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Pfadintegral für Felder

• Einfaches Spielzeugmodell:φ4-Theorie

– neutrales Skalarfeldφ(x ) ∈R
– Lagrangian

L =
1

2
(∂µφ)(∂

µφ)−
m 2

2
φ2−

λ

4!
φ4.

– Ziel: Alternative Rechenmethode zur Berechnung Vakuumerwartungs-
werte zeigeordneter Feldoperatorprodukte

– via LSZ-Reduktion invariante Übergangsmatrixelemente für Streu-
querschnitte

– Idee: verwende formale Eigenzustände vonφ und kanonischen Fel-
dimpulsen

Φ(x ) =
∂L
∂ φ(x )

– Quantisierung über bosonische kanonische gleichzeitige Kommu-
tatoren im Heisenbergbild

�

φ(t , x⃗ ),φ(t , y⃗ )
�

= 0,
�

Π(t , x⃗ ),Π(t , y⃗ )
�

= 0,
�

φ(t , x⃗ ),Π(t , y⃗ )
�

= iδ(3)(x⃗− y⃗ ),

– analog wie Quantisierung von nichtrelativistischer Punktteilchen-
mechanik

�

x j (t ), xk (t )
�

= 0,
�

p j (t ), pk (t )
�

= 0,
�

x j (t ), xk (t )
�

= iδ j k .

* Orts- und Impulseigenzustände zur Zeit t = 0:

x⃗(0) |x⃗ 〉= x⃗ |x⃗ 〉 , p⃗(0)
�

�p⃗
�

= p⃗
�

�p⃗
�

,

∫

R3

d3 x⃗ |x⃗ 〉 〈x⃗ |=1,

∫

R3

d3p⃗

(2π)3
�

�p⃗
�


p⃗
�

�=1.

* Impulseigenfunktionen in der Ortsdarstellung




x
�

�p
�

= exp(ix⃗ ·p⃗ ),
∫

R3

d3p⃗

(2π)3



x⃗
�

� p⃗
�


p⃗
�

� y⃗
�

=



x⃗
�

� y⃗
�

=δ(3)(x⃗− y⃗ ).

– mit Feldern: Freiheitsgrad-Label j in x j bzw. p j entspricht x⃗ inφ(0, x⃗ )
bzw. Π(0, x⃗ ):

φ(0, x⃗ )
�

�φ
�

=φ(0, x⃗ )
�

�φ
�

, Π(0, x⃗ ) |Π〉=Π(0, x⃗ )
�

�φ
�

.
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– Zeitentwicklung im Heisenbergbild

�

�φ, t
�

= exp(it H )
�

�φ
�

, |Π, t 〉= exp(it H ) |Π〉

mit Hamiltonian

H =

∫

R3

d3 xH (x ), H (x ) = φ̇(x )Π(x )−L

– Übergangsamplitude von Feldkonfigurationφi bei t = ti zuφ f bei
t = t f

C f i =



φ f

�

�exp[−iH (t f − ti )]
�

�φi

�

– Zerlege Zeitintervall (ti , t f ) in N Teilintervalle der Länge∆t = (t f −
ti )/N

C f i =



φ f

�

�[exp(−iH∆t )]N
�

�φi

�

– Schiebe formale „Vollständigkeitsrelationen“ ein:

∫

Dφ(x⃗ )
�

�φ
�


ϕ
�

�= 1,

∫

DΠ(x⃗ )
2π
|Π〉 〈Π|= 1.

mit
�

�φ
�

j
=
�

�φ, t j

�

,
�

�Π j

�

=
�

�Π, t j

�

C f i (t f , ti ) = lim
N→∞

∫ N
∏

k=1

DΠk Dϕk

2π




ϕa

�

�ΠN

�

×

×



ΠN

�

�exp(−iH∆t )
�

�ϕN

�

. . .



Π1

�

�exp(−iH∆t )
�

�ϕ1

�


ϕ1

�

�ϕa

�

.

– Nehme Weyl-Ordnung von φ und Π in H an: alle Faktoren Π links
on allen Faktorenφ rechts⇒




Πk

�

�exp(−iH∆t )
�

�φk

� ∼=
∆t→0

(1− iHk∆t )exp

�

−i

∫

d3 x⃗Πkφk

�

– dann

C f i =N
∫

DΠ

∫ φ(t f ,x⃗ )=ϕ f (x⃗ )

φ(ti ,x⃗ )=ϕi (x⃗ )
Dφ exp

¨

i

∫ t f

ti

d4 x
�

Π(x )
∂ φ(x )
∂ t
−H (Π,φ)
�

«

.

