogonal group of the bilinear form with one positive
and three negative eigenvalues.
Let (Lµν) ∈ O(1, 3). Then we have

∀x, y ∈ R : gµνL
µ
ρL

ν
σx

ρyσ = gρσx
ρxσ. (B.2)

Since this has to hold for all x, y ∈ R(1,3) it is necessary and sufficient for L̂ ∈ O(1, 3)

gµνL
µ
ρL

ν
σ = gρσ. (B.3)

In matrix notation this means
L̂tĝL̂ = ĝ ⇒ L̂−1 = ĝL̂tĝ. (B.4)

Lemma 4. The Lorentz group O(1, 3) contains a subgroup which is isomorphic to the O(3), i.e.,
the orthogonal group in three dimensions.
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Appendix B · The Symmetry of Space and Time

Proof. A glance at (3.1) shows, that the three-dimensional subspace x0 = 0 of R(1,3) is isomorphic
to the Euclidean R3 (up to the sign of the scalar product these spaces are identical). The Lorentz
transformations of the form

D̂ =

(
1 0

0 D̂′

)
with D̂′ ∈ O(3) (B.5)

build a subgroup acting on this R3 as O(3). Q.E.D.

Now we investigate the connected components of the Lorentz group. From (B.4) we see, that
because of det ĝ = −1

∀L̂ ∈ O(1, 3) : (det L̂)2 = 1 ⇒ det L̂ = ±1. (B.6)

Thus the connected component with the identity of the Lorentz group must be a subgroup of
O(1, 3) the special Lorentz group, which consists of all O(1, 3)-matrices with determinant 1.
On the other hand for the basis vector e0 ∈ R4 we have for L̂ ∈ O(1, 3):

1 = e0e0 = (L̂e0)(L̂e0) ⇒
(
L0

0

)2 −
3∑

a=1

(La0)
2 ⇒

∣∣L0
0

∣∣ ≥ 1. (B.7)

Thus the Lorentz transformations can be classified in such with L0
0 ≥ 1, the orthochronous

Lorentz transformations, and such with L0
0 ≤ −1, the antichronous Lorentz transformations.

It is clear, that the connected component of the Lorentz group containing the identity has to lay
in the orthochronous class of the group.

Lemma 5. The orthochronous Lorentz transformations build an invariant subgroup of the Lorentz
group, which is denoted by O(1, 3)↑. The orthochronous Lorentz transformations with determinant
1 build a subgroup SO(1, 3)↑ of the O(1, 3)↑.

Proof. The Minkowski space R(1,3) is divided in three classes of vectors, namely

• x ∈ R(1,3) with x2 < 0: space-like vectors

• x ∈ R(1,3) with x2 = 0: light-like vectors

• x ∈ R(1,3) with x2 > 0: time-like vectors.

The light-like vectors define the light-cone, shown in a 1+2-dimensional space-time in figure 3.1,
this is the hypersurface in R(1,3) with

(
x0
)2 −

3∑

a=1

(xa)2 = 0. (B.8)

A time-like vector x ∈ R(1,3) is said to be in the forward or backward light-cone if x0 > 0 or
x0 < 0 respectively.
To an arbitrarily given normalised time-like vector we find by applying of Schmidt’s orthonor-
malisation theorem three space-like vectors which are orthonormalised and orthogonal to the
time-like vector. But such four vectors build a basis which can be obtained by operating with an
appropriate O(1, 3)↑ matrix on the canonical basis of R(1,3). This matrix has columns given by
the column vectors of the new basis. Thus if the time-like vector is in the forward (backward)
light-cone the transformation is orthochronous (antichronous).
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The same is true for any given Lorentz transformation: It is orthochronous if and only if it leaves
the canonical time-like basis vector of R(1,3) in the forward light-cone. From this it is clear that
the composition of two orthochronous Lorentz transformations is orthochronous and the inverse
of a orthochronous Lorentz transformation is orthochronous too. Thus the orthochronous Lorentz
transformations build a subgroup of O(1, 3), further on denoted by O(1, 3)↑.
Since the proper Lorentz transformations build the subgroup SO(1, 3) the SO(1, 3)↑ is also a
subgroup, because it is given as the intersection O(1, 3)↑ ∩ SO(1, 3) of two subgroups.

Q.E.D.

Now we define the boost in 1-direction as

B̂1(λ) =

(
M̂ 0
0 1

)
with M̂ =

(
coshλ sinhλ
sinhλ coshλ

)
. (B.9)

The physical meaning of this boosts is described in chapter 3. By a simple calculation with using
the addition formula for the hyperbolic functions we find that the boost in the 1-direction builds
a one parameter subgroup of the Lorentz group: B̂1(λ1)B̂1(λ2) = B̂1(λ1 + λ2).
Since the mapping B̂1 : R → SO(1, 3)↑ is invertible, continuous and open this subgroup is
isomorphic to the additive group of R as topological groups.

Theorem 7. Each proper orthochronous Lorentz transformation L̂ ∈ SO(1, 3)↑ can be written
in the form

L̂ = D̂1B̂1D̂2 with D̂1, D̂2 ∈ SO(3), B̂1 boost in 1-direction. (B.10)

Proof. The proof is done the same way one proves the analogous theorem about the parameter-
isation of the rotation group with Euler angles.
Now we write L̂ ∈ SO(1, 3)↑

L̂ =

(
a x⃗t

y⃗ Â

)
⇒ L̂tĝL̂ =

(
a2 − y⃗2 ax⃗t − y⃗tÂ

ax⃗− Âty⃗ x⃗⊗ x⃗− ÂtÂ

)
= ĝ, (B.11)

where the equation says that L̂ ∈ O(1, 3). From this we find

a2 = 1 + y⃗2, ax⃗ = Âty⃗, ÂtÂ = x⃗x⃗t + 1. (B.12)

Now we make the ansatz
D̂t

1L̂ = B̂1D̂2 (B.13)

and prove, that this can be fulfilled with B̂1 a boost in 1-direction and D̂1 and D̂2 rotation
matrices.
Now we operate with this ansatz on the time-like canonical basis vector:

D̂t
1L̂e0 =

(
a

D̂′
1
ty⃗

)
. (B.14)

Since L̂ is assumed to be orthochronous we have together with (B.12) a ≥ 1. Thus we can set
a = coshλ with λ defined up to its sign. Using (B.12) again we find y⃗2 = cosh2 λ− 1 = sinh2 λ.
Thus we find D̂′

1 ∈ O(3) with

D̂′
1y⃗ =



sinhλ

0
0


 . (B.15)
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Using now D̂2 = B̂1(λ)
−1D̂t

1L̂ we have by construction D̂2e0 = e0 leading to D̂2 ∈ O(3). Because
the three determinants defining D̂2 have determinant 1 that is also the case for D̂2. So we have
D̂2 ∈ SO(3). Q.E.D.

Corollary 1. The proper orthochronous Lorentz group SO(1, 3)↑ is the connected subgroup of
the Lorentz group containing the identity. It is a six-dimensional linear Lie group, which can be
parameterised with help of generalised Euler angles:

L̂ = Ô3(α)Ô1(β)Ô3(γ)B̂1(λ)Ô1(δ)Ô3(ϵ). (B.16)

Herein On(α) ∈ SO(3) denotes the rotation around the n-axis with an angle α.

Proof. We have just to parameterise the rotations in (B.10) with their Euler angles and use the
fact that a rotation around the 3-axis commutes with a boost in 1-direction. Since the matrices
used build one parameter subgroups of the proper orthochronous Lorentz group SO(1, 3)↑ they
are all differentiable. So it is a Lie group. Since we use all the time matrix representations this
group is by definition a linear Lie group.

