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Pfadintegral für Felder
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Pfadintegral für Felder

▶ Einfaches Spielzeugmodell:φ4-Theorie
▶ neutrales Skalarfeldφ(x ) ∈R
▶ Lagrangian

L =
1

2
(∂µφ)(∂

µφ)−
m 2

2
φ2−

λ

4!
φ4.

▶ Ziel: Alternative Rechenmethode zur Berechnung Vakuumerwartungswerte
zeigeordneter Feldoperatorprodukte
▶ via LSZ-Reduktion invariante Übergangsmatrixelemente für Streuquerschnitte
▶ Idee: verwende formale Eigenzustände vonφ und kanonischen Feldimpulsen

Φ(x ) =
∂L
∂ φ(x )

▶ Quantisierung über bosonische kanonische gleichzeitige Kommutatoren im
Heisenbergbild

�

φ(t , x⃗ ),φ(t , y⃗ )
�

= 0,
�

Π(t , x⃗ ),Π(t , y⃗ )
�

= 0,
�

φ(t , x⃗ ),Π(t , y⃗ )
�

= iδ(3)(x⃗ − y⃗ ),
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Pfadintegral für Felder
▶ analog wie Quantisierung von nichtrelativistischer Punktteilchenmechanik

�

x j (t ), xk (t )
�

= 0,
�

p j (t ), pk (t )
�

= 0,
�

x j (t ), xk (t )
�

= iδ j k .

▶ Orts- und Impulseigenzustände zur Zeit t = 0:

x⃗(0) |x⃗ 〉= x⃗ |x⃗ 〉 , p⃗(0)
�

�p⃗
�

= p⃗
�

�p⃗
�

,

∫

R3

d3 x⃗ |x⃗ 〉 〈x⃗ |=1,

∫

R3

d3p⃗

(2π)3
�

�p⃗
�


p⃗
�

�=1.

▶ Impulseigenfunktionen in der Ortsdarstellung




x
�

�p
�

= exp(ix⃗ · p⃗ ),
∫

R3

d3p⃗

(2π)3



x⃗
�

� p⃗
�


p⃗
�

� y⃗
�

=



x⃗
�

� y⃗
�

=δ(3)(x⃗ − y⃗ ).
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Pfadintegral für Felder

▶ mit Feldern: Freiheitsgrad-Label j in x j bzw. p j entspricht x⃗ inφ(0, x⃗ ) bzw. Π(0, x⃗ ):

φ(0, x⃗ )
�

�φ
�

=φ(0, x⃗ )
�

�φ
�

, Π(0, x⃗ ) |Π〉=Π(0, x⃗ )
�

�φ
�

.

▶ Zeitentwicklung im Heisenbergbild
�

�φ, t
�

= exp(it H )
�

�φ
�

, |Π, t 〉= exp(it H ) |Π〉

mit Hamiltonian

H =

∫

R3

d3 xH (x ), H (x ) = φ̇(x )Π(x )−L

▶ Übergangsamplitude von Feldkonfigurationφi bei t = ti zuφ f bei t = t f

C f i =



φ f

�

�exp[−iH (t f − ti )]
�

�φi

�
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Pfadintegral für Felder

▶ Zerlege Zeitintervall (ti , t f ) in N Teilintervalle der Länge∆t = (t f − ti )/N

C f i =



φ f

�

�[exp(−iH∆t )]N
�

�φi

�

▶ Schiebe formale „Vollständigkeitsrelationen“ ein:

∫

Dφ(x⃗ )
�

�φ
�


ϕ
�

�= 1,

∫

DΠ(x⃗ )
2π
|Π〉 〈Π|= 1.

mit
�

�φ
�

j
=
�

�φ, t j

�

,
�

�Π j

�

=
�

�Π, t j

�

C f i (t f , ti ) = lim
N→∞

∫ N
∏

k=1

DΠk Dϕk

2π




ϕa

�

�ΠN

�

×

×



ΠN

�

�exp(−iH∆t )
�

�ϕN

�

. . .



Π1

�

�exp(−iH∆t )
�

�ϕ1

�


ϕ1

�

�ϕa

�

.
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Pfadintegral für Felder
▶ Nehme Weyl-Ordnung vonφ und Π in H an:

alle Faktoren Π links on allen Faktorenφ rechts⇒




Πk

�

�exp(−iH∆t )
�

�φk

� ∼=
∆t→0

(1− iHk∆t )exp

�

−i

∫

d3 x⃗Πkφk

�

▶ dann

C f i =N
∫

DΠ

∫ φ(t f ,x⃗ )=ϕ f (x⃗ )

φ(ti ,x⃗ )=ϕi (x⃗ )

Dφ exp

¨

i

∫ t f

ti

d4 x
�

Π(x )
∂ φ(x )
∂ t
−H (Π,φ)
�

«

.