N : nicht wohldefinierter aber unwichtiger Normierungsfaktor
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– Kontinuumlimes:

C f i =

∫

Dπ

∫ φ(t f ,x⃗ )=ϕ f (x⃗ )

φ(ti ,x⃗ )=ϕi (x⃗ )
Dφ exp



















i

∫ t f

ti

d4 x
�

Π(x )
∂ φ(x )
∂ t
−H (Π,φ)
�

︸ ︷︷ ︸

S [φ,Π]



















.

– Vakuum→Vakuum-Übergangsamplitude: führe Term −i0+/2φ2 in
Lagrangian ein (entspricht m 2 → m 2 − i0+) und ti → −∞, t f →
+∞,φi → 0,φ f → 0

– analoge Rechnung: für zeitgeordnete Vakuumerwartungswerte




Ω
�

�Tc F [φ,π]
�

�Ω
�

=N
∫

Dπ

∫

Dφ exp
�

iS [φ,π]
	

F [φ,π].

– zeitgeordnete (Feynman) Green-Funktionen

iG (n )(x 1, . . . , x n ) =



Ω
�

�Tcφ(x 1) . . .φ(x n )
�

�Ω
�

– Erzeugendes Funktional

Z [J ] =N
∫

Dπ

∫

Dφ exp

�

iS [φ,π] + i

∫

d4 x J (x )φ(x )

�

– modulo unbestimmtem Faktor

iN G (n )(x1, x2, . . . , xn ) =
1

in

δn Z [J ]
δ J (x1)δ J (x2) · · ·δ J (xn )

�

�

�

�

J=0

• Ausintegration von Π

– φ4-Theorie

L =
1

2
(∂µφ)(∂

µφ)−
m 2

2
φ2−

λ

4!
φ4

⇒Π=
∂L
∂ φ̇

= φ̇,

H =Πφ̇−L =
1

2
Π2+

1

2
(∇⃗φ)2+

λ

4!
φ4,

S [φ,Π] =

∫

R4

d4 x [Πφ̇−H ]
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– Pfadintegral über Π: Gauß-Funktional

– entwickele Wirkung um Minimum bzgl. Π

δS

δΠ(x )
= φ̇−Π != 0 ⇒ Π0 = φ̇

S [φ,Π] = S [φ,Π0] +
1

2

∫

R4

d4 x

∫

R4

d4 y

�

δ2S [φ,Π]
δΠ(x )δΠ(y )

�

Π=Π0

[Π(x )−Π0(x )][Π(y )−Π0(y )].

S [φ,Π0] = S [φ,φ̇]≡ S [φ] =

∫

R4

d4 xL (φ,∂µφ).

– Lagrange-Version des Pfadintegrals:

Z [J ] =N
∫

Dφ exp

�

i

∫

R4

d4 x
�

L + J (x )φ(x )
�

�

– kein Gauß-Integral⇒ Störungstheorie!

• generating functional for free fields

L0 =
1

2
(∂µφ)(∂

µφ)−
m 2− i0+

2
φ2+ Jφ, LI =−

λ

4!
φ4L =L0+LI.

• erzeugendes Funktional für freies Feld:

Z0[J ] =N
∫

Dφ exp

�

i

∫

R4

d4 x
�

L0+ J (x )φ(x )
�

�

• wie bei Integration über Π: von einem J -unabhängigen Faktor abgese-
hen ist Z0 durch die Wirkung am stationären Punkt ϕ gegeben

∂µ
∂L
∂ (∂µφ)

−
∂L
∂ φ
⇒ −(□+m 2+ i)φ =−J .

• Lösung

ϕ(x ) =−
∫

R4

d4 x ′DF(x − x 2)J (x 2)
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• erzeugendes Funktional

Z0[J ] =N exp

�

i

2

∫

R4

d4 x J (x )ϕ(x )

�

,

Z0[J ] =N exp

�

i

2

∫

R4

d4 x1

∫

R4

d4 x2DF(x 1− x 2)J (x 1)J (x 2)

�

• Erinnerung an Vorlesung 9: Störungsrechnung

Z [J ] = exp

�

−i
λ

4!