Q.E.D.

Theorem 8. The proper orthochronous Lorentz group SO(1, 3)↑ is isomorphic to the factor group
SL(2,C)/{1,−1}:

SO(1, 3)↑ ∼= SL(2,C)/{1,−1}. (B.17)

Proof. First we look at the rotation group as a subgroup of the SO(1, 3)↑. Its universal covering
group is the SU(2) describing the spin 1/2 in quantum mechanics. The fundamental represen-
tation of this group is given by the operation of unitary 2 × 2 matrices with determinant 1 on
C2. In our context the C2-vectors are called spinors. We denote these spinors as column vectors
with components with upper indices: ψ = (ψ1, ψ2)t and define its hermitian conjugate as the
row vector ψ† = (ψ1∗, ψ2∗). For an arbitrary SU(2)-matrix U we have

∀ψ1, ψ2 ∈ C2 : (Uψ1)
†(Uψ2) = ψ†

1ψ2. (B.18)

The transformation law of the conjugate complex spinor is given by

(Uψ)∗ = U∗ψ∗ = (U †)tψ∗ = (U−1)tψ∗. (B.19)

One says that the conjugate complex spinor is transformed contragredient to the spinor itself.
In the case of SU(2) the dual spinor ψd = ϵψ with the matrix

ϵ =

(
0 1
−1 0

)
⇒ ϵt = −ϵ, ϵ2 = −1, ϵt = ϵ† = ϵ−1 (B.20)

transforms under SU(2) transformations also according to the contragredient transformation,
which tells us, that for the SU(2) the fundamental representation and its conjugate complex
representation are unitary isomorphic. This is proved immediately by the fact that

∀U ∈ SU(2) : U∗ = ϵUϵ−1. (B.21)

As one knows from the representation theory of angular momenta in quantum mechanics, each
irreducible representation of the SU(2) can be given as the irreducible part of tensor represen-
tations of the fundamental representation, this is true for all complex representations of the
SU(2).
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We define the spinor components with lower indices by

ψα = ϵαβψ
β. (B.22)

Because of (ϵαβ) = (ϵαβ) we have

ψβ = ϵαβψα = −ϵβαψα, (B.23)

where we have used the properties of ϵ given in (B.20).
All this shows that the skew-symmetric product

χαψα (B.24)

is invariant under SU(2) transformations.
Now we seek for all transformations which leave this product invariant. This needs not to be
a unitary transformation. So let Tαβ be a complex 2 × 2 matrix. Then the condition for this
matrix to leave the product (B.24) invariant is

TαϵT
β
δϵαβ = ϵϵδ = detTϵϵδ ⇒ det(T ) = 1. (B.25)

In the last step of the equation above we have used the fact that ϵ is the skew-symmetric matrix
in C2 and the representation of the determinant. We conclude that the only restriction on T to
leave the product (B.24) invariant is that its determinant is 1. This means that this product is
left invariant under all SL(2,C) transformations.
Since these matrices have no further restrictions the conjugate complex representation is no
longer equivalent. So we define SL(2,C) spinors which transform under the conjugate complex
representation by setting a dot over the indices of the components. This means

ψ′β̇ = (T β̇ α̇)
∗ψα̇. (B.26)

Now we can map symmetric second-rank SU(2)-tensors to R3 vectors. For x⃗ = (x, y, z)t ∈ R3

this mapping is given by

ψ11 = −x+ iy, ψ22 = x+ iy, ψ12 = z, det(ψαβ) = −x⃗2, (B.27)

and the inverse transformation is

x =
1

2
(ψ22 − ψ11) =

1

2
(ψ2

1 + ψ1
2),

y =
1

2i
(ψ11 + ψ22) =

1

2i
(ψ2

1 − ψ1
2),

z =
1

2
(ψ12 + ψ21) =

1

2
(ψ1

1 − ψ2
2).

(B.28)

The operation with SU(2) matrices on the second-rank spinors give the well known homomor-
phism SU(2) → SO(3). Now we look at R3 as a part of the Minkowski space R(1,3). To find
an analogous homomorphism for the proper orthochronous Lorentz group we have to include
the component x0 in the mapping. It should be invariant under the SU(2) representations since
rotations operate only on the space-like component in the given frame. Such an invariant of the
second-rank spinor is given by its trace. But this is fixed by the mapping of x⃗.
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On the other hand by using SL(2,C)-spinors we have the dotted indices, and under the subgroup
SU(2) an upper dotted index transforms like a lower normal index. Thus the mapping

x0 =
1

2
(ψ11̇ + ψ22̇), x1 =

1

2
(ψ21̇ + ψ12̇),

x2 =
i

2
(ψ12̇ − ψ21̇), x3 =

1

2
(ψ11̇ − ψ22̇)

(B.29)

is the searched generalisation of the SU(2) case. The inverse is given by

ψ11̇ = x0 + x3, ψ22̇ = x0 − x3,

ψ12̇ = x1 − ix2, ψ21̇ = x1 + ix2
(B.30)

since det(ψαβ̇) = x2 = (x0)2−x⃗2 is left invariant under SL(2,C). Thus we have a homomorphism
SL(2,C) → O(1, 3). We shall show below that it is a homomorphism

ϕ : SL(2,C) → SO(1, 3)↑. (B.31)

The fundamental representation of the SL(2,C) is not isomorphic to its complex conjugate as can
be seen by the example S = diag(2i, 1/(2i)). Since eigenvalues are left unchanged under equiva-
lence transformations and the conjugate complex of S has evidently not the same eigenvalues as
S.
In the case of SU(2)-matrices this argument does not hold since all its eigenvalues are of modulus
one and thus by the complex conjugation they are only interchanged, which can be described by
equivalence transformations with permutation matrices.
To finish the proof of our theorem we use the short hand notation ψ̂ for the matrix (ψαβ̇). Then
the SL(2,C) operation on our spinor of rank two can be written as

ψ̂′ = Aψ̂A†. (B.32)

Since det ψ̂ = det ψ̂′ = x2 we have ϕ(SL(2,C)) ⊆ O(1, 3). Setting

A =

(
a b
c d

)
, detA = ad− bc = 1 (B.33)

and taking x = e0 in (B.30) we find with L = ϕ(A)

L0
0 =

1

2
(|a|2 + |b|2 + |c|2 + |d|2) > 0 (B.34)

which shows that ϕ(SL(2,C)) ⊆ O(1, 3)↑. Now we have ϕ(1̂) = 1. Since ϕ is continuous and
detL = ±1 we find that ϕ(SL(2,C)) ⊆ SO(1, 3)↑. That it is a homomorphism we can see
immediately from (B.32).
Now we have to show that ϕ(SL(2,C)) = SO(1, 3)↑, i.e., that the homomorphism is an epimor-
phism. Since the restriction of ϕ to SU(2) is an epimorphism onto SO(3) due to theorem 8 we
have only to show, that all boosts in 3-direction are in its image.
Calculating L = ϕ(A) explicitly with A given by (B.33), we find that we have only to set b = c = 0
and a = 1/d = exp(−λ) to obtain L = B3(λ) for any given λ ∈ R. This shows that indeed ϕ is
an epimorphism.
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To finish the proof we have to investigate, which SL(2,C) matrices are mapped to 1. An explicit
calculation shows that ϕ(A) is fulfilled only for b = c = 0 and |a| = 1. Thus we have ϕ−1({1}) =
kerϕ = {1,−1}. From the epimorphism theorem of elementary group theory this finishes the
proof.