N : nicht wohldefinierter aber unwichtiger Normierungsfaktor
▶ Kontinuumlimes:

C f i =

∫

Dπ

∫ φ(t f ,x⃗ )=ϕ f (x⃗ )

φ(ti ,x⃗ )=ϕi (x⃗ )

Dφ exp



















i

∫ t f

ti

d4 x
�

Π(x )
∂ φ(x )
∂ t
−H (Π,φ)
�

︸ ︷︷ ︸

S [φ,Π]



















.
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Pfadintegral für Felder

▶ Vakuum→Vakuum-Übergangsamplitude: führe Term −i0+/2φ2 in Lagrangian ein
(entspricht m 2→m 2− i0+) und ti →−∞, t f →+∞,φi → 0,φ f → 0
▶ analoge Rechnung: für zeitgeordnete Vakuumerwartungswerte




Ω
�

�Tc F [φ,π]
�

�Ω
�

=N
∫

Dπ

∫

Dφ exp
�

iS [φ,π]
	

F [φ,π].

▶ zeitgeordnete (Feynman) Green-Funktionen

iG (n )(x 1, . . . , x n ) =



Ω
�

�Tcφ(x 1) . . .φ(x n )
�

�Ω
�

▶ Erzeugendes Funktional

Z [J ] =N
∫

Dπ

∫

Dφ exp

�

iS [φ,π] + i

∫

d4 x J (x )φ(x )

�
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Pfadintegral für Felder

▶ modulo unbestimmtem Faktor

iN G (n )(x1, x2, . . . , xn ) =
1

in

δn Z [J ]
δ J (x1)δ J (x2) · · ·δ J (xn )

�

�

�

�

J=0

▶ Ausintegration von Π
▶ φ4-Theorie

L =
1

2
(∂µφ)(∂

µφ)−
m 2

2
φ2−

λ

4!
φ4

⇒Π=
∂L
∂ φ̇

= φ̇,

H =Πφ̇−L =
1

2
Π2+

1

2
(∇⃗φ)2+

λ

4!
φ4,

S [φ,Π] =

∫

R4

d4 x [Πφ̇−H ]
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Pfadintegral für Felder
▶ Pfadintegral über Π: Gauß-Funktional
▶ entwickele Wirkung um Minimum bzgl. Π

δS

δΠ(x )
= φ̇−Π != 0 ⇒ Π0 = φ̇

S [φ,Π] = S [φ,Π0] +
1

2

∫

R4

d4 x

∫

R4

d4 y

�

δ2S [φ,Π]
δΠ(x )δΠ(y )

�

Π=Π0

[Π(x )−Π0(x )][Π(y )−Π0(y )].

S [φ,Π0] = S [φ,φ̇]≡ S [φ] =

∫

R4

d4 xL (φ,∂µφ).

▶ Lagrange-Version des Pfadintegrals:

Z [J ] =N
∫

Dφ exp

�

i

∫

R4

d4 x
�

L + J (x )φ(x )
�

�

▶ kein Gauß-Integral⇒ Störungstheorie!
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Pfadintegral für Felder

▶ generating functional for free fields

L0 =
1

2
(∂µφ)(∂

µφ)−
m 2− i0+

2
φ2+ Jφ, LI =−

λ

4!
φ4L =L0+LI.

▶ erzeugendes Funktional für freies Feld:

Z0[J ] =N
∫

Dφ exp

�

i

∫

R4

d4 x
�

L0+ J (x )φ(x )
�

�

▶ wie bei Integration über Π: von einem J -unabhängigen Faktor abgesehen ist Z0

durch die Wirkung am stationären Punkt ϕ gegeben

∂µ
∂L
∂ (∂µφ)

−
∂L
∂ φ
⇒ −(□+m 2+ i)φ =−J .
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Pfadintegral für Felder

▶ Lösung

ϕ(x ) =−
∫

R4

d4 x ′DF(x − x 2)J (x 2)

▶ erzeugendes Funktional

Z0[J ] =N exp

�

i

2

∫

R4

d4 x J (x )ϕ(x )

�

,

Z0[J ] =N exp

�

i

2

∫

R4

d4 x1

∫

R4

d4 x2DF(x 1− x 2)J (x 1)J (x 2)

�

▶ Erinnerung an Vorlesung 9: Störungsrechnung

Z [J ] = exp

�

−i
λ

4!

∫

R4

d4 x
δ4

δ J (x )4

�

Z0[J ]
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Pfadintegral für Felder

▶ zeitgeordnete Green-Funktionen via Taylorentwicklung der
Funktionalableitungs-exp-Funktion:

iG (n )(x 1, . . . , x n ) =
1

Z [0]
1

in

�

δ

δ J (x1)
δ

δ J (x2)
· · ·

δ

δ J (xn )

�

J=0

▶ Feynman-Diagramme: alle (verbundenen und unverbundenen) Green-
Funktionen

▶ jedes zusammenhängende Diagrammteil mit wenigestens einem äußeren Punkt
x j verbunden

▶ Feynman-Regeln (im Impulsraum)
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Pfadintegral für Felder

p

= iD̃F(p) =
i

p2 −m2 + i0+

p
1

p
2

p
4

p
3

= − iλ

4!
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Pfadintegral für Felder
▶ Organisation der Störungsrechnung

▶ alle Green-Funktionen G (n ) lassen sich durch Summen über Produkte von
zusammenhängenden Green-Funktionen darstellen
▶ iG (n )c alle zusammenhängenden Diagramme mit n äußeren Beinchen
▶ erzeugendes Funktional

Z [J ] = exp(iW [J ])⇔ iW [J ] = ln(Z [J ]).