∫

R4

d4 x
δ4

δ J (x )4

�

Z0[J ]

• zeitgeordnete Green-Funktionen via Taylorentwicklung der Funktional-
ableitungs-exp-Funktion:

iG (n )(x 1, . . . , x n ) =
1

Z [0]
1

in

�

δ

δ J (x1)
δ

δ J (x2)
· · ·

δ

δ J (xn )

�

J=0

• Feynman-Diagramme: alle (verbundenen und unverbundenen) Green-
Funktionen

• jedes zusammenhängende Diagrammteil mit wenigestens einem äuße-
ren Punkt x j verbunden

• Feynman-Regeln (im Impulsraum)

p

= iD̃F(p) =
i

p2 −m2 + i0+

p
1

p
2

p
4

p
3

= − iλ

4!

• Organisation der Störungsrechnung

• alle Green-Funktionen G (n ) lassen sich durch Summen über Produkte
von zusammenhängenden Green-Funktionen darstellen

– iG (n )c alle zusammenhängenden Diagramme mit n äußeren Bein-
chen

6



– erzeugendes Funktional

Z [J ] = exp(iW [J ])⇔ iW [J ] = ln(Z [J ]).

– zusammenhängende Green-Funktionen:

G (n )c (x 1, . . . , x n ) =
1

in

δn W [J ]
δ J (x 1) · · ·δ J (x n )

�

�

�

�

J=0

– Beweis durch vollständige Induktion (s. [Hee02])

– Selbstenergie- und Vertexfunktionen

– Diagramm mit einzelnen inneren Linien: zerfällt in Produkt aus zwei
zusammenhängenden Diagrammen und der dieser inneren Linie
entsprechenden Green-Funktion

– ⇒: alle Gc können durch Summen über Produkte von einteilchen-
irreduziblen amputierten Diagrammen, also Selbstenergie- und Ver-
texeinschübe, verbunden mit inneren und äußeren Propagatorlini-
en dargestellt werden

– einteilchen-irreduzible Diagramme (one-particle irreducible oder
1PI-Diagramme): zerfallen nicht in Teile, wenn man irgendeine in-
nere Linie durchschneidet

– erzeugendes Funktional: Legendre-Transformierte von W :

ϕ(x ) =
δW [J ]
δ J (x )

,

Γ [ϕ] =W [J ]−
∫

R4

d4 xϕ(x )J (x )

δΓ =

∫

R4

d4 x

�

���
���δW

δ J (x )
δ J (x )−������

ϕ(x )δ J (x )− J (x )δϕ(x )

�

=−
∫

R4

d4 x J (x )δϕ(x ),

δΓ

δϕ(x )
=−J (x )

– Vertexfunktionen

Γ (n )(x 1, . . . , x n ) =
δnΓ [ϕ]

δϕ(x 1) · · ·δϕ(x n )
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– Spezialfall Γ (2):
∫

d4 y2Γ
(2)(x1, y2)G

(2)
c (y2, x2) =−
∫

d4 y2
δ J (x1)
δϕ(y2)

δϕ(y2)
δ J (x2)

=−δ(4)(x1−x2),

– Γ (2): „Funktionale Inverse“ des (exakten) Propagators:

G (2)c (x1, x2) =G (x 1, x 2) =

∫

d4 y1d 4 y2Γ
(2)
J (y1, y2)iG

(2)
c (x1, y1)iG

(2)
c (x2, y2)

– für freie Theorie

−(□1+m 2)DF(x 1−x 2) =−δ
(4)(x 1−x 2) ⇒ Γ

(2)
0 (x 1, x 2) =−(□+m 2)δ(4)(x 1−x 2).

– Definition der Selbstenergie

Σ(x 1, x 2) = Γ
(2)
0 (x 1, x 2)− Γ

(2)(x 1, x 2)

– ⇒Dyson-Gleichung
∫

R4

d4 y1

∫

R4

d4 y2DF(x 1− y
1
)Σ(y

1
, y

2
)G (y

2
, x 2) =−G (x 1, x 2) +DF(x 1− x 2)

G (x 1, x 2) =DF(x 1− x 2)−
∫

R4

d4 y1

∫

R4

d4 y2DF(x 1− y
1
)Σ(y

1
, y

2
)G (y

2
, x 2)

– wegen Translationsinvarianz:

G (x 1, x 2)≡G (x 1− x 2), Σ(x 1, x 2)≡Σ(x 1− x 2)

