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Pfadintegral fiir Felder

Literatur: (ramso, 8186, Col18, Heeo2]
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Pfadintegral fiir Felder

» Einfaches Spielzeugmodell: ¢*-Theorie

>
>

Kerne & Teilchen 1

neutrales Skalarfeld ¢ (x) €R
Lagrangian

1 m? A
2= 5(5u¢)(5”¢)_7¢2_5¢4'

Ziel: Alternative Rechenmethode zur Berechnung Vakuumerwartungswerte
zeigeordneter Feldoperatorprodukte

via LSZ-Reduktion invariante Ubergangsmatrixelemente fiir Streuquerschnitte
Idee: verwende formale Eigenzustédnde von ¢ und kanonischen Feldimpulsen

ol 02
W= 0w

Quantisierung iiber bosonische kanonische gleichzeitige Kommutatoren im
Heisenbergbild

[o(2,%),¢(z,)]=0, [I(z,%),0(s,7)]=0, [¢(r,%)1(z,7)]=i6%(E~7),

Hendrik van Hees Goethe-1UIniversitit Frankfurt



Pfadintegral fiir Felder

> analog wie Quantisierung von nichtrelativistischer Punktteilchenmechanik

[x;(6),xe(0)] =0, [p;(£),pe()]=0, [x;(2), % ()] =16 .

> Orts- und Impulseigenzustdnde zur Zeit ¢ = 0:

X0)[%)=%1%), BO)|B)=5|p), fd32|f><5c'|=n, f
R3 R3

> Impulseigenfunktionen in der Ortsdarstellung

a3p
(x|p)=expiz-p) B (x|p)(p|7)=(2|7)=69G-7).
R
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Pfadintegral fiir Felder

> mit Feldern: Freiheitsgrad-Label j in x; bzw. p; entspricht ¥ in ¢(0, X) bzw. (0, X):

$(0,%)|p)=¢(0,%)|@), T(0,%)|T) =TI(0, %)|¢).

> Zeitentwicklung im Heisenbergbild

|, ) =exp(itH)|¢), I, ¢)=exp(it H)TI)
mit Hamiltonian

H=f ExA(x), #H(x)=¢(x)N(x)—ZL
R3

> Ubergangsamplitude von Feldkonfiguration ¢; bei t =t; zu ¢y bei t = ¢,

Cri=(s |expl—iH(t; —1,)]| ;)
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Pfadintegral fiir Felder

> Zerlege Zeitintervall (¢;, £7) in N Teilintervalle der Lange Ar = (t; —t;)/N

Cri=( |lexp(—iHAN]"| ¢;)

» Schiebe formale , Vollstdndigkeitsrelationen* ein:

JD¢@)<¢><M=1, JDH@)|H><H|=1.

27

mit |¢

sz tr, ;)= 11m fl—[anDSOk )x

(HN |exp —1HAt)| cpN>. ..(Hl \exp(—iHAt)| 301><cp1 | Pa >

¢,1;), |0;)=|m,z;)
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Pfadintegral fiir Felder

» Nehme Weyl-Ordnung von ¢ und Il in H an:
alle Faktoren II links on allen Faktoren ¢ rechts =

Hk|exp (—iHAY) |¢k E (l—inAt)exp[—ijdgic’Hk(ﬁk]

Oty 2)=ps (%) t o
fl:,/VfDHf D¢ exp{if d%[nm%—%(ﬂ,qb)]}-
(11, %)=pi(%) L

4 : nicht wohldefinierter aber unwichtiger Normierungsfaktor
> Kontinuumlimes:

JDnJ . D¢exp if fd“x[l'[(x)%—%(l’[,q&)]

Sle.1]
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Pfadintegral fiir Felder

> Vakuum— Vakuum-Ubergangsamplitude: fithre Term —i0*/2¢? in Lagrangian ein
(entspricht m* — m?*—i0%) und t; = —00, t; = +00, ¢; =0, ¢ — 0
> analoge Rechnung: fiir zeitgeordnete Vakuumerwartungswerte

(Q|T.Fl¢,n)|Q)= JVJ an D¢ exp{iS[¢, 7]} F[, 7).
> zeitgeordnete (Feynman) Green-Funktionen

G (xy,..., x,)=(Q] 7. ¢(x))...¢(x,)|Q)

> Erzeugendes Funktional

ZIJ] :WJ DnJ D¢ exp{iS[¢,7t]+if d4x](x)¢(x)}
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Pfadintegral fiir Felder