▶ zusammenhängende Green-Funktionen:

G (n )c (x 1, . . . , x n ) =
1

in

δn W [J ]
δ J (x 1) · · ·δ J (x n )

�

�

�

�

J=0

▶ Beweis durch vollständige Induktion (s. [Hee02])
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Pfadintegral für Felder
▶ Selbstenergie- und Vertexfunktionen
▶ Diagramm mit einzelnen inneren Linien: zerfällt in Produkt aus zwei

zusammenhängenden Diagrammen und der dieser inneren Linie entsprechenden
Green-Funktion
▶ ⇒: alle Gc können durch Summen über Produkte von einteilchen-irreduziblen

amputierten Diagrammen, also Selbstenergie- und Vertexeinschübe, verbunden
mit inneren und äußeren Propagatorlinien dargestellt werden
▶ einteilchen-irreduzible Diagramme (one-particle irreducible oder 1PI-Diagramme):

zerfallen nicht in Teile, wenn man irgendeine innere Linie durchschneidet
▶ erzeugendes Funktional: Legendre-Transformierte von W :

ϕ(x ) =
δW [J ]
δ J (x )

,

Γ [ϕ] =W [J ]−
∫

R4

d4 xϕ(x )J (x )

δΓ =

∫

R4

d4 x

�

���
���δW

δ J (x )
δ J (x )−�����ϕ(x )δ J (x )− J (x )δϕ(x )

�

=−
∫

R4

d4 x J (x )δϕ(x ),

δΓ

δϕ(x )
=−J (x )Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 17



Pfadintegral für Felder

▶ Vertexfunktionen

Γ (n )(x 1, . . . , x n ) =
δn Γ [ϕ]

δϕ(x 1) · · ·δϕ(x n )

▶ Spezialfall Γ (2):

∫

d4 y2Γ
(2)(x1, y2)G

(2)
c (y2, x2) =−
∫

d4 y2
δ J (x1)
δϕ(y2)

δϕ(y2)
δ J (x2)

=−δ(4)(x1− x2),

▶ Γ (2): „Funktionale Inverse“ des (exakten) Propagators:

G (2)c (x1, x2) =G (x 1, x 2) =

∫

d4 y1d 4 y2Γ
(2)
J (y1, y2)iG

(2)
c (x1, y1)iG

(2)
c (x2, y2)

▶ für freie Theorie

−(□1+m 2)DF(x 1− x 2) =−δ
(4)(x 1− x 2) ⇒ Γ

(2)
0 (x 1, x 2) =−(□+m 2)δ(4)(x 1− x 2).
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Pfadintegral für Felder
▶ Definition der Selbstenergie

Σ(x 1, x 2) = Γ
(2)
0 (x 1, x 2)− Γ

(2)(x 1, x 2)

▶ ⇒Dyson-Gleichung

∫

R4

d4 y1

∫

R4

d4 y2DF(x 1− y
1
)Σ(y

1
, y

2
)G (y

2
, x 2) =−G (x 1, x 2) +DF(x 1− x 2)

G (x 1, x 2) =DF(x 1− x 2)−
∫

R4

d4 y1

∫

R4

d4 y2DF(x 1− y
1
)Σ(y

1
, y

2
)G (y

2
, x 2)

▶ wegen Translationsinvarianz:

G (x 1, x 2)≡G (x 1− x 2), Σ(x 1, x 2)≡Σ(x 1− x 2)

▶ Impulsdarstellung: Fourier-Transformierte

G̃ (p ) =

∫

R4

d4 x exp(ix ·p )G (x ), Σ̃(p ) =

∫

R4

d4 x exp(ix ·p )Σ(x ), D̃F(p ) =
1

p 2−m 2+ i0+
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Pfadintegral für Felder

▶ Faltungssatz⇒Dyson-Gleichung

G̃ (p ) =
1

p 2−m 2+ i0+
−

Σ(p )

p 2−m 2+ i0+
G̃ (p )

⇒G (p ) =
1

p 2−m 2−Σ(p ) + i0+

▶ diagrammatisch

= + −iΣ

▶ allgemein: G (n )c =̂ Summe über Baumgraphen mit n äußeren G -Beinchen mit
exakten Vertexfunktionen und inneren G -Linien
▶ Beispiel: exakter Vierpunkt-Propagator
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Pfadintegral für Felder

Γ=

Γ

Γ

+ + exchange

2

4

1

3

2

3

2

3

1

4

1

4

▶ Beweis durch vollständige Induktion: [Hee02]

▶ Theorie vollständig durch Γ [ϕ] definiert
▶ Verschwindende äußere Quelle:

δΓ

δϕ(x )
=−J (x ) != 0.
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Pfadintegral für Felder
▶ Feldgleichung für „mittleres Feld“ ϕ =̂Wirkungsprinzip
▶ ⇒ Γ [ϕ] „Quantenwirkung“

