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Pfadintegral fiir Felder

* Einfaches Spielzeugmodell: ¢*-Theorie

neutrales Skalarfeld ¢(x) e R

Lagrangian

_1 m? o Ao
f—g(@‘l))(a”éb)—?(/’ —a?

— Ziel: Alternative Rechenmethode zur Berechnung Vakuumerwartungs-
werte zeigeordneter Feldoperatorprodukte

- via LSZ-Reduktion invariante Ubergangsmatrixelemente fiir Streu-

querschnitte
- Idee: verwende formale Eigenzustédnde von ¢ und kanonischen Fel-
dimpulsen
B(x) a4
xX)=
T 09l

- Quantisierung iiber bosonische kanonische gleichzeitige Kommu-
tatoren im Heisenbergbild

[o(2,%),0(t,7)]=0, [N(z,%),0(s,7)]=0, [p(z,%),1(t,7)]=i6P(2-7),

- analog wie Quantisierung von nichtrelativistischer Punktteilchen-
mechanik

[x;(0),xe(0)]=0, [p;(2),pe()]=0, [x;(2),%(1)] =16 j.

x Orts- und Impulseigenzustdnde zur Zeit ¢ = 0:

X0)|%)=%1%), BO)|B)=7|B), fd35c’|f><?c|=ﬂ, f
R3 R3

— mitFeldern: Freiheitsgrad-Label j inx; bzw. p ; entspricht X in ¢(0, X)
bzw. II(0, X):

$(0,%)|¢)=¢(0,%)|¢), T(0, %)) =TI(0, )|¢).
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- Zeitentwicklung im Heisenbergbild

|p, ) =exp(itH)|p), 1L, 1) =exp(it H)II)

mit Hamiltonian

H=J dxA(x), H(x)=¢X)M(x)—ZL
R3

- Ubergangsamplitude von Feldkonfiguration ¢; bei t = t; zu ¢ ¢ bei
t= tf
Cri = (s |expl—iH(z —1,)] 9:)
— Zerlege Zeitintervall (¢;, £¢) in N Teilintervalle der Lange At = (¢ —
t;)/N
Cri=(¢y lexp—iHANY | 9;)

- Schiebe formale , Vollstdndigkeitsrelationen® ein:

JD¢(£)|¢>(¢|=1, JDZ:‘) IT0) (I1| = 1.

mit|¢). =[¢,1;), |0;)=1L1;)

N DII.D

Cfi(tf,l‘i)=]vlglgofl_[§—ﬂw<%|HN>x
k=1
><<HN}exp(—iHAt)|cpN>...<H1|exp(—iHAt){<,01><cpl}g0a>.

- Nehme Weyl-Ordnung von ¢ und Il in H an: alle Faktoren II links
on allen Faktoren ¢ rechts =

(Hk|exp(—iHAz){¢k)Az 0(1—inAt)exp[—ifd3)_c’Hk¢k]
—
- dann

P17, )= () Ly 2¢(x)
Cfi:ﬂfDHJ D¢eXp{iJ d4X[H(x) 57 —%(H@)]}.
P(11,X)=9;(%) L

"+ nicht wohldefinierter aber unwichtiger Normierungsfaktor




— Kontinuumlimes:

Ptr,X)=p (%) Iy 0
Cpi= f Dr J Dy exp iJ atx [ 22 e, g)
(1, X)=p;(%) l

Sle,M]

- Vakuum—Vakuum-Ubergangsamplitude: fiihre Term —i0*/2¢? in
Lagrangian ein (entspricht m* — m*—i0%) und t; — —o0, t; —
+00, ¢i—>0, ¢f—>0

- analoge Rechnung: fiir zeitgeordnete Vakuumerwartungswerte

(Q | TCF[¢,7r]| Q> = JVJ Dﬂf D¢ exp {iS[(j),n]} Fl¢,n].
- zeitgeordnete (Feynman) Green-Funktionen

iG(n)(Elr---’ﬁn) = <Q|9c¢(£1)¢(£n)|9>

- Erzeugendes Funktional

Z[]]:Wf Dﬂ"f D¢ exp{iS[¢,n]+iJ d4x](x)¢(x)}

— modulo unbestimmtem Faktor

1 o0"Z[]]

NG (X1, X0, ..., Xp) inoJ(x1)0J(x)---0J(xy)