» modulo unbestimmtem Faktor

iV G (xy, Xp,..., Xy) =

» Ausintegration von I1

Kerne & Teilchen 1

> ¢*-Theorie

1
£ =5(0,9)0"9)— 59"

oY .
:a_¢:¢’

=11

l 0"Z[]]
in 0J(x1)0J(xp)---6J(x,) 7=0

2 A

4

: 1, 1o A
A =Np—%L=-T"+-(Vo)*+—-¢*
¢ ST+ (Voy+ 0

S[e,11] =f d*x[g — .
R4
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Pfadintegral fiir Felder

» Pfadintegral iiber II: Gaul3-Funktional
> entwickele Wirkung um Minimum bzgl. I1

oS

628,
S[¢,H]=S[¢,Ho]+% fw d4xfm d'y (ﬁ‘gr{(]y_))n_m [T1(20) = Mo ()T ) —Tp(y)].

Sl¢,Tlo] =S[¢,¢5]ES[¢]=J d*x2(9,dup).

R4

> Lagrange-Version des Pfadintegrals:

ZlJ]= ,/vf D¢ exp [J d*x(¢+ J(m@))]
RA

» [ein Gaul3-Integral = Storungstheorie!
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Pfadintegral fiir Felder

» generating functional for free fields

m2— A
6’ .90  p)— ¢ +]¢, 4= —Z¢4$==%+$1-

> erzeugendes Funktional fiir freies Feld:

ZylJ]= WJ D¢ exp H d*x (L + T (2)¢(x)
R4
> wie bei Integration iiber II: von einem J-unabhéngigen Faktor abgesehen ist Z,
durch die Wirkung am stationédren Punkt ¢ gegeben

ox o
Ho(,9) 09

= —(O+m*+i)p =—J.

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 12



Pfadintegral fiir Felder

> Losung
¢(1)=—f d*x'Dp(x — x,)J (x,)
R4

> erzeugendes Funktional

Zo[]]ZJVeXP[%J

R4

d*xJ (1)90(1)],

ZOU]=,/VexpB f d*x, f d4x2DF(z1—zz)J(z1)J(z2)]
R4 R4

» Erinnerung an Vorlesung 9: Storungsrechnung

A o4
Z[J]=exp [—15 JR4 d*x 5T ] ZolJ]
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Pfadintegral fiir Felder

» zeitgeordnete Green-Funktionen via Taylorentwicklung der
Funktionalableitungs-exp-Funktion:

_1 i[85 0
CZ[0)in 16 (x1) 6T (xz) 67 (xn)ljmo

iG"(x,,..., x,)

» Feynman-Diagramme: alle (verbundenen und unverbundenen) Green-
Funktionen

> jedes zusammenhidngende Diagrammteil mit wenigestens einem dulieren Punkt

X; verbunden

» Feynman-Regeln (im Impulsraum)

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt 14
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Pfadintegral fiir Felder
» Organisation der Storungsrechnung

» alle Green-Funktionen G lassen sich durch Summen iiber Produkte von
zusammenhédngenden Green-Funktionen darstellen

> iGC(") alle zusammenhédngenden Diagramme mit # dueren Beinchen
> erzeugendes Funktional

Z[J1=exp(iW[J]) & iW[J]=In(Z[J]).
> zusammenhdngende Green-Funktionen:

1 0"WIJ]

(n) = Q0=
G (% 2,) inoJ(x,)---6J(x,) J=0

» Beweis durch vollstdndige Induktion (s. [Hee02])
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Pfadintegral fiir Felder

> Selbstenergie- und Vertexfunktionen

» Diagramm mit einzelnen inneren Linien: zerfallt in Produkt aus zwei
zusammenhéngenden Diagrammen und der dieser inneren Linie entsprechenden
Green-Funktion

> =:alle G, konnen durch Summen iiber Produkte von einteilchen-irreduziblen
amputierten Diagrammen, also Selbstenergie- und Vertexeinschiibe, verbunden
mit inneren und duBeren Propagatorlinien dargestellt werden

> einteilchen-irreduzible Diagramme (one-particle irreducible oder 1PI-Diagramme):

zerfallen nicht in Teile, wenn man irgendeine innere Linie durchschneidet
> erzeugendes Funktional: Legendre-Transformierte von W:

so(x)=5W[]]
=7 5J(x)’
r[so]=wm—f d*xp(x)J(x)
R4
4 5W 4
or=| d'x|= 5 J(x)— (6 HX) - J(x)0p(x)|=— | d'xJ(x)dp(x),
R4 L R4