Q.E.D.

Theorem 9. The proper orthochronous Lorentz group SO(1, 3)↑ is simple. Due to the last
theorem this means that the only nontrivial invariant subgroup of SL(2,C) is {−1, 1}.

Proof. Suppose H is an invariant subgroup of SL(2,C) which contains a matrix A ̸= ±1. To
proof the theorem we have to show that from this follows H = SL(2,C).
We start with the following classifications of SL(2,C) matrices.

1. B ∈ SL(2,C) has two distinct eigenvalues t and 1/t. Then the matrix is equivalent to the
diagonal matrix diag(t, t/t).

2. B ∈ SL(2,C) has two equal eigenvalues ±1 and is equivalent to diag(±1,±1).

3. B ∈ SL(2,C) has a single eigenvalue ±1 and is thus equivalent to one of the Jordan forms
(
1 0
1 1

)
or

(
−1 0
1 −1

)
(B.35)

respectively.

Let

X =

(
x y
z x

)
∈ SL(2,C). (B.36)

Now we look at the matrix Y = A(XA−1X−1). Since H is an invariant subgroup the matrix in
parentheses is also contained in H and thus Y ∈ H. A little bit of algebra gives

s = TrY = 2 + b2z2 + c2y2 − [(a− d)2 + 2bd]yz, (B.37)

where we used (B.33) for the matrix A. Because A ̸= ±1 it cannot be a = d simultaneously with
b = c = 0. Thus s is not constant with respect to y and z. Now y and z can be chosen arbitrarily
since it is always possible to adjust x such that detX = 1. So we can adjust s to any value in C
we like.
The eigenvalues of Y are given as the zeros of the characteristic polynom and after a little
calculation we find

λY =
s

2
±

√
s2 − 4

2
. (B.38)

Thus H contains any matrix with different eigenvalues, i.e., all SL(2,C) matrices of class one.
Since H is an invariant subgroup of SL(2,C) it contains the unity matrix as well as

−1 = diag(t, 1/t)diag(−1/t,−t) (B.39)

for any number t ̸= ±1. The third class of SL(2,C)-matrices can be written as
(
±1 0
1 ±1

)
=

(
1/t 0
0 t

)(
±t 0
1/t ±1/t

)
. (B.40)
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From this we conclude that the invariant subgroup H contains all SL(2,C)-matrices, which shows
that the only nontrivial invariant subgroup is {1,−1} and from theorem 2 we see that the proper
orthochronous Lorentz group SO(1, 3)↑ contains no nontrivial invariant subgroup, i.e., it is a
simple linear Lie group, which was claimed by the theorem.

Q.E.D.

B.2 Representations of the Lorentz Group

In this section we investigate the finite-dimensional irreducible representations of the proper
orthochronous Lorentz group SO(1, 3)↑ and its covering group, the SL(2,C).

Theorem 10. The Lie algebra of the SL(2,C), the sl(2,C), is algebraically isomorphic to su(2)×
su(2). Each irreducible representation of sl(2,C) can be characterised by two numbers k and k′

with possible values 0, 1/2, 1, 3/2, . . . .
For k + k′ “half-integer” the representations are spinor representations of sl(2,C). For k + k′

integer it is equivalent to an irreducible tensor representation of so(1, 3).
The exponential exp : sl(2,C) → SL(2,C) is not surjective, but its image generates the SL(2,C).

Proof. As the first step we derive the Lie algebra, which is given by six linearly independent
matrices in the tangent space of the group at the identity. These are given simply as derivatives
of the three independent rotations and the three independent boosts, where the boosts are given
like in (3.5) together with (3.10) and its analogies for the boost in the other two directions.
Together with the familiar angular momentum matrices for the rotation group we find by direct
calculation the Lie algebra LSO(1, 3)↑ = LSL(2,C) = sl(2,C) to be

[Jj , Jk] = iϵjklJl, [Kj ,Kk] = −iϵjklJl, [Jj ,Kk] = iϵjklKl. (B.41)

We find immediately that the rotation algebra is a sub algebra of sl(2,C) as we know from lemma
1 about the O(1, 3)↑. Now we choose another basis for the Lie algebra defined with help of the
above given by

Aj =
1

2
(Jj + iKj), Bj =

1

2
(Jj − iKj) ⇒ (B.42)

⇒ [Aj , Ak] = iϵjklAl, [Bj , Bk] = iϵjklBl, [Aj , Bk] = 0. (B.43)

Thus the sl(2,C) is the direct sum of two su(2) Lie algebras: sl(2,C) = su(2)⊕ su(2).
We can immediately apply the representation theory of the su(2) to our case. There are two
commuting Casimir operators, namely A⃗2 = AiAi and B⃗2 = BiBi. Each irreducible representa-
tion can be uniquely determined by the eigenvalues of the two Casimir operators k(k + 1) and
k′(k′ + 1) with k and k′ running over the range claimed in the theorem.
The vector space, the group operates on by the representation (k, k′), is spanned by the simul-
taneous eigenvectors of A3 and B3. The eigenvalues of A3 are −k,−(k − 1), . . . , k and those of
B3 are −k′,−(k′ − 1), . . . , k′. The dimension of the representation (k, k′) is (2k + 1)(2k′ + 1).
The fundamental representations of sl(2,C) which can be obtained as the tangent space of the
fundamental representations of SL(2,C) described in the proof of theorem 3, are in this context
(1/2, 0) and (0, 1/2). This can be seen from the fact that these are the only two-dimensional
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representations of the algebra. By definition the first one is given by the spinors with normal
indices, the second one by the spinors with dotted indices.
The proof of theorem 3 shows also that the fundamental representation of the SO(1, 3)↑, i.e., the
tangent space of SO(1, 3)↑ is (1/2, 1/2).
From the Clebsch-Gordan theorem for the rotation algebra we know that each irreducible rep-
resentation of su(2) can be given as the irreducible part of a spinor representation with an
appropriate rank of spinors. The same is thus true for the sl(2,C). Further we know that the
integer-valued irreducible representations are equivalent to irreducible tensor representations.
Since the one-parameter subgroups of SL(2,C), given by the boosts and rotations, are of course
in the image of the exponential function the theorem is proven by application of theorem 2 and
corollary 1.
An example for a SL(2,C) matrix which is not contained in the image of the exponential function
exp : sl(2,C) → SL(2,C) is given by the “null rotations” described below in the context of massless
states.

Q.E.D.

B.3 Representations of the Full Lorentz Group

So far we have only given representations of SO(1, 3)↑, which is the invariant subgroup of O(1, 3)
connected with the identity, and its universal covering group SL(2,C).
Now we want to find the representations of other subgroups of O(1, 3) and the full Lorentz group
itself. For this purpose we prove

Theorem 11. Let G be a group, G1 an invariant subgroup such that the factor group G/G1 is
isomorphic to the group of two elements Z2. Then there are two possibilities for a given irreducible
finite-dimensional representation Φ : G→ GL(V ):
(1) If the representation of G1, which is induced by Φ is irreducible, then there exists one and
only one other irreducible representation Φ′ of G which is inequivalent to the representation Φ
and induces the same irreducible representation of G1 as Φ. If G2 ̸= G1 is the coset of G1 in G
then we have ∀g2 ∈ G2 : Φ(g2) = −Φ′(g2).
(2) If Φ induces a reducible representation of G1 then this representation is the direct sum of two
inequivalent irreducible representations of G1 which both have the same dimension. These two
irreducible representations of G1 determine Φ up to equivalence uniquely.