J=0
¢ Ausintegration von II

- ¢*-Theorie

1 m* , A,
2 =30,0)0"9)=—-¢° =310
0%
__aqﬁ_

S _1 2 l-’ 2 & 4
S =11¢ $_2H +2(V¢)+4!¢,

P,

=11

S[¢,1I] =f d* x[Mg — ]
R4
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- Pfadintegral iiber II: Gaul3-Funktional

- entwickele Wirkung um Minimum bzgl. IT

5S . iy
6H—(x):¢—H:0:>H0—¢

- _ 1 4 4 62S[¢, 1]
5[¢’H]—5[¢»Ho]+§JR4d xfwd J’(m)nzm [T1(x) = TIo()]T(y ) — Mo (y )]

S[¢,Ho]=8[¢,¢158[¢]=f d'xL(¢,9uy)-

R

- Lagrange-Version des Pfadintegrals:
ZIJ1=A4 | D exp H d*x (2 + J(1)¢(£))]
R4

- kein Gaul3-Integral = Storungstheorie!

generating functional for free fields

1 m?—io* A
L= 5(6”¢)(6M¢)_T¢2+]¢’ $1=—Z¢4-5f =%+ 4.

erzeugendes Funktional fiir freies Feld:

Zo[J]= JVJ D¢ exp [1f d*x (‘,%0 + ](ﬁ)ff’(ﬁ))
R4

wie bei Integration iiber II: von einem J-unabhingigen Faktor abgese-
hen ist Zy durch die Wirkung am stationdren Punkt ¢ gegeben

a4 oY

2 o
‘UW_% =>—(E|+m +l)¢— ].

Losung

@(E)Z_J d4x/DF(£_£2)](£2)
R4
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erzeugendes Funktional
Zo[]]==/VeXp[% f d4x](1)90(£)],
R4
ZylJ] =,/Vexp[%f d4x1f d* x,Dp(x, —ﬁg)](ﬁl)](ﬁg)]
R4 R4

Erinnerung an Vorlesung 9: Stérungsrechnung

A o4
Z[J]=exp [—15 JW dtx 5T ] ZolJ]

zeitgeordnete Green-Funktionen via Taylorentwicklung der Funktional-
ableitungs-exp-Funktion:

iG"(x,,..., x,)

_ i[ 6 o6 . ° ]
T Z10]in |67 (x)) 6T (x2)  6T(xn) /=0

Feynman-Diagramme: alle (verbundenen und unverbundenen) Green-
Funktionen

jedes zusammenhidngende Diagrammteil mit wenigestens einem duf3e-
ren Punkt x ; verbunden

Feynman-Regeln (im Impulsraum)

P - i
De(p) p* —m? 40+

Organisation der Stérungsrechnung

alle Green-Funktionen G lassen sich durch Summen iiber Produkte
von zusammenhdngenden Green-Funktionen darstellen

- iGC(") alle zusammenhidngenden Diagramme mit n dulleren Bein-
chen



- erzeugendes Funktional
Z[J1=exp(iW[J]) & iW[J]=In(Z[]]).
- zusammenhingende Green-Funktionen:

1 6"WI[J]
Cin 6 J(xy) 6 (x,,) |2

G (xy,...,x,)

- Beweis durch vollstdndige Induktion (s. [Hee02))

- Selbstenergie- und Vertexfunktionen

- Diagramm mit einzelnen inneren Linien: zerfillt in Produkt aus zwei
zusammenhdngenden Diagrammen und der dieser inneren Linie
entsprechenden Green-Funktion

- =: alle G; kénnen durch Summen iiber Produkte von einteilchen-
irreduziblen amputierten Diagrammen, also Selbstenergie- und Ver-
texeinschiibe, verbunden mit inneren und duf3eren Propagatorlini-
en dargestellt werden

- einteilchen-irreduzible Diagramme (one-particle irreducible oder
1PI-Diagramme): zerfallen nicht in Teile, wenn man irgendeine in-
nere Linie durchschneidet

- erzeugendes Funktional: Legendre-Transformierte von W:

(x)= SWIJ]
AT
r[so1=W[J]—J d*xp(x)J(x)
R4

6F=J d4x[65M;) J(ﬁ)-M—J(;)W(&)F—J d*xJ(x)8¢(x),
R4 . R4

5T
Gox) )

— Vertexfunktionen

0"Typ]

™(x.,...,x )=
Xy Xp) 6p(xy)-+-6¢(x,)




Spezialfall T?):