5T
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Pfadintegral fiir Felder

» Vertexfunktionen
0"T[p]

S 6p(x,)6p(x,)

> Spezialfall T?)

o o
fd »l (xlrJ’2)Gc(2)(J’2»x2):_f d*y 5{0((3;3 5?8:3 =—6W(x; — x,),

» I'@: Funktionale Inverse“ des (exakten) Propagators:

Géz)(xhxz): G(x,,x,)= fd4y d4)’2 (J’h}é)lG @ (xl,)ﬁ)iGc(z)(xz,J’z)

» fiir freie Theorie

—~(@, + m*)Dg(x, — x,) =—6W(x, — x,) = [(x,, x,) =—@+m*)5W(x, — x,).
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Pfadintegral fiir Felder

> Definition der Selbstenergie
(xy,x,)= Tém(& ) X,)— r(z)(ﬁl 1 X,)

» = Dyson-Gleichung
f d4y1f d'y,De(x, —y )2y ¥, )Gy, X)) =—G(x;, X,) + Di(x, — x,)
R4 R4

G(iplz):DF(il_iz)_f d4y1J d*y,De(x, —y )2y, ¥,)G(y,, X5)
R4 R4

> wegen Translationsinvarianz:
Gxy, X)) =Gxy;—xp),  X(xy, Xp) = X(x) —x,)

» Impulsdarstellung: Fourier-Transformierte

G(p)= fw d*xexp(ix-p)G(x), S(p)= fw d'xexp(ix-p)¥(x), D(p)= P mitior

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 19



Pfadintegral fiir Felder

> Faltungssatz = Dyson-Gleichung

- 1 Xp)
Gp)= 2 210+ p2 2 ,+G(p)
- p*—m +i0 pr—m +i0 —
1

N p2—m2—%(p)+i0*

> diagrammatisch

* = —_—— + *@

> allgemein: G/ = Summe {iber Baumgraphen mit n duferen G-Beinchen mit
exakten Vertexfunktionen und inneren G-Linien
> Beispiel: exakter Vierpunkt-Propagator

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 20



Pfadintegral fiir Felder

4 3
4 3 4 3
= + + exchange
1 1 2
1 2
» Beweis durch vollstindige Induktion: (reeoz]
» Theorie vollstdndig durch I'[¢] definiert
» Verschwindende duliere Quelle:
or |
———=—J(x)=0.
op(x)

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt



Pfadintegral fiir Felder
> Feldgleichung fiir ,mittleres Feld“ ¢ = Wirkungsprinzip
> = T[p],Quantenwirkung“

» Fermionen

» z.B. Dirac-Feld
» Lagrangian fiir freies Feld

-Yo=w(ié’—m)¢y <7=7’“3u =1, :Z;f) =@a

a

> gleiche Idee wie bei Bosonen: Eigenvektoren des Feldoperators bzw. kanonischen
Feldimpulses
> aber: Fermionen = kanonische gleichzeitige Anti-Kommutatoren

{6, 2),%,(t, )} =0, {W (¢, %),M,(£,7)} =0, {3,(t,%),M,(t,7)} =162 —7)

> =: fiir Feld-Eigenvektor

Y0, 20, (0, 7) 1) = 0 (R) o (F) 1) = =4 (0, ) (0, X) 1) = =15, (0, P a0, X) |1
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Pfadintegral fiir Felder

Kerne & Teilchen 1

VVYyVYyVYYVYYVYY

= ,Feldeigenwerte“ miissen antikommutierende , c-Zahlen* sein!

= Grassmann-Algebra

Grassmann-Zahlen“ bilden komplexen Vektorraum

endlichdimensional: Basis 8, ...,0,

antikommutatives Produkt: 80, =—6;60;

alle Produkte auch im Vektorraum = Vektorraum ist insgesamt 2" -dimensional
denn alle Produkte mit mehr als n der 0 ; miissen notwendig verschwinden, da
maximal 6,6, ---8,, von 0 verschieden sein kann, denn wegen Antikommutativitét
verschwinden alle Produkte, in denen wenigstens 2 gleiche 6; vorkommen.
Anzahl méglicher Produkte mit 0 < m < n Faktoren m = 0 bedeutet einfach eine
komplexe Zahl, d.h. man bildet Polynome der Form