Proof. (1) Let Φ induce an irreducible representation of G in V . Let Φ′ be also an irreducible
representation of G in V with Φ(g1) = Φ′(g1) for all g1 ∈ G1.
For g2 ∈ G2 we have for g1 ∈ G1 (using the fact that G1 is invariant subgroup of G) ḡ1 =
g−1
2 g1g2 ∈ G1 and thus Φ(ḡ1) = Φ′(ḡ1). This implies that Φ(g1)Φ

′−1(g1) is commuting with all
Φ(g1) with g1 ∈ G1. Since the representation of G1 which is induced by Φ is irreducible we have
by Schur’s lemma Φ(g2) = λΦ′(g2) with a λ ∈ C.
Because we have by assumption only one coset of G1 in G, namely G2, for all g′2 ∈ G2 there is a
g1 ∈ G1 such that g′2 = g1g2 with a fixed g2 ∈ G2. Thus λ is independent of the choice of g2 ∈ G.
Since with g2 ∈ G2 also g−1

2 ∈ G2, we have necessarily λ = 1/λ and thus λ = ±1.
Now we assume that we have given the irreducible representation of G1 which is induced by
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Φ. Then we can construct an representation of G by using λ = 1 which leads back to the
representation Φ or by using λ = −1.
These both representations are inequivalent, since because Φ(g1) = Φ′(g1) for all g1 ∈ G defines
an irreducible representation of G1 on V from Φ(g) = TΦ′(g)T−1 we have T ∝ idV from Schur’s
Lemma. Thus these representations cannot be equivalent. This proves the first claim of the
theorem.
(2) Now we suppose that Φ induces a reducible representation of G1 in V . Then there exists a
proper subspace V1 of V which is invariant under the group operations of G1 induced with help
of Φ.
Now we define for an arbitrary g2 ∈ G2 the subspace V2 = Φ(g2)V1. This subspace is independent
of the choice of g2 ∈ G2. To this end let g′2 ∈ G2. Since by assumption there exists an element
g1 ∈ G1 with g′2 = g2g1 we have

Φ(g′2)V1 = Φ(g2)Φ(g1)V1 = V2,

where we have used that Φ(g1) leaves the subspace V1 invariant and is an isomorphism in V1.
Now we show that V2 is also an invariant irreducible space with respect to the group operations
of G1 induced by Φ. To this end take an arbitrary element g1 ∈ G1 and an arbitrary element
g2 ∈ G2 and calculate

Φ(g1)V2 = Φ(g1)Φ(g2)V1 = Φ(g2)Φ(g
−1
2 g1g2︸ ︷︷ ︸
∈G1

)V1 = Φ(g2)V1 = V2,

where we have used that G1 is an invariant subgroup of G.
Now G operates via Φ invariantly on V ′ = span(V1∪V2). Since Φ is an irreducible representation
of G on V we have necessarily V ′ = V .
The next step is to prove V ′′ = V1 ∩ V2 = {0}. But this is clear since this is a proper subspace
of V which is left invariant under the G-operations defined by the irreducible representation in
V . But by definition of an irreducible representation this implies V ′′ = {0}.
Now the representation of G1 induced by Φ in V2 is equivalent to the representation of G1 induced
by the conjugate representation Φ′(g1) = Φ(g−1

2 g1g2) with g2 ∈ G2 on V1. We conclude from this
that the operation of G1 on V2 is also irreducible and that Φ(g2)V1 = V2.
Now suppose the both constructed irreducible representations of G1 were equivalent. This would
imply that the representation Φ′ restricted to G1 would be equivalent to the representation of
G1 determined by Φ restricted to G1. The equivalence transformation would be given by Φ(g2)
with an arbitrary g2 ∈ G2. But then using again Schur’s lemma this would mean that Φ(g2) is
∝ 1 which is impossible since it interchanges the two direct summands V1 and V2 of V .

Q.E.D.

In our case of the Lorentz group we use this theorem in the following way

1. G = O(1, 3)↑ and G1 = SO(1, 3)↑.

In this case we have G/H = {1, P} ∼= Z2, where P is diag(1,−1,−1,−1), i.e., the parity
operator which describes spatial reflections.

First we look at the fundamental representations of SL(2,C), which are (1/2, 0) and (0, 1/2).
From our theorem part (2) we learn that the corresponding irreducible representation of
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O(1, 3)↑ is operating on the direct sum (1/2, 0)⊕ (0, 1/2). From the theorem it follows that
this is the only possibility since the two representations of the invariant subgroup have to
be inequivalent and be of the same dimension. The only two inequivalent two-dimensional
representations of SL(2,C) are (1/2, 0) and (0, 1/2).

Since we have O(1, 3)↑ ∼= SL(2,C)/{1,−1} and in space-time, i.e., as operator in O(1, 3)↑

it is P 2 = 1. Looking on the extension of SL(2,C), which is the covering group of O(1, 3)↑

to a covering group of O(1, 3)↑ there are two possibilities, namely P 2 = ±1. This shows
that the covering of the O(1, 3)↑ is not unique (the deeper reason is that this group is not
connected).

In the first case, i.e., P 2 = +1, this gives the only possibility to extend the SL(2,C) to a
covering of O(1, 3)↑ by introducing a (1/2, 0) spinor ψ (a C2 spinor as described in the last
section with components with normal indices) and a (0, 1/2) spinor (i.e. a C2 spinor with
dotted indices) χ. Then the parity operator acts in the form

Pψα = ±χα̇, Pχβ̇ = ±ψβ, (B.44)

which fulfils for both signs P 2 = 1.

For P 2 = −1 we have
Pψα = ±iχα̇, Pχα̇ = ±iχα, (B.45)

where again for both sign conventions P 2 = −1 is fulfilled.

Now we look at the fundamental representation (1/2, 1/2). Here applies part (1) of the
theorem. Since we can represent the parity operator P by the unity operator (trivial repre-
sentation of space reflections) there must be another inequivalent representation of O(1, 3)↑

whose restriction to O(1, 3)↑ is the (1/2, 1/2) representation. The theorem tells us that
this is the fundamental representation of space reflections with P = diag(1,−1,−1,−1).

2. G = O(1, 3) and G1 = O(1, 3)↑.

In this case the theorem applies again since here we have G/G1 = {−1, 1}.
We start again with the fundamental representation of the covering group SL(2,C) and try
to extend it to covering groups of O(1, 3). Since −1 ∈ O(1, 3) commutes with all O(1, 3)
matrices the same is the case for the covering group. Since we have (−1)2 = 1 in O(1, 3)
the total space-time reflection Ptot in the covering has to fulfil P 2

tot = ±1. Both possibilities
can be realized extending the representations (1/2, 0) and (0, 1/2).

In the first covering we have the pair Ptotψ = ±ψ of inequivalent representations and in
the second covering the pair Ptotψ = ±iψ.

It should be mentioned that this possibilities are restricted to the classical theory since in
quantum theory time reflections are necessarily represented with anti-unitary operators.

Taking both cases together we find that there are four inequivalent covering groups of the whole
Lorentz group O(1, 3) and each of them can be realized with two spinor representations. To
distinguish the spinors of the (1/2, 0) and (0, 1/2) which are irreducible representations of the
proper orthochronous Lorentz group SO(1, 3)↑ with these of the representation (1/2, 0)⊕ (0, 1/2)
which leads to irreducible representations of the possible covering groups of the proper Lorentz
group O(1, 3), we call the former spinors Weyl spinors and the latter Dirac spinors. In chapter
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4 we shall use these results to construct physically different types of spinors, i.e., spinor fields
which describe different sorts of particles.
We have found all finite-dimensional representations of the Lorentz group and it should be
emphasised that there is no unitary finite representation (except the trivial one). This is due to
the fact that the Lorentz group is not compact.