0](x1) 6p(y.)
d* 1T (x1, 1)GP(1p, x. =—f d* =—6W(x;—x,),
f 1 (%1, 1) G (32, X2) J’25¢(y2) 57 (x,) (x1—x)

I'®:  Funktionale Inverse“ des (exakten) Propagators:
GPx1, %) = G(x,, x,) = f d'yrd* P (n, IR, WGP (%, 1)

fiir freie Theorie
—(Or+m*)Dp(x,—x5) = =5 (x,—x,) = [(x,, x,) = ~(O+m*)5 " (x,—x,).
Definition der Selbstenergie

S(xy, X,) =T (2, %,) T2, x,)

= Dyson-Gleichung

J d4y1J d*yDe(x, —y )2y, ¥,)G(y, X,) =—G(x}, X,) + Dg(x; —x,)

R4 R4

G(11,12)=DF(£1—12)—J d4y1J d*y,De(x, —y )2y 1 ¥,)G (Y, X,)
R4 R4

wegen Translationsinvarianz:
G(ﬁplg) = G(£1 _ﬁz)r Z(11 ) ﬁz) = Z(£1 _lz)
Impulsdarstellung: Fourier-Transformierte

1

e = 4 1x- 3 = 4 ix- D =
G(g)—fwd xexp(ix-p)G(x), X(p) f d”x exp(ix-p)X(x), Dr(p) PP —mE i

R4
Faltungssatz = Dyson-Gleichung

1 X(p) &)
p?—m2+i0+t  p2—m?2+i0* P
1

p2—m2—=%(p)+i0*

G(p)=

=G(p)=

diagrammatisch



—1—:—(—+—(—(::)—1—

— allgemein: G/ = Summe {iber Baumgraphen mit n duferen G-Bein-
chen mit exakten Vertexfunktionen und inneren G-Linien

- Beispiel: exakter Vierpunkt-Propagator

4 3
4 3 4 3
>::< = % + + exchange
1 2 1 92
1 2

Beweis durch vollstdndige Induktion: jecoz)

Theorie vollstandig durch I'[¢] definiert

Verschwindende dufSere Quelle:
oT

mz—](i)io-

Feldgleichung fiir ,mittleres Feld“ ¢ = Wirkungsprinzip

= I'Tp] ,Quantenwirkung*

¢ Fermionen

z.B. Dirac-Feld
Lagrangian fiir freies Feld

Lo=Yd—mp, T=7"3, =TI, = jf" _ip,

gleiche Idee wie bei Bosonen: Eigenvektoren des Feldoperators bzw.
kanonischen Feldimpulses

aber: Fermionen = kanonische gleichzeitige Anti-Kommutatoren
{9 (6, %)%, )} =0, {M,(t,%),1,(£,7)} =0, {,(t,3),0,(t,7)}=i6%(Z-7)
- = fiir Feld-Eigenvektor

Y40, )9, (0, 7) 1) = Y a(R) () |t0) = =4 (0, PP (0, T) 1) = 4,0, P10, ) |3))
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- = ,Feldeigenwerte“ miissen antikommutierende ,c-Zahlen“ sein!
- = Grassmann-Algebra

— Grassmann-Zahlen“ bilden komplexen Vektorraum

- endlichdimensional: Basis 8,...,0,

- antikommutatives Produkt: 6;0; =—0;0;

- alle Produkte auch im Vektorraum = Vektorraum ist insgesamt 2" -
dimensional

— denn alle Produkte mit mehr als n der 6; miissen notwendig ver-
schwinden, damaximal 6, 6, - - - 8,, von 0 verschieden sein kann, denn
wegen Antikommutativitdt verschwinden alle Produkte, in denen
wenigstens 2 gleiche 6; vorkommen.

— Anzahl méglicher Produkte mit 0 < m < n Faktoren m =0 bedeutet
einfach eine komplexe Zahl, d.h. man bildet Polynome der Form

o n
PO,,...,0,)=a+ Z Z aj . 0;-0;
m=1 jy,..,j,=1
- a,a; ;. €C, a;, _; total antisymmetrisch

fiir gegebenes m gibt es offenbar (,’,’1) verschiedene Monome 6, --- 0;
(Standardreihenfolge: j; < jo <...< j,

m

linear unabhéngige Monome bilden Basis des Grassmann-Zahlenvektor-
raums

Anzahl:

n n
n n
d= ( ): ( )1’"-1"""=(1+1)”=2”.
m m
m=0 m=0

in QFT: ¢,(x) = iberabzdhlbar unendlich viele 6’s

Analysis mit Grassmann-Zahlen

- Ableitung soll linearer Operator sein = es geniigt, Ableitungen von
Monomen der 6;’s zu definieren