P(Hl,...,Hn)=a+i Zn: aj.;, 0j-0;

M=1 jiyees jm=1

a,aj . €C,a;, ; total antisymmetrisch

Hendrik van Hees Goethe-UIniversitit Frankfurt
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Pfadintegral fiir Felder

> fiir gegebenes m gibt es offenbar (Z) verschiedene Monome 6 --- 0,
(Standardreihenfolge: j; < j, <...< ju

m

» linear unabhédngige Monome bilden Basis des Grassmann-Zahlenvektorraums

» Anzahl: ; ;
n n
d= — m_ qn—m _ n_on
Z(m) Z(m)l 1 (1+1)"=2
m=0 m=0

> in QFT: ¢,(x) = iberabzdhlbar unendlich viele 6’s

» Analysis mit Grassmann-Zahlen

> Ableitung soll linearer Operator sein = es geniigt, Ableitungen von Monomen der
0;’s zu definieren
> Ableitungen: Links- und Rechts-Ableitungen

2,03,0),---Or...0;, =05, (-1)16,0; -6, 6,0, )0,

L/R

> fiir mehrere Ableitungen: 3 antikommutieren

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Pfadintegral fiir Felder

Kerne & Teilchen 1

vyy

analog fiir Rechtsableitung

Integration: Fall mit nur 1

mogliche Polynome (Funktionen!) nur P(8)=a +a; 0

Integral tiber @ soll linear und translationsinvariant sein, d.h. fiir b € C

fdap(a)éfdep(mb): afdalmlfdeeé(mbal)fdeualfdea

damit das fiir alle a,a,,b € C =

fd@l -0, Jd()e ey

gleiche Regel wie Ableitung nach 0!
fiir Grassmann-Algebren mit mehreren 6;’s

fdel---demf(el,...9,,):agf‘)---ag‘?f(al,...,en)

Hendrik van Hees Goethe-UIniversitit Frankfurt 25



Pfadintegral fiir Felder

> in QFT: lokale Observablen immer Polynome mit nur geradzahligen Monomen von
Fermionenoperatoren (wegen Mikrokausalitét

» Erzeugendes Funktional Z[n, n] mit n =n,(x) und 1 = n,(x) als Grassmann-
Generator-wertige dulere Quellen

ZlJ]= JVJ Dy Dy exp[iS[U)] +if d*x () () + (x)n(x)

R4

» Symmetrien

> hier: globale Symmetrien wie U(1), SU(N)-Flavorsymmetrien etc.

» grofiter Vorteil der Pfadintegalmethode: Quantisierung von (abelschen und
nichtabelschen) Eichtheorien
Faddeev-Popov-Quantisierung: s. z.B. (sLss, Tay7s, AL73, Heeo2]

> betrachte beliebigen Satz Felder ® und erzeugende Funktionale Z[ ], W[]] und I'[®]

> in vielen Féllen: Quantenwirkung I'[®] hat gleiche Symmetrien wie klassische
Wirkung S[®]

> Herleitung: S[] invariant unter einer Transformation ®(x) = F[®(x)]

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt 26



Pfadintegral fiir Felder

» Annahme: Pfadintegralmafl D® invariant unter Trafo: D F[®]=D®
> Lie-Symmetrie: infinitesimale Trafo: F[®](x)=®'(x)=®(x)+ 69[®, x|

ZlJ]= f D® exp [iS[<I>] + if d*x ](1)@(&)}
R4
» Invarianz der Wirkung: S[®'] = S[®] und des Pfadintegralmalles D®" = D =

ZlJl= J D&’ exp [iS[‘I"] +f d4XJ(£)‘I>'(£)]
R4

symm

= fmexp[is[qn]ﬂf d4x](1)[<1>(1)+5¢(1)]]
R4

:thb 1+1J d4y](1)6<1>[<1>,1]]exp[iS[tI)]+iJ
R4

R4
_ 4 o
_(1+L§4d y](y)5(1>[5](y) )Z[]]

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 27
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Pfadintegral fiir Felder
> =

Z[J)=

8
4
de y](1)5q>[5]( 5707

> Annahme: lineare Symmetrie: 6®(x)=0a; ijb(g) (6a = const) (lokale Symmetrie)
=

6a; | d'yI)T,——Z[J]1=0
]fR4 J ]5]_
> Z[J]=exp(iW[]]) =

5a;f d'yJ(y 172 wiji=o

Rt 0J(y)

> = T'[®] hat dieselbe Symmetrie wie S [<I)]

> fur I'[®]:

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt



Pfadintegral fiir Felder

» CAVEAT: falls D® NICHT invariant unter Trafo ist = T'[®] nicht notwendig
symmetrisch

> S[¢] symmetrisch, I'[®] nicht symmetrisch: Anomalie, d.h. quantisierte Feldtheorie
nicht symmetrisch, obwohl klassische Theorie symmetrisch ist!