B.4 Unitary Representations of the Poincaré Group

Now we are ready to give the physically relevant unitary representations of the Poincaré group,
which is the semi-direct product of the different types of the Lorentz group with space-time
translations, which is given by the operation on the space-time vector x ∈ R(1,3):

T (a, L)x = Lx+ a with L ∈ G ⊆ O(1, 3), a ∈ R(1,3). (B.46)

The group operation can be found by applying two such transformations to x and the result is

T (a2, L2)T (a1, L1) = T (L2a+ b, L2L1). (B.47)

It is trivial to show that this is indeed a group multiplication.
Now we have seen that we can restrict our search for unitary representations of this group to
G = SO(1, 3)↑ since the possible extensions to greater parts of the Lorentz group is constructed
in the last section. Then the group defined by (B.47) is called proper orthochronous Poincaré
group and is denoted by P↑

+.

Since this group is by no means compact and we need unitary representations of P↑
+ for defining

quantum mechanical observables by hermitian operators which are the generators of P↑
+, we have

to use an infinite-dimensional Hilbert space H the representations operate on.
Since SO(1, 3)↑ is six-dimensional and the space-time translations four-dimensional, P↑

+ is ten-
dimensional, and thus we define the operators representing the ten following observables of a
fundamental quantum object (here called “particles” for abbreviation) by looking the (physically
meaningful) unitary representations of P↑

+ on H : Energy, momentum, angular momentum,
centre of mass coordinates.
Now we look on the unitary representations of P↑

+. Since we can do this by calculating the
operation of unitary operators of the factors in the semi-direct product of this group by searching
a generalised basis of the Hilbert space consisting of the simultaneous generalised eigenvectors
of a complete set of hermitian generators of the group. For this purpose we have to find such a
complete set, which is linearly independent and pairwise commuting.
We start with the generators of translations p which are commuting since the translation group
(here seen as subgroup of P↑

+). From this we find immediately that the unitary operator for
translations is given by

U(a) = exp(iap) with a ∈ R(1,3). (B.48)

The p are hermitian commuting operators. Now we define |p, α⟩ as the simultaneous eigenket of
the momenta p, where α labels the degeneracy of the eigenket.
This defines the operation of the translation group on the generalised eigen-kets of the momentum
operators:

U(a) |p, α⟩ = exp(ipa) |p, α⟩ . (B.49)
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The spectrum of p is R4 as one can show in the same way as in nonrelativistic quantum mechanics.
Now we investigate the unitary operators U(L̂) representing SL(2,C) transformations of a given
irreducible representation shown in the last section.
Since p has to be a vector operator as can be shown by the usual method with help of the
commutator relations following from (B.47) for “infinitesimal” transformations, we have

pµU(L̂) |p, α⟩ = U(L̂)Lµ
νpν |p, α⟩ = Lµ

νpνU(L̂) |p, α⟩ . (B.50)

Comparing the very lefthand side with the very righthand side of this equation we conclude, that
U(L̂) |p, α⟩ is a simultaneous eigenket of p with the eigenvalues L̂p.
Since |p, α⟩ spans by definition the irreducible eigenspace of p, further on denoted by Eig(p, p),
it must hold

U(L̂) |p, α⟩ =
∑

β

Qβα(p, L̂)
∣∣∣L̂p, β

〉
. (B.51)

Since we are only interested in unitary representations of the Poincaré group Qαβ has to be a
unitary matrix, which means (Q−1)αβ = Q∗

βα.
Now the representation can only be irreducible, if it is possible to transform each |p, α⟩ to any
|p′, α⟩ contained in the generalised basis of the Hilbert space. Since the translation operators
do not change the momentum eigenvalue of the ket, this change must be possible by applying
SO(1, 3)↑-transformation (B.51). Thus the spectrum of the momenta building the eigen-kets
which span the irreducible Hilbert space have to be in a manifold, on which the proper or-
thochronous Lorentz group operates transitively. These manifolds are given by the condition

(p′)2 = p2, sign(p′)0 = sign p0 (B.52)

with an arbitrary vector of reference p contained in this manifold. We conclude that these
manifolds are given in the following form

p2 = m2 > 0, p0 > 0, (B.53)

p2 = m2 > 0, p0 < 0, (B.54)

p2 = 0, p0 > 0, (B.55)

p2 = 0, p0 < 0, (B.56)
p = 0, (B.57)

p2 = m2 < 0. (B.58)

Thus to specify an irreducible representation we need at least the class of momenta given by one
of these manifolds. The discussion about the causality of waves describing free particles, which
we aim to classify by finding all unitary irreducible representation of the Poincaré groups, shows
that only the classes (B.53-B.56) lead to causal fields (at least in the quantised form which gives
the possibility give to solve the problem with the negative energies in the cases (B.54) and (B.56)
in terms of the Feynman-Stueckelberg formalism).
Now we go further in the classification of the irreducible unitary representations. To this end we
have to investigate the possible realisations of the matrices Qβα in (B.51). Using this equation
for the composition of two Lorentz transformations leads to

Qγα(L̂2L̂1, p) =
∑

β

Qγβ(L̂2, L̂1p)Qβα(L̂1, p). (B.59)
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This equation is the property for a group homomorphy SL(2,C) → GL(Eig(p, p)) if L̂ is restricted
to the subgroup of SO(1, 3)↑ which leaves the vector p invariant, which is called little group
with respect to p. We denote this little group for abbreviation with K(p) (this is no standard
notation in literature but convenient for our purposes). Now we chose a standard vector p0 in
the appropriate manifold (B.53-B.56).
Here we give the formal definition for the little group with respect to the standard momentum
vector p0.

K(p0) = {L̂ ∈ SO(1, 3)↑|L̂p0 = p0}. (B.60)

It is trivial to show that this defines a sub group of the SO(1, 3)↑.
No we show how to obtain the irreducible representation of the whole group supposed the
Qβα(K̂, p0) build an irreducible representation of the little group K(p0). Since the represen-
tation is irreducible each vector p which may occur in the set of momentum eigen-kets of the
representation (which is necessarily given by one of the manifolds implicitly defined by (B.53-
B.56)) can be obtained by operating with a certain given SO(1, 3)↑ matrix on p0, because these
manifolds are those on which the SO(1, 3)↑ operates transitively. In a more compact notation
this can be described by

∀p ∈M∃Λ(p) ∈ SO(1, 3)↑ : p0 = Λ(p)p, (B.61)

where M is one of the manifolds (B.53-B.56) which describe possible causal fields, if the Hilbert
space H is realized as the function space L2.
The only restriction we want to make about Λ : M → O(1, 3)↑ is that it is a continuously
differentiable mapping with Λ(p0) = 1.
We start with the case (B.53). As the standard vector we chose that of the rest frame momentum
of a particle with mass m, namely p0 = (m, 0, 0, 0)t. The manifold M can now be parameterised
with help of the spatial part p⃗ ∈ R3 of the momentum:

p =

(√
m2 + p⃗2

p⃗

)
. (B.62)

From our physical intuition it is clear that the change from the rest frame momentum p0 to
the general momentum (B.62) should be given by the boost in direction n⃗ = p⃗/|p⃗| with velocity
(measured in units of the light velocity) β = n⃗p⃗/

√
m2 + p⃗2. The appropriate matrix is thus

given by

Λ−1(p) =

(
γ γβn⃗t

γβn⃗ (γ − 1)n⃗⊗ n⃗+ 1

)
with γ =

1√
1− β2

. (B.63)