- Ableitungen: Links- und Rechts-Ableitungen

(def)

(L) — k— k—1
9,031 0jic -+ Ok -0, = B, (Z1)"7 040+ 05, 05,05, = (1) 0,0, ,0

10
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L/R)
j

fiir mehrere Ableitungen: 80( antikommutieren

- analog fiir Rechtsableitung

- Integration: Fall mit nur 1 6

- mogliche Polynome (Funktionen!) nur P(0)=a+a,0

- Integral iiber 8 soll linear und translationsinvariant sein, d.h. fiir
beC

J dep(a)éfdep(e+b) = aJ do 1+a1J doeo é(a+ba1)J df1+a, f doe

— damit das fiir alle a,a;, b € C =

fdm:o, fd@() (deh

- gleiche Regel wie Ableitung nach 0!

— fiir Grassmann-Algebren mit mehreren 6;’s

fd01~-~d9mf(91,...0n)=agf‘)-~-agff(91,...,9n)

- in QFT: lokale Observablen immer Polynome mit nur geradzahligen
Monomen von Fermionenoperatoren (wegen Mikrokausalitédt

- Erzeugendes Funktional Z[1,n] mit n = n,(x) und n = n,(x) als
Grassmann-Generator-wertige dullere Quellen

Z[J]= wf Dy'Dy exp [isw] + iJ d* x[[(0)y(x) + P (x)n(x)
R

4

e Symmetrien

hier: globale Symmetrien wie U(1), SU(IV)-Flavorsymmetrien etc.

groBter Vorteil der Pfadintegalmethode: Quantisierung von (abel-
schen und nichtabelschen) Eichtheorien Faddeev-Popov-Quanti-
Sierung: s. z.B. [BL86, Tay76, AL73, Hee02]

betrachte beliebigen Satz Felder ® und erzeugende Funktionale Z[ /],
WI[J]und I'[®]

in vielen Fillen: Quantenwirkung I'[®] hat gleiche Symmetrien wie
klassische Wirkung S[®]
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Herleitung: S[¢]invariant unter einer Transformation ®(x) = F[®(x)]
Annahme: Pfadintegralmall D® invariant unter Trafo: D F[®]=D®
Lie-Symmetrie: infinitesimale Trafo: F[®](x)=®'(x) = ®(x)+6®[®, x]

Z1= f D@exp[isrbmf d4x1(£)<1>(£)]
R4

Invarianz der Wirkung: S[®’] = S[®] und des Pfadintegralmalles D@’ =
D>

Z)= J D&’ exp [iS[«b’] + f d4x](£)¢’(£)]
R4

symm

= JD@exp[iS[(I)]+i f d4x](£)[‘1>(£)+5<1’(£)]]
R4

- [0

o
=11 d* 0P| ———,
(+JR4 Y lﬁf(z ’

1+iJ d4y](z)5¢[¢,z]]exp[18[¢]+if d4x](£)¢‘(£)]
R4

R4
)Z[]]

0
d* 00| ——,
fw Yy l5](1) :

Annahme: lineare Symmetrie: 6®(x)=6a; ijb(ﬁ) (6aj = const) (lo-
kale Symmetrie) =

Z[J]=0

L 0
oa; d* T, ——Z[J]=0
a]fw J’I(X) ]5](1) []]

Z[J]1=exp(iW[J]) =

. 0
Sa; | d* T——WJ[Jl=0
a,fw yI(y) 570) [J]

fiir T[®):

Sa;| dy——Td=0
ffw Yso(y)

= T'[®] hat dieselbe Symmetrie wie S[®]
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— CAVEAT: falls D® NICHT invariant unter Trafo ist = I'[®] nicht not-
wendig symmetrisch

- S[@] symmetrisch, I'[®] nicht symmetrisch: Anomalie, d.h. quan-
tisierte Feldtheorie nicht symmetrisch, obwohl klassische Theorie
symmetrisch ist!

- z.B. Adler-Bell-Jackiw-Anomalie: Anomalie der axialen U(1),-Sym-
metrie der (masselosen) QED und QCD (s.u.) iadiss, B9, psos]

Spontane Symmetriebrechung
- betrachte Theorie mit N reellen Skalarfeldern (/? = (¢;), die unter

SO(N)-Transformationen symmetrisch ist:

1 g nd 2 - A -
= 3@0,0)0"§)+ 5§ -2

~V[g]

- Lie-Algebra: antisymmetrische RV *N -Matrizen
- Dimension der Lie-Algebra: N(N —1)/2
- ,falsches Vorzeichen“ des Massenterms ist hier Absicht!