> z.B. Adler-Bell-Jackiw-Anomalie: Anomalie der axialen U(1),-Symmetrie der
(masselosen) QED und QCD (s.u.) [adies, Bj69, PSos]

Spontane Symmetriebrechung

» betrachte Theorie mit N reellen Skalarfeldern q; =(¢ j), die unter SO(N)-
Transformationen symmetrisch ist:

1 2 2 .Uz 2y Ao,
£ =@ P+ 3 - L.
—_——

-VI§]

> Lie-Algebra: antisymmetrische RV*N -Matrizen
» Dimension der Lie-Algebra: N(N —1)/2
» falsches Vorzeichen“ des Massenterms ist hier Absicht!

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Pfadintegral fiir Felder

» Potential:

Kerne & Teilchen 1

Hendrik van Hees

Goethe-UIniversitit Frankfurt
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Chirale Symmetrie und Hadronen

Literatur: (koco7, schos]

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Quantumchromodynamik: QCD
» Theorie der starken Wechselwirkung (s. Vorlesung 11) QCD

1 —. N
gQCD = _ZFKZMVFHLIV + lp(lm - M)Ip
» nicht-Abelsche Eichgruppe SU(3)co1or
> jedes Quark Farbtriplett: ) = (v, ¢4,y l:) mit Dirac-Spinoren ;.
> eich-kovariante Ableitung: D,= Bﬂ +igT*A% (ae{l,...,8})
> Feldstirketensor: £, = 3,A% —3,A% —g f*"* Al AS
> Strukturkonstaten fev¢:[T¢, TP]=ifebe T, T4 =(T*) e C¥3
» Teilcheninhalt
» 1): Quarks mit Flavor (u,d; ¢, s; t, b) (Masseneigenzustédnde!)
> M= diag(m,,, m,, ms,...) =Stromquarkmassen
> AZ Gluonen, Eichbosonen der SU(3)410r
» Symmetrien
» fundamentale lokale SU(3).q1o;-Symmetrie
> im Sektor der leichten Quarks u, d, (s): ndherungsweise chirale Symmetrie (M —0)
> Skaleninvarianz fiir M — 0

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 29



Eigenschaften der QCD
> asyptotische Freiheit bei groRen Impulsiibertrigen in Stofen a; =41gZ — 0
» Laufen der Kopplungskonstante aus der Renormierungsgruppengleichung:
Physik-Nobelpreis 2004 an D. Gross, E Wilczek, H. D. Politzer
T LR |

Ll Ll
04 10 100

u(GeVv)
» Quarks und Gluonen in farb-neutralen Hadronen eingeschlossen (Confinement)
» theoretisch noch nicht vollstindig verstanden (nichperturbatives Phdnomen!)
> Gitter-QCD-Rechnungen: QCD beschreibt erfolgreich das Massenspektrum der

Kerne & TeilcheHadronen Hendrik van Hees Goethe-Universitit Frankfurt
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Chirale Symmetrie der (masselosen) QCD
» betrachte nur leichte u- und d-Quarks

Isospin-Dublett: Yy = (;) = (zl)
2

NB: ¢ at 3 Indizes: Dirac-Spinor, Color und Isospin!

y-Matrizen: {y,,7,} =201, v5 = 1r0717273 Y5 =—Yurs 15 =715 12=1
Dirac-Beziehungen fiir links- und rechtshidndige Komponenten

Yr= H_ZYSQP:PLUJ» Yr= HJ;YSQP:PRI/J’

P} p=Pyr, PrPL=P Pr=0, Pygys=75P,r=FPyr
Py RYu=TuPrir, PLp=yPr, Prp=1Pp
Yy =L R R PP =YL R Y RYL
¥ =ylro, 15 = rlve=—4rs
im masselosen Limtes (11, = m,; =0)

La =PiDY = 1Y+ riByg

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt 1
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Chirale Symmetrie der (masselosen) QCD