▶ Fermionen
▶ z.B. Dirac-Feld
▶ Lagrangian für freies Feld

L0 =ψ(i /∂ −m )ψ, /∂ = γµ∂µ ⇒ Πa =
∂L0

∂ ψ̇a

= iψa

▶ gleiche Idee wie bei Bosonen: Eigenvektoren des Feldoperators bzw. kanonischen
Feldimpulses
▶ aber: Fermionen⇒ kanonische gleichzeitige Anti-Kommutatoren

�

ψa (t , x⃗ ),ψb (t , y⃗ )
	

= 0,
�

Πa (t , x⃗ ),Πb (t , y⃗ )
	

= 0,
�

ψa (t , x⃗ ),Πb (t , y⃗ )
	

= iδ(3)(x⃗ − y⃗ )

▶ ⇒: für Feld-Eigenvektor

ψa (0, x⃗ )ψb (0, y⃗ )
�

�ψ
�

=ψa (x⃗ )ψb ( y⃗ )
�

�ψ
�

=−ψb (0, y⃗ )ψa (0, x⃗ )
�

�ψ
�

=−ψb (0, y⃗ )ψa (0, x⃗ )
�

�ψ
�
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Pfadintegral für Felder

▶ ⇒ „Feldeigenwerte“ müssen antikommutierende „c-Zahlen“ sein!
▶ ⇒ Grassmann-Algebra
▶ Grassmann-Zahlen“ bilden komplexen Vektorraum
▶ endlichdimensional: Basis θ1, . . . ,θn
▶ antikommutatives Produkt: θ jθk =−θkθ j
▶ alle Produkte auch im Vektorraum⇒ Vektorraum ist insgesamt 2n -dimensional
▶ denn alle Produkte mit mehr als n der θ j müssen notwendig verschwinden, da

maximal θ1θ2 · · ·θn von 0 verschieden sein kann, denn wegen Antikommutativität
verschwinden alle Produkte, in denen wenigstens 2 gleiche θ j vorkommen.
▶ Anzahl möglicher Produkte mit 0≤m ≤ n Faktoren m = 0 bedeutet einfach eine

komplexe Zahl, d.h. man bildet Polynome der Form

P (θ1, . . . ,θn ) = a +
∞
∑

m=1

n
∑

j1,..., jm=1

a j1... jm
θ j1
· · ·θ jn

▶ a , a j1... jm
∈C, a j1,... jm

total antisymmetrisch
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Pfadintegral für Felder
▶ für gegebenes m gibt es offenbar

�n
m

�

verschiedene Monome θ j1
· · ·θ jm

(Standardreihenfolge: j1 < j2 < . . .< jm

▶ linear unabhängige Monome bilden Basis des Grassmann-Zahlenvektorraums

▶ Anzahl:

d =
n
∑

m=0

�

n

m

�

=
n
∑

m=0

�

n

m

�

1m ·1n−m = (1+1)n = 2n .

▶ in QFT:ψa (x ) =̂ überabzählbar unendlich viele θ ’s

▶ Analysis mit Grassmann-Zahlen
▶ Ableitung soll linearer Operator sein⇒ es genügt, Ableitungen von Monomen der
θ j ’s zu definieren
▶ Ableitungen: Links- und Rechts-Ableitungen

∂ (L)θ jk
θ j1
θ jk−1

. . .θk . . .θ jm
= ∂θ jk

(−1)k−1θkθ j1
· · ·θ jk−1

θ jk+1
· · ·θ jm

(def)= (−1)k−1θ j1
· · ·θ jk−1

θ jk+1
· · ·θ jm

▶ für mehrere Ableitungen: ∂ (L/R)θ j
antikommutieren
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Pfadintegral für Felder
▶ analog für Rechtsableitung
▶ Integration: Fall mit nur 1 θ
▶ mögliche Polynome (Funktionen!) nur P (θ ) = a +a1θ
▶ Integral über θ soll linear und translationsinvariant sein, d.h. für b ∈C
∫

dθP (θ ) !=

∫

dθP (θ + b ) ⇒ a

∫

dθ1+a1

∫

dθθ
!= (a + b a1)

∫

dθ1+a1

∫

dθθ

▶ damit das für alle a , a1, b ∈C⇒
∫

dθ1= 0,

∫

dθθ
(def)= 1

▶ gleiche Regel wie Ableitung nach θ !
▶ für Grassmann-Algebren mit mehreren θ j ’s

∫

dθ1 · · ·dθm f (θ1, . . .θn ) = ∂
(R)
θ1
· · ·∂ (R)θm

f (θ1, . . . ,θn )
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Pfadintegral für Felder

▶ in QFT: lokale Observablen immer Polynome mit nur geradzahligen Monomen von
Fermionenoperatoren (wegen Mikrokausalität
▶ Erzeugendes Funktional Z [η,η]mit η=ηa (x ) und η=ηa (x ) als Grassmann-

Generator-wertige äußere Quellen

Z [J ] =N
∫

DψDψexp

�

iS [ψ] + i

∫

R4

d4 x [η(x )ψ(x ) +ψ(x )η(x )

�

▶ Symmetrien
▶ hier: globale Symmetrien wie U(1), SU(N )-Flavorsymmetrien etc.
▶ größter Vorteil der Pfadintegalmethode: Quantisierung von (abelschen und

nichtabelschen) Eichtheorien
Faddeev-Popov-Quantisierung: s. z.B. [BL86, Tay76, AL73, Hee02]