— Potential:

— muss um stabilen Grundzustand entwickeln:
- 2 - A -
V() =-5- 67+ S

13



— Minima |q_5) | = v = Grundzustand entartet
- V'(v)=(—u?+Av?/2)v £ 0 = Minimum bei v =uv/2/A.
- entwickele um einen beliebig gewihlten Grundzustand: # =(v,0,0,--,0)

- effektive Wirkung invariant, da PfadintegralmalD¢ =D¢ D¢, ---Doy
invariant unter SO(N)-Transformationen

ol
fw Y G ) kD=0

- take functional derivative 0/6 ¢;(0) and then set ¢_5 ==
6°T
dly————— Ty =—
fm Y 50,(1)84.(0) 1"
- in Impulsdarstellung:

Gj_ll(EZO)Tﬁc Vg IMjl Tﬁc Vi =0.

— damit

f G Tfve=0.
R

- Gj_ll( p =0): Massenmatrix der @

- vonden N(N—1)/2so(N)-Basismatrizen T ergeben die (N—1)(N—
2)/2 Generatoren der SO(N —1)-Symmetriegruppe, die das Vakuum
invariant lassen 7% v = 0.

— fiir die tibrigen [N(IN —1)—(N —1)(N —2)]/2 = N —1 Generatoren ist
g}“) = T]‘;C v # 0 Eigenvektor von M zum Eigenwert 0

- =vonden N Teilchen der g-Felder sind (N —1) masselos (Nambu-
Goldstone-Bosonen)

- Goldstone-Theorem: spontan gebrochene globale Symmetrie =so
viele masselose Nambu-Goldstone-Bosonen wie symmetriebrechen-
de Generatoren der Symmetrie

- Anschauung: die Feldanregungen, die ,Drehungen® im Minimum
des ,Sombrero-Potentials“ entsprechen, benotigen keine Energie,
da sie derselben niedrigsten , Vakuumenergie“ entsprechen

2 Chirale Symmetrie der QCD und Hadronen

Chirale Symmetrie und Hadronen

Literatur: (koco7, schos]
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Quantumchromodynamik: QCD

¢ Theorie der starken Wechselwirkung (s. Vorlesung 11) QCD
1 — . .
Zqcp = —ZFa“VFH“V +Yip— My

¢ nicht-Abelsche Eichgruppe SU(3)c1or

jedes Quark Farbtriplett: ¢ = (¢, ¢, Y ) mit Dirac-Spinoren '
eich-kovariante Ableitung: D, = g, +ig TeA% (aefl,...,8})
Feldstérketensor: Ff, = 9,A% —0,A% —g f*P¢ A} A
Strukturkonstaten fe¢;[T¢, TP]=ifabec e, 7a=(T4)t e C33

¢ Teilcheninhalt

— : Quarks mit Flavor (u, d; c, s; t, b) (Masseneigenzustinde!)
- M =diag(m,, mg, ms,...)=Stromquarkmassen
- AZ Gluonen, Eichbosonen der SU(3)o10r

e Symmetrien

- fundamentale lokale SU(3).,)o;-Symmetrie

- im Sektor der leichten Quarks u, d, (s): ndherungsweise chirale Sym-
metrie (M — 0)
— Skaleninvarianz fiir M — 0

Eigenschaften der QCD

¢ asyptotische Freiheit bei groen Impulsiibertrdgen in Stollen a; = 47Tgs2 —
0

¢ Laufen der Kopplungskonstante aus der Renormierungsgruppengleichung:
Physik-Nobelpreis 2004 an D. Gross, E Wilczek, H. D. Politzer




Quarks und Gluonen in farb-neutralen Hadronen eingeschlossen (Con-
finement)

¢ theoretisch noch nicht vollstindig verstanden (nichperturbatives Pha-
nomen!)

* Gitter-QCD-Rechnungen: QCD beschreibt erfolgreich das Massenspek-
trum der Hadronen

* bei niedrigen Energien: effektive hadronische Theorien

¢ grundlegendes Prinzip: ndherungsweise chirale Symmetrie im leichten
Quarksektor

¢ (effektive theorie fiir schwere Quarks)

Chirale Symmetrie der (masselosen) QCD

¢ betrachte nur leichte u- und d-Quarks

Isospin-Dublett: ¢ = (2) = (zl)
2

NB: ¢ at 3 Indizes: Dirac-Spinor, Color und Isospin!