» im masselosen Limes (m,, = m, = 0) = globale chirale Symmetrien:
» Anderung von voneinander unabhéngigen fiir die links- and rechtshéndigen
Komponenten:

Yr(x)—exp(—ig )Y (x), Yr(x)— exp(—igg)yr(x)

> Symmetriegruppe U(1); ® U(1)z
» unabhingige Isospinrotationen:

W1 (x) > exp(—id, - TV (x), r(x)— exp(—idg - T)pp(x)
> T =7%/2, %: Pauli-Matrizen; Symmetriegruppe SU(2); ® SU(2)g

> alternative Notation skalare und pseudoskalare Phasendnerung und
Isopspinrotationen

I/J - eXp(—i(f)s)l/J, I/J - exp(_iYqua)l/J
Y —exp(—idy - T, - exp(—iysda- T
» U(1); und SU(2)y sind Untergruppen der chiralen Symmetrien, die auch
Symmetrien bleiben, wenn m, = m; # 0 = Heisenbergs Isospinsymmetry!

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Strome: Beziehung mit Mesonen
> Quellen: [Koc97, Sch03, Din11]
» Noether: jede Symmetrie impliziert Erhaltungsgrof3e

» Noether-Strome fiir chirale Symmetrien

P=ygrty, i =grtrsy
=yriTy,  Ji=vr'rsTy
Beziehung zu Mesonen iiber entsprechende Quantenzahlen:

> o (bzw f,): 1) (Skalar und Isoskalar)
> iy Tysi,b (Pseudoskalar und Isovektor)
> p’s: lpyu sz (Vektor und Isovektor)

> a,’s: 1/)7/,J5 Tl/) (Axialvektor und Isoaxialvektor)

\4

v

o and 7t’s; p’s and a,;’s haben nicht gleiche Masse

v

QCD-Grundzustand nicht symmetrisch unter Pseudoscalar- and Pseudovekto-
Transformationen (Q |l/)l/)| Q) #0
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Spontane Symmetriebrechung

>
>
>

v

spontan gebrochene Symmetrie: Grundzustand nicht symmetrisch

= Grundzustand entartet

Grundzustand symmetrisch unter isoskalaren und Isovektortransformationen
U(1); x U(1)g gebrochen zu U(1),; SU(2); x SU(2)g gebrochen zu SU(2)y,

fiir jede gebrochene Symmetrie masseloses Nambu-Goldstone-Boson

hier: drei Pionen sehr leicht im Vergleich zu anderen Hadronen (m, ~ 140 MeV)

m, # 0: explizite Brechung der chiralen Symmetrie durch m,,, my

> kann stérungstheoretisch beshandelt werden = chirale Stérungstheorie
> Axialvektorstrom nur ndherungsweise erhalten

= PCAC (partially conserved axial current)
> erkldrt viele Hadroneneigenschaften
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Spontane Symmetriebrechung

» U(1),-Anomalie (Adler-Bell-Jackiw-Anomalie)

Kerne & Teilchen 1

>

vvyyvyy

klassische Theorie invariant unter U(1), = in Quantenfeldtheorie explizit
gebrochen (hier ohne Beweis) (psos)

Grund: PfadintegralmafR DEsz nicht invariant unter U(1),-Trafos (ruj79, rujso)
wichtig fiir korrekte Vorhersage der Zerfallsrate fiir 7y — yy

pseudoskalarer Strom nicht erhalten: g, ji=3/ 8a56“”p“Glva 50

weiterer Hinweis in SU(3)-Quarkmodell (Gell-Mann): pseudoskalares
Mesonen-Nonet zwei isospinskalare Mesonen 1) (zumeist SU(3)-Oktett) und n’
(zumeist SU(3)-Singulett)

n~qy5Asq (mit g =(u,d, s)) = keine Anomalie des entsprechenden
Axialvektorstroms

aus gleichem Grund Isovektor-Axialvektorstrom ~ gy°y#2q erhalten (keine
Anomalie wegen U= 0)

n schwerer als 71's wegen schwerer s-Quarkmasse

1’ ~qy®q = Axialvektorstrom anomal gebrochen

Hendrik van Hees Goethe-Universitit Frankfurt
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Minimales chirales Modell fiir Pionen und Nukleonen

» o-Meson und Pionen (chirale Partner)
» Meson = g-q-Bindungszustand

» infiniteseimale chirale Transformationen fiir Quarks (T = 7/2) in SU(2); x SU(2)g
model