It is easy to verify that (B.63) indeed fulfils (B.61) Λ−1(p)p0 = p. It is also continuously
differentiable since this is the case for each single matrix element of Λ(p).
Now for all L̂ ∈ SO(1, 3)↑ and for all p ∈M the matrix K̂(L, p) = Λ(L̂p)L̂Λ−1(p) ∈ K(p0). This
can be proven simply by applying the definition (B.61) of Λ(p) twice:

K̂(L̂, p) = Λ(L̂p)L̂Λ−1(p)p0 = Λ(L̂p)L̂p = p0. (B.64)

Together with the given choice of Λ(p) we have thus a unique decomposition of any O(1, 3)↑-
matrix

L̂ = Λ−1(L̂p)K̂(L̂, p)Λ(p). (B.65)
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where K̂(L̂, p) ∈ K(p0).
Now we chose the base kets |p, α⟩ in the following way

|p, α⟩ = Ũ−1(Λ(p)) |p0, α⟩ . (B.66)

With respect to this so called Wigner basis together with (B.51) we obtain

U[K̂(L̂, p)] |p0, α⟩ =
∑

β

Qβα[K̂(L̂, p), p0] |p0, β⟩ . (B.67)

Since K̂(L̂, p) is in the little group with respect to p0 together with (B.59) this transformation
law is completely determined by choosing an arbitrary representation of this little group K(p0)
operating on the simultaneous eigenspaces of the p with eigenvalues p0 whose base kets we have
denoted with |p0, α⟩.
We have to show now how to determine the Qβα(L̂, p) for all O(1, 3)↑-matrices, which are not
contained in K(p0). To this end we apply (B.65) to (B.51)

∑

β

Qβα(L̂, p)
∣∣∣L̂p, β

〉
= U[Λ−1(L̂p)K̂(L̂, p)Λ(p)] |p, α⟩ . (B.68)

Multiplying this with U[Λ(L̂p)] from the left and using the fact that U is a representation of P↑
+

we find with help of the definition (B.61) for Λ(p):

U[K̂(L̂, p)] |p0, α⟩ =
∑

β

Qβα(K(L̂, p), p0) |p0, β⟩ (B.69)

Comparing this with (B.67) we have

Qβα(L̂, p) = Qβα[K̂(L̂, p), p0] (B.70)

which shows that the Qβα are completely determined by a unitary representation of the little
group K̂(p0) since, given this representation, all other Qβα are determined by (B.70) and then
it is given, because K̂(L̂, p) ∈ K(p0).
The same time it is clear that the unitary representation U given by of (B.49), (B.51) and (B.70)
with help of a unitary representation Qβα of the little group K(p0) is irreducible if and only if
the representation of the little group is irreducible. It is also clear that constructing an unitary
function U in this way we obtain indeed an irreducible representation of P↑

+ and thus all unitary
representations of P↑

+ can be constructed in this way.
Now we can find the physically relevant irreducible unitary representations, defining the one-
particle Hilbert spaces of elementary particles, P↑

+ by giving the irreducible representations of
the various classes of such representations defined by the manifolds (B.53-B.56).
To this end we investigate the Lie algebra of the little group defined by the standard vector p0,
which build a subalgebra of the O(1, 3)↑ = sl(2,C). Since the Lie algebra is the same for all
representations we can find the general structure of Lie algebra K(p0) := k(p0) by investigating
the fundamental representation of O(1, 3)↑ operating on R(1,3). This gives also a nice picture
about the geometric content of the little group.
Now it is convenient to parameterise the Lie algebra operation on the R(1,3)-vectors with help of
antisymmetric matrices δω:

δxµ = δωµνx
ν with δωρσ = −δωσρ. (B.71)
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The six corresponding matrices building a basis of the Lie algebra are given by M̂µν = −M̂νµ and
are, for µ = 0, the three independent generators for boosts, while the purely spatial components
define the three generators for rotations.
Now a Lie algebra element is in k(p0) if it leaves the given vector p0 unchanged:

δpµ0 = 0 = δωµνp
ν
0 ⇔ (δωµν) ∈ k(p0). (B.72)

The general solution of this condition can be parameterised with a vector δΦ by

δωµν = ϵµνρσδΦ
ρpσ0 . (B.73)

Thus in a general representation the generators Wρ of k(p0) are given with help of the hermitian
operators Mµν = −Mνµ representing the Lie algebra of the O(1, 3)↑ in the Hilbert space

Wρ =
1

2
ϵµνρσM

µνpσ, (B.74)

if we restrict the operation to Eig(p, p0). Wρ is known as the Pauli-Lubanski vector. Since we
have the restriction Wµp

µ = 0 which follows directly from (3.32) together with the commuta-
tivity of the four p. Thus the little group is in general three-dimensional. As we shall see this is
the case for the “causal” representations given by the manifolds (B.53-B.56).

B.4.1 The Massive States

Let us start with the case (B.53), i.e., the standard vector of the little group p0 should be in
the forward light-cone defined by p20 = m2 > 0 with positive time component. To keep the story
simple we chose p0 = (m, 0, 0, 0)t withm > 0. It is clear that in this caseK(p0) = O(3), operating
on the three space components of the frame defined by p0. The irreducible representations of
the rotation group O(3) or its covering group SU(2) is well known from the angular momentum
algebra in quantum mechanics. Since this SU(2) operates in the rest frame basis of the Hilbert
space, the little group for massive particles is the intrinsic angular momentum of the particles,
i.e., the spin.
We conclude: For massive particles any irreducible representation of P↑

+ is defined by the eigen-
values of the Casimir operators p2 and the spin square s2 with eigenvalues m2 with m ∈ R+

and s(s + 1) with s = k/2, k ∈ N. But these Casimir operator eigenvalues are not uniquely
determining the representation because to each m2 > 0 and s there are two inequivalent irre-
ducible representations of P↑

+, namely those with p0 = (+m, 0, 0, 0)t with the manifold M given
by (B.53) and those with p0 = (−m, 0, 0, 0)t with the manifold M given by (B.54).
We want to prove this with help of the formalism developed above and the same time to give
the relation between the Pauli-Lubanski vector and the spin. Because of (B.74) our choice of
p0 = (±m, 0, 0, 0)t leads to

W0 |p0, α⟩ = 0. (B.75)

With help of the Lie algebra of P↑
+ one calculates the commutator relations of Mµν and Pσ and

with these
[Wα,Wβ] = −iϵαβνρW

νPρ, (B.76)

and with a, b, c ∈ {1, 2, 3} we obtain finally

[Wa,Wb] |p0, α⟩ = iϵabcmW
c |p0, α⟩ . (B.77)
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Thus the operators

Sa =
Wa

m
(B.78)

fulfil the algebra of angular momentum in the subspace spanned by |p0, α⟩, and since we have
shown above that the three independent components (which are in our case the operators Wa

with a ∈ {1, 2, 3}) span the representation of the Lie algebra of the little group with respect to
p0 on the subspace Eig(p, p0), this shows formally what we stated above, namely that the little
group in our case is the SU(2) representing the spin of the particle in its rest frame.
Since W2 is a Casimir operator of the Poincaré group it follows from the irreducibility, which is
given if the |p0, α⟩ span an irreducible representation space of the spin group, it must be ∝ 1.
From (B.78) we find from the known spectrum of the spin operators (B.78)

W2 = −m2s(s+ 1)1. (B.79)

Thus the representation for the cases (B.53) and (B.54) are uniquely determined by the operating
of the Lie algebra operators of the Poincaré group on the Wigner basis:

p2 |m, s; p, σ⟩ = m2 |m, s; p, σ⟩ (B.80)

W2 |m, s; p, σ⟩ = −s(s+ 1)m2 |m, s; p, σ⟩ (B.81)

pµ |m, s; p, σ⟩ = pµ |m, s; p, σ⟩ with p2 = m2, p0 > 0 or p0 < 0 (B.82)

U(a) |m, s; p, σ⟩ = exp(ipa) |m, s; p, σ⟩ (B.83)

U(L̂) |m, s; p, σ⟩ =
s∑

σ′=−s
D

(s)
σ′σ[K(L̂, p)]

∣∣∣m, s; L̂p, σ′
〉

(B.84)

where K(L̂, p) = Λ(L̂p)L̂Λ−1(p) (B.85)

with Λ(p) given by (B.63). Herein we have made use of the known rotation matrices in the
representation D(s) and the properties calculated above about the action of the Lorentz group
described with help of the irreducible representation of the little group.