7~ Matrizen: {rwrv} = 201, 15 = irorirars, ¥svu = —Tu¥s 75 = 75,
Ys= 1

¢ Dirac-Beziehungen fiir links- und rechtshdndige Komponenten

11— 1
Y= 2Y5¢=PL¢, Yr= ;rslP:PRlP»

P} p=Pyr, PrPL=P Pr=0, Pygys=7sPr=FPyr
Py RTu=YuPri, Pl =yPp, PRy =yP
Pra¥ =Yt rrur Y =Yr+rys

° E =y, @ = %UTT;TO = _EYS

¢ im masselosen Limtes (m,, = m,; =0)

L =PiDY = 1Y+ riDypg

16



Chirale Symmetrie der (masselosen) QCD

¢ im masselosen Limes (m, = m,; = 0) = globale chirale Symmetrien:

- Anderungvon voneinander unabhéngigen fiir die links- and rechts-
héndigen Komponenten:

Yr(x)—exp(—ig )y r(x), Yr(x)— exp(—igr)yY r(x)

- Symmetriegruppe U(1); ® U(1)g

- unabhingige Isospinrotationen:
Y1 () — exp(—id - T r(x),  Yr(x)— exp(—idg- T p(x)

- T'=7%/2, 7: Pauli-Matrizen; Symmetriegruppe SU(2); ® SU(2)x

¢ alternative Notation skalare und pseudoskalare Phasendnerung und Isop-
spinrotationen

Y —exp(—ig)y, P — exp(—iys@ )y
Y —exp(—idy - T, y — exp(—iysda- Ty

¢ U(1); und SU(2)y sind Untergruppen der chiralen Symmetrien, die auch
Symmetrien bleiben, wenn m,, = m, # 0 = Heisenbergs Isospinsymme-
try!

Strome: Beziehung mit Mesonen

¢ Quellen: xoco7, schos, pin11]
¢ Noether: jede Symmetrie impliziert Erhaltungsgrof3e
¢ Noether-Strome fiir chirale Symmetrien
=y, i =yrtysy
Fo=vr Ty, Ji=vrtysTy
* Beziehung zu Mesonen iiber entsprechende Quantenzahlen:

- o (bzw. fy): 3 (Skalar und Isoskalar)
- iET}’ﬂD (Pseudoskalar und Isovektor)

17



- ps:y " Tt/) (Vektor und Isovektor)
- a’s: ET#TS :sz (Axialvektor und Isoaxialvektor)

o and 7’s; p’s and a;’s haben nicht gleiche Masse

QCD-Grundzustand nicht symmetrisch unter Pseudoscalar- and Pseu-
dovekto-Transformationen <Q }¢¢| Q) #0

Spontane Symmetriebrechung

spontan gebrochene Symmetrie: Grundzustand nicht symmetrisch
= Grundzustand entartet

Grundzustand symmetrisch unter isoskalaren und Isovektortransforma-
tionen U(1); x U(1)g gebrochen zu U(1),; SU(2); x SU(2)z gebrochen zu
SU@2)y

fiir jede gebrochene Symmetrie masseloses Nambu-Goldstone-Boson

hier: drei Pionen sehr leicht im Vergleich zu anderen Hadronen (m, ~
140 MeV)

m, # 0: explizite Brechung der chiralen Symmetrie durch m,,, my

- kann stérungstheoretisch beshandelt werden = chirale Stérungs-
theorie

- Axialvektorstrom nur ndherungsweise erhalten = PCAC (partially
conserved axial current)

- erkldrt viele Hadroneneigenschaften

U(1),-Anomalie (Adler-Bell-Jackiw-Anomalie)

klassische Theorie invariant unter U(1), = in Quantenfeldtheorie
explizit gebrochen (hier ohne Beweis) psos)

Grund: PfadintegralmaR D1y D) nicht invariant unter U(1),-Trafos

[Fuj79, Fuj80]

wichtig fiir korrekte Vorhersage der Zerfallsrate fiir 7o — yy

pseudoskalarer Strom nicht erhalten: J, jt =3/8a,er7Po Gﬁv G ;'la
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- weiterer Hinweis in SU(3)-Quarkmodell (Gell-Mann): pseudoskala-
res Mesonen-Nonet zwei isospinskalare Mesonen 1) (zumeist SU(3)-
Oktett) und n’ (zumeist SU(3)-Singulett)