▶ betrachte beliebigen Satz Felder Φ und erzeugende Funktionale Z [J ], W [J ] und Γ [Φ]
▶ in vielen Fällen: Quantenwirkung Γ [Φ] hat gleiche Symmetrien wie klassische

Wirkung S [Φ]
▶ Herleitung: S [ϕ] invariant unter einer Transformation Φ(x ) = F [Φ(x )]
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Pfadintegral für Felder

▶ Annahme: Pfadintegralmaß DΦ invariant unter Trafo: DF [Φ] =DΦ
▶ Lie-Symmetrie: infinitesimale Trafo: F [Φ](x ) =Φ′(x ) =Φ(x ) +δΦ[Φ, x ]

Z [J ] =

∫

DΦexp

�

iS [Φ] + i

∫

R4

d4 x J (x )Φ(x )

�

▶ Invarianz der Wirkung: S [Φ′] = S [Φ] und des Pfadintegralmaßes DΦ′ =DΦ⇒

Z [J ] =

∫

DΦ′ exp

�

iS [Φ′] +

∫

R4

d4 x J (x )Φ′(x )

�

symm
=

∫

DΦexp

�

iS [Φ] + i

∫

R4

d4 x J (x )[Φ(x ) +δΦ(x )]

�

=

∫

DΦ

�

1+ i

∫

R4

d4 y J (y )δΦ[Φ, y ]

�

exp

�

iS [Φ] + i

∫

R4

d4 x J (x )Φ(x )

�

=

�

1+

∫

R4

d4 y J (y )δΦ

�

δ

δ J (y )
, y

��

Z [J ]
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Pfadintegral für Felder

▶ ⇒
∫

R4

d4 y J (y )δΦ

�

δ

δ J (y )
, y

�

Z [J ] = 0

▶ Annahme: lineare Symmetrie: δΦ(x ) =δα j T̂jΦ(x ) (δα j = const) (lokale Symmetrie)
⇒

δα j

∫

R4

d4 y J (y )T̂j
δ

δ J (y )
Z [J ] = 0

▶ Z [J ] = exp(iW [J ])⇒

δα j

∫

R4

d4 y J (y )T̂
δ

δ J (y )
W [J ] = 0

▶ für Γ [Φ]:

δα j

∫

R4

d4 y
δΓ [Φ]
δΦ(y )

T̂jΦ= 0

▶ ⇒ Γ [Φ] hat dieselbe Symmetrie wie S [Φ]

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 28



Pfadintegral für Felder
▶ CAVEAT: falls DΦNICHT invariant unter Trafo ist⇒ Γ [Φ] nicht notwendig

symmetrisch
▶ S [φ] symmetrisch, Γ [Φ] nicht symmetrisch: Anomalie, d.h. quantisierte Feldtheorie

nicht symmetrisch, obwohl klassische Theorie symmetrisch ist!
▶ z.B. Adler-Bell-Jackiw-Anomalie: Anomalie der axialen U (1)A-Symmetrie der

(masselosen) QED und QCD (s.u.) [Adl69, BJ69, PS95]

Spontane Symmetriebrechung
▶ betrachte Theorie mit N reellen Skalarfeldern φ⃗ = (φ j ), die unter SO(N )-

Transformationen symmetrisch ist:

L =
1

2
(∂µφ⃗)(∂

µφ⃗)+
µ2

2
φ⃗2−

λ

8
(φ⃗2)2

︸ ︷︷ ︸

−V [φ⃗]

.

▶ Lie-Algebra: antisymmetrische RN×N -Matrizen
▶ Dimension der Lie-Algebra: N (N −1)/2
▶ „falsches Vorzeichen“ des Massenterms ist hier Absicht!
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Pfadintegral für Felder

▶ Potential:
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Pfadintegral für Felder

φ1

φ2

V

φ0

▶ muss um stabilen Grundzustand entwickeln:

V (|φ⃗|) =−
µ2

2
φ⃗2+

λ

8
(φ⃗2)2

▶ Minima |φ⃗|= v ⇒ Grundzustand entartet
▶ V ′(v ) = (−µ2+λv 2/2)v != 0⇒Minimum bei v =µ

p

2/λ.
▶ entwickele um einen beliebig gewählten Grundzustand: v⃗ = (v, 0, 0, · · · , 0)
▶ effektive Wirkung invariant, da Pfadintegralmaß Dφ =Dφ1Dφ2 · · ·DφN invariant

unter SO(N )-Transformationen
▶ damit

∫

R4

d4 y
δΓ

δφ j (y )
T a

j kφk (y ) = 0

▶ take functional derivative δ/δφl (0) and then set φ⃗ = v⃗ ⇒
∫

R4

d4 y
δ2Γ

δφ j (y )δφl (0)
T a

j k vk =−
∫

R4

d4 y G −1
j l (y )T

a
j k vk = 0.

▶ in Impulsdarstellung:

G̃ −1
j l (p = 0)T a

j k vk =M j l T a
j k vk = 0.