B.4.2 Massless Particles

Now we look on the cases (B.55) and (B.56). As the standard vector of the little group we use
in the former case (the latter can be treated analogously):

p0 =




1
0
0
1


 . (B.86)

Here the little group is not so simple to determine as in the massive case. For sure there are the
rotations around the 3-axis as a subgroup.
To find the little group to the light-like standard vector we use the SL(2,C) representation. The
standard vector is mapped to a mixed spinor of rank two with help of the rule (B.30). Since

det(pαβ̇0 ) = p20 = 0, (B.87)
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we can express this with help of a spinor κ

pαβ̇0 = κακ∗β̇ (B.88)

which is determined, up to an arbitrary phase, to be

(κα) =
√
2

(
1
0

)
. (B.89)

The little group is thus represented by those SL(2,C) matrices for which the spinor (B.89) is
eigenvector with a phase exp(iα/2) with α ∈ R as eigenvalue. As one can show easily by direct
calculation the most general matrix fulfilling these requirements is given by

A(b, α) =

[
exp

(
iα2
)

b exp
(
−iα2

)

0 exp
(
−iα2

)
]

with b ∈ C, α ∈ R. (B.90)

Thus, also in this case the little group k(p0) is three-dimensional. The independent real pa-
rameters in (B.90) are Re b, Im b, and α. Applying the SL(2,C) transformations to the mixed
second-rank spinor one sees that for b = 0 we obtain the rotations around the 3-axis with angle
α. The two other parameters belong to so called “null rotations”.
To identify the little group we multiply two group elements given by (B.90) leading to the
multiplication law

A(b′, α′)A(b, α) = A[b′ + exp(iα′)b, α′ + α], (B.91)

showing that it is the ISO(R2) here represented as ISO(C), i.e., the symmetry group of R2 or
C as affine point spaces. This group is the semi-direct product of rotations around the origin of
C, i.e., the U(1) and translations in C, which is the additive group of C. This is just the same
construction as used by building P↑

+ as the semi-direct product of SO(1, 3)↑ and the translations.
Thus the unitary irreducible representations of this group can be obtained in the same way as
we found those of P↑

+. But the classification of the representations due to the manifolds, the
rotations operate transitively on, are much simpler determined since the Euclidean metric is
positive definite: namely those with c = 0 and |c| = r ∈ R.
Thus there are only two classes given by the standard vectors of the little group k′(c0), namely
c0 = 0 ∈ C and c0 = r.
In the latter case the little group k′(c0) is trivial group, i.e., the identity. Nevertheless we
have a continuous set c, namely the circle of radius r in the complex plane. With regard to
the massless representations of the Poincaré group this corresponds a continuous inner spin-like
degree of freedom, which has been never observed so far. We thus exclude these from the possible
representations describing particles in nature.
In the former case, c0 = 0, the little group k′(0) is U(1) parameterised by α which corresponds
to the rotations around the 3 axis in k(p0).
Since the U(1) is abelian all irreducible representations are one-dimensional

d(α) = exp(iλα) with λ ∈ R, (B.92)

classifying all covering groups of U(1) by a real number λ. For λ ̸∈ Q it is isomorphic to R as
the covering group.
Now the subgroup SO(3) of rotations of SO(3, 1)↑ should be represented by the representations
of SU(2). The rotations around the three-axis, represented by the subgroup of the SU(2), are
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coverings of U(1) corresponding to values λ ∈ {0, 1/2, 1, 3/2, . . .}. In this way the values of λ are
restricted to these half-integer values1.
We can calculate now the Wigner transformations (B.61) for this case. The Lie algebra of
the little group spanned by the Pauli-Lubanski vector operator (B.74) leads to infinitesimal
transformations which can be mapped to our parameterisation given by the SL(2,C) matrices
(B.90). A little bit of algebra leads to

δb = δΦ2 + iδΦ1, δα = δΦ3 − δΦ0, (B.93)

showing that W3 generates the rotations around the 3-axis and W1 and W2 the null-rotations.
Since the little group does not contain null-rotations (corresponding to translations of ISO(C))
these are represented trivially on the subspace Eig(p, p0) which transforms under the operations
of the little group k(p0):

W1 |p0, λ⟩ = W2 |p0, λ⟩ = 0. (B.94)

Since we have
Wp |p0, λ⟩ = (W0 −W3) |p0, λ⟩ = 0 (B.95)

and from (B.76) for α = 0 and β = 3 we find together with (B.94) that [W0,W3] = 0 on the
subspace Eig(p, p0) the little group operates on. Thus we have

W2 |p0, λ⟩ = (W2
0 −W2

3) |p0, λ⟩ = 0. (B.96)

Since W2 is a Casimir operator of the Poincaré group and the representation is irreducible due
to Schur’s lemma we have W2 = 0 on the whole Hilbert space.
Since we have W2 = 0 and Wp = 0 and two orthogonal light-like vectors are proportional, we
have W = µp. Using (B.94) together with (B.93) and (B.92) with δb = 0 we obtain

(1− iδΦW) |p0, λ⟩ = (1− iδαW3) |p0, λ⟩ = (1 + iδαλ) |p0, λ⟩ . (B.97)

Together with our choice p0 = (1, 0, 0, 1)t we obtain µ = λ. With the definition of the Pauli
Lubanski vector we have

Wµ =
1

2
ϵρσνµM

ρσPν = λpµ. (B.98)

Especially for the 0 component we get

W0 =

3∑

k=1

Skpk with Sk =
1

2
ϵijk0M

ij , (B.99)

where S̃ is the spin operator of the system.
From this we find

λ =
S̃p̃

∥p̃∥ (B.100)

as the operator with eigenvalue λ, which is known as helicity, which is, as we have seen here, a
Poincaré-invariant quantum number for massless particles only.

1Indeed, up to now the only massless elementary particles are the gauge bosons of the standard model, namely
the photon (describing electromagnetic interactions) and the gluons (describing strong interactions). Those all
have λ = 1. To a good approximation also the neutrinos can be described as massless particles, but they are
doubtlessly corresponding to λ = 1/2. On the other hand nowadays, from the observation of neutrino oscillations
there is no doubt that at least two of the three standard-model neutrinos must have a mass different from 0.
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Since from (B.100) we see that the helicity is the projection of the spin in direction of the
momentum of the particle. Since it is a good quantum number for massless particles this defines
a definite chirality on them.
The physical applications of this appendix, especially in the quantised theory are given in chapter
4.