– Impulsdarstellung: Fourier-Transformierte

G̃ (p ) =

∫

R4

d4 x exp(ix ·p )G (x ), Σ̃(p ) =

∫

R4

d4 x exp(ix ·p )Σ(x ), D̃F(p ) =
1

p 2−m 2+ i0+

– Faltungssatz⇒Dyson-Gleichung

G̃ (p ) =
1

p 2−m 2+ i0+
−

Σ(p )

p 2−m 2+ i0+
G̃ (p )

⇒G (p ) =
1

p 2−m 2−Σ(p ) + i0+

– diagrammatisch
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= + −iΣ

– allgemein: G (n )c =̂Summe über Baumgraphen mit n äußeren G -Bein-
chen mit exakten Vertexfunktionen und inneren G -Linien

– Beispiel: exakter Vierpunkt-Propagator

Γ=

Γ

Γ

+ + exchange

2

4

1

3

2

3

2

3

1

4

1

4

– Beweis durch vollständige Induktion: [Hee02]

– Theorie vollständig durch Γ [ϕ] definiert

– Verschwindende äußere Quelle:

δΓ

δϕ(x )
=−J (x ) != 0.

– Feldgleichung für „mittleres Feld“ ϕ =̂Wirkungsprinzip

– ⇒ Γ [ϕ] „Quantenwirkung“

• Fermionen

– z.B. Dirac-Feld

– Lagrangian für freies Feld

L0 =ψ(i /∂ −m )ψ, /∂ = γµ∂µ ⇒ Πa =
∂L0

∂ ψ̇a

= iψa

– gleiche Idee wie bei Bosonen: Eigenvektoren des Feldoperators bzw.
kanonischen Feldimpulses

– aber: Fermionen⇒ kanonische gleichzeitige Anti-Kommutatoren
�

ψa (t , x⃗ ),ψb (t , y⃗ )
	

= 0,
�

Πa (t , x⃗ ),Πb (t , y⃗ )
	

= 0,
�

ψa (t , x⃗ ),Πb (t , y⃗ )
	

= iδ(3)(x⃗− y⃗ )

– ⇒: für Feld-Eigenvektor

ψa (0, x⃗ )ψb (0, y⃗ )
�

�ψ
�

=ψa (x⃗ )ψb ( y⃗ )
�

�ψ
�

=−ψb (0, y⃗ )ψa (0, x⃗ )
�

�ψ
�

=−ψb (0, y⃗ )ψa (0, x⃗ )
�

�ψ
�
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– ⇒ „Feldeigenwerte“ müssen antikommutierende „c-Zahlen“ sein!

– ⇒ Grassmann-Algebra

– Grassmann-Zahlen“ bilden komplexen Vektorraum

– endlichdimensional: Basis θ1, . . . ,θn

– antikommutatives Produkt: θ jθk =−θkθ j

– alle Produkte auch im Vektorraum⇒ Vektorraum ist insgesamt 2n -
dimensional

– denn alle Produkte mit mehr als n der θ j müssen notwendig ver-
schwinden, da maximalθ1θ2 · · ·θn von 0 verschieden sein kann, denn
wegen Antikommutativität verschwinden alle Produkte, in denen
wenigstens 2 gleiche θ j vorkommen.

– Anzahl möglicher Produkte mit 0≤m ≤ n Faktoren m = 0 bedeutet
einfach eine komplexe Zahl, d.h. man bildet Polynome der Form

P (θ1, . . . ,θn ) = a +
∞
∑

m=1

n
∑

j1,..., jm=1

a j1... jm
θ j1
· · ·θ jn

– a , a j1... jm
∈C, a j1,... jm

total antisymmetrisch

• für gegebenes m gibt es offenbar
�n

m

�

verschiedene Monome θ j1
· · ·θ jm

(Standardreihenfolge: j1 < j2 < . . .< jm

• linear unabhängige Monome bilden Basis des Grassmann-Zahlenvektor-
raums

• Anzahl:

d =
n
∑

m=0

�

n

m

�

=
n
∑

m=0

�

n

m

�

1m ·1n−m = (1+1)n = 2n .