- N ~qr°Asq (mit g = (u,d, s)) = keine Anomalie des entsprechen-
den Axialvektorstroms

- aus gleichem Grund Isovektor-Axialvektorstrom = ﬁysy”?q erhal-
ten (keine Anomalie wegen tr = 0)

- n schwerer als 7’s wegen schwerer s-Quarkmasse

n’ ~qr°q = Axialvektorstrom anomal gebrochen

Minimales chirales Modell fiir Pionen und Nukleonen

¢ o-Meson und Pionen (chirale Partner)
* Meson = g-g-Bindungszustand

« infiniteseimale chirale Transformationen fiir Quarks (7' = 2/2) in SU(2);.x
SU(2)g model

Y —(1—iddy-7/2)y (Isovektor-Transformation)

Y —(1—iys0d,-7/2)y (Isoaxialvektor-Transformation)

¢ = Transformationseigenschaften von Mesonenfeldern unter chiralen Trans-
formationen: o ~ Y, T ~ Y Tysy

0'—30'—5(_1)14'7:[), 7%—>7:C)+5(_Z)VX7:C)+5&AO'

e 0%+ 72 invariant = chirale Transformation durch SO(4)-Transformation
von ¢ = (o, 7)" realisiert

Minimales o -Modell fiir Mesonen

¢ chirale Symmetrie als SO(4)-Transformationen von Meson-Feldern ¢ €
R4

e beschreibt o-Meson und die drei Pionen (%, 7%)

A
Lt = 5PN 9) = V(9)= 5 (@,0)0" 9~ (97— 27
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spontane Symmetriebrechung: , Sombrero-Potential“

Entartung des Grundzustands = man braucht keine Energie, um Felder
innerhalb des Potentialminimums zu drehen
= masselose Nambu=Goldstone-Bosonen (Pionen)

Vakuumerwartungswert (q)(’) = f; # 0 (NB: Vakuum immer noch Poin-
caré-invarianter Zustand <<I>°> = const

Symmetrie spontan gebrochen von SO(4) zu SO(3)y (dimSO(4) =4%3/6,
dimSO(3)=3%2/2=3 = 6—3 =3 Nambu-Goldstone-Bosonen (Pionen)

Teilcheninhalt des Modells: vier skalare reelle Feldfreiheitsgrade = 3 mas-
selose Pionen und 1 massives o-Meson

Pionenzerfall und PCAC

schwacher Zerfall 7+ — u* + v,

schwache Wechselwirkung (chirale Eichtheorie mit Eichgruppe SU(3)yy.iso®
SU(3)y.y-Eichgruppe o< Ji; — J§

Pion pseudoskalar = Zerfall wegen Axialstrom =
(013 () (p)) =1p"6 41 frr exp(—ip - x)
Zerfallsrate = f; ~93 MeV
(018, 13" (0mp(p)) =—fep®8"" expl—ip - x)=—fzm 5" exp(~ip  x)

exakte chirale Symmetrie = m, =0 (Goldstone-Theorem)) = 8, J;* =0
Noether

m, # 0 aber ,klein“ = ndherungsweise erhaltener Axialvektorstrom (PCAC)

im effektiven Modell

I = £0,0 a<{1,2,3)
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Explizite Symmetriebrechung
e explizite Brechung wegen m,,, m4 # 0
* symmetriebrechender Term in QCD: £, sg = —myn)

o m=(my,+my)/2; wegen Yy ~ o = in hadronischem Modell

ZXSB =—€0
e o-m-Potential:
V(o,)= 4[(0 +7t2)— ]2—60'

* Potential in o-Richtung verkippt = fiihrt zu korrekten ,Richtung“ des
(nun nicht mehr entarteten) Vakuums

¢ Minimum bei f; =

2 2, € 2_ €
= mo=2Af"+—, m . =—
0 fﬂ: 2)’](‘7_[7 g fﬂf o T fn

* Noether + explizite Brechung der Symmetrie + PCAC (consistency!):

P
oM =—en® "L fmPn® = ¢ = fm?

e ySB in der QCD wie im effektiven Modell = Gell-Mann-Oaks-Renner-
Relation cvorss)