B.5 The Invariant Scalar Product

In this last short section we define the invariant scalar product in the momentum representa-
tion of the one-particle irreducible Hilbert spaces. We denote the irreducible Hilbert spaces by
H (m, s,±), where m ≥ 0 is the quantum number of the Casimir operator p2 which is m2 > 0
for the physical representations, s is the Casimir operator of the little group, which is σ⃗2 (spin
squared) for the massive and |λ| for the massless states, and ± denotes if we are in the space
with positive or negative energy respectively.
The Wigner base kets are denoted by |m, s,±; p, σ⟩ (or for short hand notation, if we fix the
representation and there is no danger of confusion |p, σ⟩). The momenta fulfil the energy mo-
mentum relation which is given by the on-shell condition p2 = m2 leading to p0 = ±

√
m2 + p⃗2

for the positive or negative energy representations respectively.
Because the representation is constructed to be unitary, the Wigner basis must be orthogonal.
This is written as 〈

p′, σ′
∣∣ p, σ

〉
= A(p⃗)δ(3)(p⃗− p⃗′)δσσ′ . (B.101)

From the unitarity of the representation we have on one hand
〈
p′, σ′

∣∣∣U†(L̂)U(L̂)
∣∣∣ p, σ

〉
=
〈
p′, σ′

∣∣ p, σ
〉
. (B.102)

On the other hand with (B.84) the unitarity of the rotation matrices D(s)
σσ′ we have

〈
L̂p′, σ′

∣∣∣ L̂p, σ
〉
=
〈
p′, σ′

∣∣ p, σ
〉
. (B.103)

Thus the function A(p⃗)δ(3)(p⃗− p⃗′) has to be a SO(1, 3)↑ scalar distribution. To find this distribu-
tion we use the fact that δ(4)(p− p′) is a O(1, 3)↑ scalar distribution and write it in the following
form

δ(4)(p− p′) = ±Θ(±p0)2p0δ[(p0)2 − (p′0)2]δ(3)(p⃗− p⃗′) =

= ±Θ(±p0)δ(m2 −m′2)δ(3)(p⃗− p⃗′) with p2 = m2, p′2 = m′2.
(B.104)

Since in the irreducible subspace we have m2 = m′2 and sign p0 = sign p′0 fixed, we define using
the fact that Θ(±p0)δ(m2 −m′2) is a SO(1, 3)↑ scalar distribution

A(p⃗) = (2π)32ω(p⃗), (B.105)

where the factor (2π)3 is an arbitrary factor, introduced by convention.
Thus the relativistic invariant scalar product in momentum representation is given with help of
the completeness relation

s∑

σ=−s

∫
d3p⃗

(2π)32ω(p⃗)
|p, σ⟩ ⟨p, σ| = 1. (B.106)
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With help of this the invariant scalar product looks in momentum representation like

⟨ϕ |ψ ⟩ =
s∑

σ=−s

∫
d3p⃗

(2π)32ω(p⃗)
ϕ∗σ(p)ψσ(p), (B.107)

where the wave functions are defined as

ψσ(p) = ⟨p, σ |ψ ⟩ . (B.108)
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Appendix C

Formulae

C.1 Amplitudes for various free fields

For using in calculations of S-matrix elements we have to normalise the plane wave solutions
for free fields to one particle leading to the correct amplitudes which have to be used in the
momentum Feynman rules. The outcome of physical quantities is further independent of the
phase we chose for these amplitudes.
For scalar fields we have

(□+m2)Φp⃗ = 0. (C.1)

The positive energy solution with positive energy (i.e. in-fields) is given by

Φp⃗(x) = N(p⃗) exp(−ipx) with p2 = m2, p0 = +ω(p⃗) :=
√
p⃗2 +m2. (C.2)

The correct normalisation is given by the normalisation condition for the energy of one particle.

E(p⃗, p⃗′) =
∫
d3x⃗[Φ̇′∗Φ̇ + (∇Φ′)∗(∇Φ) +m2Φ′∗Φ] = |N(p⃗)|22ω2(p⃗)(2π)3δ(3)(p⃗− p⃗′). (C.3)

Here we have used the time-time component of the canonical energy momentum tensor for the
field defined in chapter 3 with help of Noether’s theorem. Now a particle with three-momentum
p⃗ should carry an energy ω(p⃗). Thus we have to set

N(p⃗) =
1√

2ω(p⃗)(2π)3
, (C.4)

which is the amplitude to be used in momentum space Feynman diagrams for the external legs
of scalar bosons.
For spin-1/2-fields (Dirac-spinors) we have defined the amplitudes u±(p, σ) in chapter 4 with
help of the amplitudes for the particles at rest and the normalisation

ū±(±p, σ)u±(±p, σ) = ±2m. (C.5)

Then we write for the plane wave of an incoming particle

ψp⃗,σ(x) = N(p⃗)u+(p, σ) exp(−ipx) (C.6)

The same argument as given above for the scalar particle leads to

N(p⃗) =
1√

2ω(2π)3
. (C.7)
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C.2 Dimensional regularised Feynman-integrals

∫
d2ωp

(2π)2ω
1

(m2 − p2 − 2pq − iη)α
=

i

(4π)ω
Γ(α− ω)

Γ(α)

1

(q2 +m2)α−ω
. (C.8)

∫
d2ω

(2π)2ω
pµ

(m2 − p2 − 2pq − iη)α
= − i

(4π)ω
Γ(α− ω)

Γ(α)

qµ
(q2 +m2)α−ω

. (C.9)

∫
d2ωp

(2π)2ω
pµpν

(m2 − p2 − 2pq − iη)α
=

i

(4π)ωΓ(α)

1

(q2 +m2)α−ω
×

×
[
qµqνΓ(α− ω)− 1

2
gµν(q

2 +m2)Γ(α− ω − 1)

]
. (C.10)

∫
d2ωp

(2π)2ω
p2

(m2 − p2 − 2pq − iη)α
=

i

(4π)ωΓ(α)

1

(q2 +m2)α−ω
× (C.11)

×[q2Γ(α− ω)− ω(q2 +m2)Γ(α− ω − 1)].

∫
ddl

(2π)d
(l2)2

(m2 − l2 − iη)α
=

i

(4π)ω
ω(ω + 1)

Γ(α− 2− ω)

Γ(α)

1

(m2)α−2−ω (C.12)

∫
ddl

(2π)d
lµlν lρlσ

(m2 − l2 − iη)α
=

i

(4π)ω
Γ(α− 2− ω)

Γ(α)

1

(m2)α−2−ω×

× 1

4
(gµνgρσ + gµρgνσ + gµσgνρ)

(C.13)

C.3 Laurent expansion of the Γ-Function

∀n ∈ N : Γ(−n+ ϵ) =
(−1)n

n!

[
1

ϵ
+Ψ1(n+ 1) +O(ϵ)

]
. (C.14)

Ψ1(1) = −γ, ∀n ≥ 1 : Ψ1(n+ 1) = −γ +
n∑

k=1

1

k
. (C.15)

Herein γ = 0.577 . . . is the Euler-Mascheroni constant.
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C.4 Feynman’s Parameterisation

1

ab
=

∫ 1

0

dx

[ax+ b(1− x)]2

1

abc
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[a(1− x− y) + bx+ cy]3

1∏m
k=1 b

αk
k

=
Γ(
∑m

k=1 αk)∏m
k=1 Γ(αm)

∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xm−2

0
dxm−1×

× xα1−1
m−1 (xm−2 − xm−1)

α2−1 · · · (1− x1)
αm−1

[b1xm−1 + b2(xm−2 − xm−1) + · · ·+ bm(1− x1)]
∑m

k=1 αk

(C.16)
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