▶ G̃ −1
j l (p = 0): Massenmatrix der ϕ⃗

▶ von den N (N −1)/2 so(N )-Basismatrizen T̂ a ergeben die (N −1)(N −2)/2
Generatoren der SO(N −1)-Symmetriegruppe, die das Vakuum invariant lassen
T̂ a v = 0.
▶ für die übrigen [N (N −1)− (N −1)(N −2)]/2=N −1 Generatoren ist g (a )j = T a

j k vk ̸= 0

Eigenvektor von M̂ zum Eigenwert 0
▶ ⇒ von den N Teilchen der ϕ⃗-Felder sind (N −1)masselos (Nambu-Goldstone-

Bosonen)
▶ Goldstone-Theorem: spontan gebrochene globale Symmetrie⇒so viele masselose

Nambu-Goldstone-Bosonen wie symmetriebrechende Generatoren der Symmetrie
▶ Anschauung: die Feldanregungen, die „Drehungen“ im Minimum des „Sombrero-

Potentials“ entsprechen, benötigen keine Energie, da sie derselben niedrigsten
„Vakuumenergie“ entsprechen
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Chirale Symmetrie und Hadronen

Literatur: [Koc97, Sch03]
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Quantumchromodynamik: QCD
▶ Theorie der starken Wechselwirkung (s. Vorlesung 11) QCD

LQCD =−
1

4
F µνa F a

µν+ψ(i /D − M̂ )ψ

▶ nicht-Abelsche Eichgruppe SU(3)color
▶ jedes Quark Farbtriplett:ψ= (ψr ,ψg ,ψb )mit Dirac-Spinorenψk

▶ eich-kovariante Ableitung: Dµ = ∂µ+ ig T̂ a Aa (a ∈ {1, . . . , 8})
▶ Feldstärketensor: F a

µν = ∂µAa
ν − ∂νAa

µ − g f a b c Ab
µAc

ν

▶ Strukturkonstaten f a b c : [T̂ a , T̂ b ] = i f a b c T̂ c , T̂ a = (T̂ a )† ∈C3×3

▶ Teilcheninhalt
▶ ψ: Quarks mit Flavor (u , d ; c , s ; t , b ) (Masseneigenzustände!)
▶ M̂ = diag(mu , md , ms , . . .) =Stromquarkmassen
▶ Aa

µ Gluonen, Eichbosonen der SU(3)color

▶ Symmetrien
▶ fundamentale lokale SU(3)color-Symmetrie
▶ im Sektor der leichten Quarks u, d, (s): näherungsweise chirale Symmetrie (M̂ → 0)
▶ Skaleninvarianz für M̂ → 0
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Eigenschaften der QCD
▶ asyptotische Freiheit bei großen Impulsüberträgen in Stößen αs = 4πg 2

s → 0
▶ Laufen der Kopplungskonstante aus der Renormierungsgruppengleichung:

Physik-Nobelpreis 2004 an D. Gross, F. Wilczek, H. D. Politzer

α
s

1 10 100
(GeV)µ

0.3

0.2

0.1

0

▶ Quarks und Gluonen in farb-neutralen Hadronen eingeschlossen (Confinement)
▶ theoretisch noch nicht vollständig verstanden (nichperturbatives Phänomen!)
▶ Gitter-QCD-Rechnungen: QCD beschreibt erfolgreich das Massenspektrum der

Hadronen
▶ bei niedrigen Energien: effektive hadronische Theorien
▶ grundlegendes Prinzip: näherungsweise chirale Symmetrie im leichten

Quarksektor
▶ (effektive theorie für schwere Quarks)
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Chirale Symmetrie der (masselosen) QCD
▶ betrachte nur leichte u- und d -Quarks

▶ Isospin-Dublett:ψ=

�

u
d

�

=

�

ψ1

ψ2

�

▶ NB:ψ at 3 Indizes: Dirac-Spinor, Color und Isospin!
▶ γ-Matrizen:

�

γµ,γν
	

= 2ηµν1, γ5 := iγ0γ1γ2γ3, γ5γµ =−γµγ5, γ†
5 = γ5, γ2

5 =1
▶ Dirac-Beziehungen für links- und rechtshändige Komponenten

ψL =
1−γ5

2
ψ= PLψ, ψR =

1+γ5

2
ψ= PRψ,

P 2
L/R = PL/R , PR PL = PL PR = 0, PL/Rγ5 = γ5PL/R =∓PL/R

PL/Rγµ = γµPR/L , PLψ=ψPR , PRψ=ψPL

ψγµψ=ψLγµψL +ψRγµψR , ψψ=ψLψR +ψRψL

▶ ψ :=ψ†γ0, γ5ψ=ψ†γ†
5γ0 =−ψγ5

▶ im masselosen Limtes (mu =md = 0)

Lu ,d =ψi /Dψ=ψL i /DψL +ψR i /DψR
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Chirale Symmetrie der (masselosen) QCD
▶ im masselosen Limes (mu =md = 0)⇒ globale chirale Symmetrien:
▶ Änderung von voneinander unabhängigen für die links- and rechtshändigen

Komponenten:

ψL (x )→ exp(−iφL )ψL (x ), ψR (x )→ exp(−iφR )ψR (x )