(Olea|0) = fre = m? f2 =—m(0[y3)|0)
Nukleonen im o -Modell

* Axialstrom von Nukleonen ¥ = (p, n)" -Isospin-Dublett

-

o — T
]zf\t,nucl = ga‘I‘Y“7’5 Eq’
* f3-Zerfall des Neutrons = g, =1.25

¢ Gesamt-Axialvektorstrom ]j’: = f/ﬁ =t f /’; nucl sollte PCAC erfiillen 5/1 ]jf; =
—frmiit=

M_
(D+m )7t —galf—\lly5rlll

s
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¢ Goldberger-Treiman-Relation

M exp
8xNN = g“f_ ~126 vs. g yy=134

T

» Erweiterung des linearen o -Modells

znucl ZEiJ\IJ—gﬂNN i@’)@’?‘l’ . ﬁ+@\110'

chiraler SO(4)-Skalar!

3 Literatur

Literatur

Literatur

[Ad169] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys.
Rev. 177, 2426 (1969),
https://doi.org/10.1103/PhysRev.177.2426.

[AL73] E. Abers and B. Lee, Gauge Theories, Phys. Rept. 9, 1 (1973),
https://doi.org/10.1016/0370-1573(73)90027-6.

[BJ69] J. S. Bell and R. Jackiw, A PCAC puzzle: n° — yy in the sigma
model, Nuovo Cim. A 60, 47 (1969),
https://doi.org/10.1007/BF02823296.

[BL86] D. Bailin and A. Love, Introduction to Gauge Field Theory, Adam
Hilger, Bristol and Boston (1986).

[Col18] S. Coleman, Lectures of Sidney Coleman on Quantum Field
Theory, World Scientific Publishing Co. Pte. Ltd., Hackensack
(2018), https://doi.org/10.1142/9371.

[Dinl11] M. Dine, Goldstone Bosons and Chiral Symmetry Breaking in
QCD (2011), lecture notes, https:
//scipp.ucsc.edu/"dine/ph222/goldstone_lecture.pdf.

[Fuj79] K. Fujikawa, Path-Integral Measure for Gauge-Invariant Fermion
Theories, Phys. Rev. Lett. 42, 1195 (1979),
https://doi.org/10.1103/PhysRevLett.42.1195.

22


https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1016/0370-1573(73)90027-6
https://doi.org/10.1007/BF02823296
https://doi.org/10.1142/9371
https://scipp.ucsc.edu/~dine/ph222/goldstone_lecture.pdf
https://scipp.ucsc.edu/~dine/ph222/goldstone_lecture.pdf
https://doi.org/10.1103/PhysRevLett.42.1195

[Fuj80]

[GMORG68]

[Hee02]

[Koc97]

[PS95]

[Ram89]

[Sch03]

[Tay76]

K. Fujikawa, Path Integral for Gauge Theories with Fermions,
Phys. Rev. D 21, 2848 (1980), [Erratum: Phys. Rev.D 22,1499(1980)],
https://doi.org/10.1103/PhysRevD.21.2848,10.1103.

M. Gell-Mann, R. J. Oakes and B. Renner, Behavior of Current
Divergences under SU(3)xSU(3), Phys. Rev. 175, 2195 (1968),
https://link.aps.org/abstract/PR/v175/15/p2195.

H. van Hees, Introduction to Quantum Field Theory (2002),
https://itp.uni-frankfurt.de/ hees/publ/lect.pdf.

V. Koch, Aspects of chiral symmetry, Int. J. Mod. Phys. E 6, 203
(1997), https://doi.org/10.1142/50218301397000147.

M. Peskin and D. V. Schroeder, An Introduction to Quantum Field
Theory, Addison-Wesley Publ. Comp., Reading, Massachusetts
(1995).

P Ramond, Field Theory: A Modern Primer, Addison-Wesley,
Redwood City, Calif., 2 edn. (1989).

S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl.
Phys. 27, 277 (2003),
https://arxiv.org/abs/hep-ph/0210398.

J. C. Taylor, Gauge Theories of Weak Interactions, Cambridge
University Press (1976).

23


https://doi.org/10.1103/PhysRevD.21.2848, 10.1103
https://link.aps.org/abstract/PR/v175/i5/p2195
https://itp.uni-frankfurt.de/~hees/publ/lect.pdf
https://doi.org/10.1142/S0218301397000147
https://arxiv.org/abs/hep-ph/0210398

	1 Pfadintegral für Felder
	2 Chirale Symmetrie der QCD und Hadronen
	3 Literatur