• in QFT:ψa (x ) =̂ überabzählbar unendlich viele θ ’s

• Analysis mit Grassmann-Zahlen

– Ableitung soll linearer Operator sein⇒ es genügt, Ableitungen von
Monomen der θ j ’s zu definieren

– Ableitungen: Links- und Rechts-Ableitungen

∂ (L)θ jk
θ j1
θ jk−1

. . .θk . . .θ jm
= ∂θ jk

(−1)k−1θkθ j1
· · ·θ jk−1

θ jk+1
· · ·θ jm

(def)
= (−1)k−1θ j1

· · ·θ jk−1
θ jk+1
· · ·θ jm
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– für mehrere Ableitungen: ∂ (L/R)θ j
antikommutieren

– analog für Rechtsableitung

– Integration: Fall mit nur 1 θ

– mögliche Polynome (Funktionen!) nur P (θ ) = a +a1θ

– Integral über θ soll linear und translationsinvariant sein, d.h. für
b ∈C
∫

dθP (θ ) !=

∫

dθP (θ+b ) ⇒ a

∫

dθ1+a1

∫

dθθ
!= (a+b a1)

∫

dθ1+a1

∫

dθθ

– damit das für alle a , a1, b ∈C⇒
∫

dθ1= 0,

∫

dθθ
(def)
= 1

– gleiche Regel wie Ableitung nach θ !

– für Grassmann-Algebren mit mehreren θ j ’s

∫

dθ1 · · ·dθm f (θ1, . . .θn ) = ∂
(R)
θ1
· · ·∂ (R)θm

f (θ1, . . . ,θn )

– in QFT: lokale Observablen immer Polynome mit nur geradzahligen
Monomen von Fermionenoperatoren (wegen Mikrokausalität

– Erzeugendes Funktional Z [η,η] mit η = ηa (x ) und η = ηa (x ) als
Grassmann-Generator-wertige äußere Quellen

Z [J ] =N
∫

DψDψexp

�

iS [ψ] + i

∫

R4

d4 x [η(x )ψ(x ) +ψ(x )η(x )

�

• Symmetrien

– hier: globale Symmetrien wie U(1), SU(N )-Flavorsymmetrien etc.

– größter Vorteil der Pfadintegalmethode: Quantisierung von (abel-
schen und nichtabelschen) Eichtheorien Faddeev-Popov-Quanti-
sierung: s. z.B. [BL86, Tay76, AL73, Hee02]

– betrachte beliebigen Satz FelderΦund erzeugende Funktionale Z [J ],
W [J ] und Γ [Φ]

– in vielen Fällen: Quantenwirkung Γ [Φ] hat gleiche Symmetrien wie
klassische Wirkung S [Φ]
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– Herleitung: S [ϕ] invariant unter einer TransformationΦ(x ) = F [Φ(x )]

– Annahme: Pfadintegralmaß DΦ invariant unter Trafo: DF [Φ] =DΦ

– Lie-Symmetrie: infinitesimale Trafo: F [Φ](x ) =Φ′(x ) =Φ(x )+δΦ[Φ, x ]

Z [J ] =

∫

DΦexp

�

iS [Φ] + i

∫

R4

d4 x J (x )Φ(x )

�

– Invarianz der Wirkung: S [Φ′] = S [Φ]und des Pfadintegralmaßes DΦ′ =
DΦ⇒

Z [J ] =

∫

DΦ′ exp

�

iS [Φ′] +

∫

R4

d4 x J (x )Φ′(x )

�

symm
=

∫

DΦexp

�

iS [Φ] + i

∫

R4

d4 x J (x )[Φ(x ) +δΦ(x )]

�

=

∫

DΦ

�

1+ i

∫

R4

d4 y J (y )δΦ[Φ, y ]

�

exp

�

iS [Φ] + i

∫

R4

d4 x J (x )Φ(x )

�

=

�

1+

∫

R4

d4 y J (y )δΦ

�

δ

δ J (y )
, y

��

Z [J ]

– ⇒
∫

R4

d4 y J (y )δΦ

�

δ

δ J (y )
, y

�

Z [J ] = 0

– Annahme: lineare Symmetrie:δΦ(x ) =δα j T̂jΦ(x ) (δα j = const) (lo-
kale Symmetrie)⇒

δα j

∫

R4

d4 y J (y )T̂j
δ

δ J (y )
Z [J ] = 0

– Z [J ] = exp(iW [J ])⇒

δα j

∫

R4

d4 y J (y )T̂
δ

δ J (y )
W [J ] = 0

– für Γ [Φ]:

δα j

∫

R4

d4 y
δΓ [Φ]
δΦ(y )

T̂jΦ= 0

– ⇒ Γ [Φ] hat dieselbe Symmetrie wie S [Φ]
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– CAVEAT: falls DΦNICHT invariant unter Trafo ist⇒ Γ [Φ] nicht not-
wendig symmetrisch

– S [φ] symmetrisch, Γ [Φ] nicht symmetrisch: Anomalie, d.h. quan-
tisierte Feldtheorie nicht symmetrisch, obwohl klassische Theorie
symmetrisch ist!