▶ Symmetriegruppe U(1)L ⊗U(1)R
▶ unabhängige Isospinrotationen:

ψL (x )→ exp(−iα⃗L · T⃗ )ψL (x ), ψR (x )→ exp(−iα⃗R · T⃗ )ψR (x )

▶ T⃗ = τ⃗/2, τ⃗: Pauli-Matrizen; Symmetriegruppe SU(2)L ⊗SU(2)R
▶ alternative Notation skalare und pseudoskalare Phasenänerung und

Isopspinrotationen

ψ→ exp(−iφs )ψ, ψ→ exp(−iγ5φa )ψ

ψ→ exp(−iα⃗V · T⃗ )ψ, ψ→ exp(−iγ5α⃗A · T⃗ )ψ

▶ U(1)s und SU(2)V sind Untergruppen der chiralen Symmetrien, die auch
Symmetrien bleiben, wenn mu =md ̸= 0⇒Heisenbergs Isospinsymmetry!
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Ströme: Beziehung mit Mesonen
▶ Quellen: [Koc97, Sch03, Din11]

▶ Noether: jede Symmetrie impliziert Erhaltungsgröße

▶ Noether-Ströme für chirale Symmetrien

jµs =ψγ
µψ, jµa =ψγ

µγ5ψ

j⃗
µ
V =ψγ

µT⃗ψ, j⃗
µ
A =ψγ

µγ5T⃗ψ

▶ Beziehung zu Mesonen über entsprechende Quantenzahlen:
▶ σ (bzw. f0):ψψ (Skalar und Isoskalar)
▶ π: iψT⃗ γ5ψ (Pseudoskalar und Isovektor)
▶ ρ’s:ψγµT⃗ψ (Vektor und Isovektor)
▶ a1’s:ψγµγ5T⃗ψ (Axialvektor und Isoaxialvektor)

▶ σ and π’s; ρ’s and a1’s haben nicht gleiche Masse

▶ QCD-Grundzustand nicht symmetrisch unter Pseudoscalar- and Pseudovekto-
Transformationen




Ω
�

�ψψ
�

�Ω
�

̸= 0
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Spontane Symmetriebrechung
▶ spontan gebrochene Symmetrie: Grundzustand nicht symmetrisch

▶ ⇒ Grundzustand entartet

▶ Grundzustand symmetrisch unter isoskalaren und Isovektortransformationen
U(1)L ×U(1)R gebrochen zu U(1)s ; SU(2)L ×SU(2)R gebrochen zu SU(2)V
▶ für jede gebrochene Symmetrie masseloses Nambu-Goldstone-Boson

▶ hier: drei Pionen sehr leicht im Vergleich zu anderen Hadronen (mπ ≃ 140 MeV)
▶ mπ ̸= 0: explizite Brechung der chiralen Symmetrie durch mu , md
▶ kann störungstheoretisch beshandelt werden⇒ chirale Störungstheorie
▶ Axialvektorstrom nur näherungsweise erhalten
⇒ PCAC (partially conserved axial current)
▶ erklärt viele Hadroneneigenschaften
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Spontane Symmetriebrechung

▶ U(1)a -Anomalie (Adler-Bell-Jackiw-Anomalie)
▶ klassische Theorie invariant unter U(1)a ⇒ in Quantenfeldtheorie explizit

gebrochen (hier ohne Beweis) [PS95]

▶ Grund: Pfadintegralmaß DψDψ nicht invariant unter U(1)a -Trafos [Fuj79, Fuj80]

▶ wichtig für korrekte Vorhersage der Zerfallsrate für π0→ γγ
▶ pseudoskalarer Strom nicht erhalten: ∂µ j µa = 3/8αsε

µνρσG a
µνG a

ρσ
▶ weiterer Hinweis in SU(3)-Quarkmodell (Gell-Mann): pseudoskalares

Mesonen-Nonet zwei isospinskalare Mesonen η (zumeist SU(3)-Oktett) und η′

(zumeist SU(3)-Singulett)
▶ η≃ qγ5λ̂8q (mit q = (u , d , s ))⇒ keine Anomalie des entsprechenden

Axialvektorstroms
▶ aus gleichem Grund Isovektor-Axialvektorstrom ≃ qγ5γµ ˆ⃗τq erhalten (keine

Anomalie wegen tr ˆ⃗τ= 0)
▶ η schwerer als π’s wegen schwerer s-Quarkmasse
▶ η′ ≃ qγ5q ⇒ Axialvektorstrom anomal gebrochen
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Minimales chirales Modell für Pionen und Nukleonen

▶ σ-Meson und Pionen (chirale Partner)

▶ Meson = q -q -Bindungszustand

▶ infiniteseimale chirale Transformationen für Quarks (T⃗ = τ⃗/2) in SU(2)L×SU(2)R
model

ψ→ (1− iδα⃗V · τ⃗/2)ψ (Isovektor-Transformation)

ψ→ (1− iγ5δα⃗A · τ⃗/2)ψ (Isoaxialvektor-Transformation)

▶ ⇒ Transformationseigenschaften von Mesonenfeldern unter chiralen
Transformationen:σ∼ψψ, π⃗∼ iψτ⃗γ5ψ