Y —(1—iddy -T/2)y (Isovektor-Transformation)

Y — (1—iys6d,-7/2)y (Isoaxialvektor-Transformation)

» = Transformationseigenschaften von Mesonenfeldern unter chiralen
Transformationen: o ~ ), T ~ iy Tysy

O—>0—00, 7, ToR+0dy xA+60d,0

» o2+ 72 invariant = chirale Transformation durch SO(4)-Transformation von
¢ =(o,7)" realisiert
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Minimales o -Modell fiir Mesonen

» chirale Symmetrie als SO(4)-Transformationen von Meson-Feldern ¢ € R*

» beschreibt 0-Meson und die drei Pionen (%, %)

A
L= 5PN )~ V(9)= 5 (@,0)" 9)— (97— 27

> spontane Symmetriebrechung: ,Sombrero-Potential

\“““

y A=
=

N

™
)

Y%

.

TR
o
R
AN

v
7

SN
%
I7
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Minimales o -Modell fiir Mesonen

> Entartung des Grundzustands = man braucht keine Energie, um Felder
innerhalb des Potentialminimums zu drehen
= masselose Nambu=Goldstone-Bosonen (Pionen)

> Vakuumerwartungswert <¢0> = f, #0 (NB: Vakuum immer noch Poincaré-
invarianter Zustand (®°) = const

» Symmetrie spontan gebrochen von SO(4) zu SO(3)y (dimSO(4) =4x%3/6,
dimSO(3)=3%2/2=3 = 6—3 =3 Nambu-Goldstone-Bosonen (Pionen)

» Teilcheninhalt des Modells: vier skalare reelle Feldfreiheitsgrade => 3 masselose
Pionen und 1 massives o-Meson
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Pionenzerfall und PCAC

>
>

schwacher Zerfall 7+ — u* + v,

schwache Wechselwirkung (chirale Eichtheorie mit Eichgruppe
SU(3)w-iso ® SU(3)y.y-Eichgruppe o< ]11; - ]X
Pion pseudoskalar = Zerfall wegen Axialstrom =

(0173 (x)Imp(p)) =ip* 8 a1 fr exp(—ip - x)

Zerfallsrate = f; ~93 MeV
(013" ()mp(p)) = —Frp?8? expl(=ip - x) = —frm’ 5" exp(—ip - x)

exakte chirale Symmetrie => m,; =0 (Goldstone-Theorem)) = g, J;* = 0 Noether
m, # 0 aber ,klein“ = ndherungsweise erhaltener Axialvektorstrom (PCAC)

im effektiven Modell
I =fr0,9°% a€{1,2,3}
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Explizite Symmetriebrechung

> explizite Brechung wegen m,,, mq # 0
> symmetriebrechender Term in QCD: %, g = —myn)

> m=(my + my)/2; wegen Y1) ~ o = in hadronischem Modell

ngB =—€0

» o-m-Potential: A
V(io,®t)= [(0’ +72)— ] —€o
> Potential in o-Richtung verkippt = fiihrt zu korrekten ,Richtung“ des (nun nicht
mehr entarteten) Vakuums

» Minimum bei f; =

€ €
Vozfn_ﬂy S=2Af7 +f mi:f
T Y T
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Explizite Symmetriebrechung

> Noether + explizite Brechung der Symmetrie + PCAC (consistency!):

ap _ a PCAC 2, a _ 2
Oyl  =—en® ="—frm 1% = €= fim;

> ¥SBin der QCD wie im effektiven Modell = Gell-Mann-Oaks-Renner-Relation

[GMOR68]

(0lec|0) = fre = mZ f2 =—m(0]yyp|0)
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Nukleonen im o-Modell
> Axialstrom von Nukleonen ¥ = (p, n)" -Isospin-Dublett

N — T
]/l;,nucl = ga\I/r“ys Eq}
> [3-Zerfall des Neutrons = g, =1.25
» Gesamt-Axialvektorstrom ]_;’f = ]_X ot ]_X el sollte PCAC erfiillen

9qu =—fymiit=
2\=2 . M— =3
O+ m)Tt =—g,i—VysT¥
b
» Goldberger-Treiman-Relation

M exp
8xNN = 8a _f ~126 vs. g yy=134
Y

» Erweiterung des linearen o -Modells

Zhud :Eiaq’—gm\n\] i@}’g,’?lp AR+UUo

chiraler SO(4)-Skalar!
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