σ→σ−δα⃗A · π⃗, π⃗→ π⃗+δα⃗V × π⃗+δα⃗Aσ

▶ σ2+ π⃗2 invariant⇒ chirale Transformation durch SO(4)-Transformation von
φ = (σ, π⃗)T realisiert
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Minimalesσ-Modell für Mesonen

▶ chirale Symmetrie als SO(4)-Transformationen von Meson-Feldernφ ∈R4

▶ beschreibtσ-Meson und die drei Pionen (π±, π0)

Lχ limit =
1

2
(∂µφ)(∂

µφ)−V (φ) =
1

2
(∂µφ)(∂

µφ)−
λ

4
(φ2− f 2

π )
2

▶ spontane Symmetriebrechung: „Sombrero-Potential“

φ1

φ2

V

φ0
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Minimalesσ-Modell für Mesonen

▶ Entartung des Grundzustands⇒man braucht keine Energie, um Felder
innerhalb des Potentialminimums zu drehen
⇒masselose Nambu=Goldstone-Bosonen (Pionen)

▶ Vakuumerwartungswert



φ0
�

= fπ ̸= 0 (NB: Vakuum immer noch Poincaré-

invarianter Zustand



Φ0
�

= const

▶ Symmetrie spontan gebrochen von SO(4) zu SO(3)V (dim SO(4) = 4 ∗3/6,
dimSO (3) = 3 ∗2/2= 3 ⇒ 6−3= 3 Nambu-Goldstone-Bosonen (Pionen)

▶ Teilcheninhalt des Modells: vier skalare reelle Feldfreiheitsgrade⇒ 3 masselose
Pionen und 1 massivesσ-Meson
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Pionenzerfall und PCAC
▶ schwacher Zerfall π+→µ++νµ
▶ schwache Wechselwirkung (chirale Eichtheorie mit Eichgruppe

SU(3)w-iso⊗SU(3)w-Y-Eichgruppe∝ J
µ

V − J
µ

A

▶ Pion pseudoskalar⇒ Zerfall wegen Axialstrom⇒

〈0|J aµ
A (x )|πb (p )〉= ipµδa b fπ exp(−ip · x )

▶ Zerfallsrate⇒ fπ ≃ 93 MeV

〈0|∂µ J
aµ

A (x )|πb (p )〉=− fπp 2δa b exp(−ip · x ) =− fπm 2
πδ

a b exp(−ip · x )

▶ exakte chirale Symmetrie⇒mπ = 0 (Goldstone-Theorem))⇒ ∂µ J
aµ

A = 0 Noether

▶ mπ ̸= 0 aber „klein“⇒ näherungsweise erhaltener Axialvektorstrom (PCAC)

▶ im effektiven Modell
J

aµ
A,π = fπ∂µφ

a , a ∈ {1, 2, 3}
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Explizite Symmetriebrechung

▶ explizite Brechung wegen mu, md ̸= 0

▶ symmetriebrechender Term in QCD:LχSB =−mψψ

▶ m = (mu +md )/2; wegenψψ∼σ⇒ in hadronischem Modell

LχSB =−εσ

▶ σ-π-Potential:

V (σ, π⃗) =
λ

4

�

(σ2+ π⃗2)− v 2
0

�2−εσ

▶ Potential inσ-Richtung verkippt⇒ führt zu korrekten „Richtung“ des (nun nicht
mehr entarteten) Vakuums

▶ Minimum bei fπ⇒

v0 = fπ−
ε

2λ f 2
π

, m 2
σ = 2λ f 2

π +
ε

fπ
, m 2

π =
ε

fπ
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Explizite Symmetriebrechung

▶ Noether + explizite Brechung der Symmetrie + PCAC (consistency!):

∂µ J
aµ

A =−επa PCAC= − fπm 2
ππ

a ⇒ ε= fπm 2
π

▶ χSB in der QCD wie im effektiven Modell⇒ Gell-Mann-Oaks-Renner-Relation
[GMOR68]

〈0|εσ|0〉= fπε=m 2
π f 2
π =−m〈0|ψψ|0〉
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Nukleonen imσ-Modell
▶ Axialstrom von Nukleonen Ψ = (p , n )T-Isospin-Dublett

J⃗
µ

A,nucl = gaΨγ
µγ5
τ⃗

2
Ψ

▶ β-Zerfall des Neutrons⇒ ga = 1.25
▶ Gesamt-Axialvektorstrom J⃗

µ
A = J⃗

µ
A,π+ J⃗

µ
A,nucl sollte PCAC erfüllen

∂µ J⃗
µ

A =− fπm 2
ππ⃗⇒

(□+m 2
π)π⃗=−ga i

M

fπ
Ψγ5τ⃗Ψ

▶ Goldberger-Treiman-Relation

gπN N = ga
M

fπ
≃ 12.6 vs. g exp

πN N = 13.4

▶ Erweiterung des linearenσ-Modells

Lnucl =Ψi /∂ Ψ − gπN N



iΨγ5τ⃗Ψ · π⃗+ΨΨσ
︸ ︷︷ ︸

chiraler SO(4)-Skalar!




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