– z.B. Adler-Bell-Jackiw-Anomalie: Anomalie der axialen U (1)A-Sym-
metrie der (masselosen) QED und QCD (s.u.) [Adl69, BJ69, PS95]

Spontane Symmetriebrechung

– betrachte Theorie mit N reellen Skalarfeldern φ⃗ = (φ j ), die unter
SO(N )-Transformationen symmetrisch ist:

L =
1

2
(∂µφ⃗)(∂

µφ⃗)+
µ2

2
φ⃗2−

λ

8
(φ⃗2)2

︸ ︷︷ ︸

−V [φ⃗]

.

– Lie-Algebra: antisymmetrische RN×N -Matrizen

– Dimension der Lie-Algebra: N (N −1)/2

– „falsches Vorzeichen“ des Massenterms ist hier Absicht!

– Potential:

φ1

φ2

V

φ0

– muss um stabilen Grundzustand entwickeln:

V (|φ⃗|) =−
µ2

2
φ⃗2+

λ

8
(φ⃗2)2
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– Minima |φ⃗|= v ⇒ Grundzustand entartet

– V ′(v ) = (−µ2+λv 2/2)v != 0⇒Minimum bei v =µ
p

2/λ.

– entwickele um einen beliebig gewählten Grundzustand: v⃗ = (v, 0, 0, · · · , 0)
– effektive Wirkung invariant, da Pfadintegralmaß Dφ =Dφ1Dφ2 · · ·DφN

invariant unter SO(N )-Transformationen

– damit
∫

R4

d4 y
δΓ

δφ j (y )
T a

j kφk (y ) = 0

– take functional derivative δ/δφl (0) and then set φ⃗ = v⃗ ⇒
∫

R4

d4 y
δ2Γ

δφ j (y )δφl (0)
T a

j k vk =−
∫

R4

d4 y G −1
j l (y )T

a
j k vk = 0.

– in Impulsdarstellung:

G̃ −1
j l (p = 0)T a

j k vk =M j l T a
j k vk = 0.

– G̃ −1
j l (p = 0): Massenmatrix der ϕ⃗

– von den N (N−1)/2 so(N )-Basismatrizen T̂ a ergeben die (N−1)(N−
2)/2 Generatoren der SO(N −1)-Symmetriegruppe, die das Vakuum
invariant lassen T̂ a v = 0.

– für die übrigen [N (N −1)− (N −1)(N −2)]/2=N −1 Generatoren ist

g (a )j = T a
j k vk ̸= 0 Eigenvektor von M̂ zum Eigenwert 0

– ⇒ von den N Teilchen der ϕ⃗-Felder sind (N −1)masselos (Nambu-
Goldstone-Bosonen)

– Goldstone-Theorem: spontan gebrochene globale Symmetrie⇒so
viele masselose Nambu-Goldstone-Bosonen wie symmetriebrechen-
de Generatoren der Symmetrie

– Anschauung: die Feldanregungen, die „Drehungen“ im Minimum
des „Sombrero-Potentials“ entsprechen, benötigen keine Energie,
da sie derselben niedrigsten „Vakuumenergie“ entsprechen

2 Chirale Symmetrie der QCD und Hadronen

Chirale Symmetrie und Hadronen
Literatur: [Koc97, Sch03]
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Quantumchromodynamik: QCD

• Theorie der starken Wechselwirkung (s. Vorlesung 11) QCD

LQCD =−
1

4
F µνa F a

µν+ψ(i /D − M̂ )ψ

• nicht-Abelsche Eichgruppe SU(3)color

– jedes Quark Farbtriplett:ψ= (ψr ,ψg ,ψb )mit Dirac-Spinorenψk

– eich-kovariante Ableitung: Dµ = ∂µ+ ig T̂ a Aa (a ∈ {1, . . . , 8})
– Feldstärketensor: F a

µν = ∂µAa
ν − ∂νAa

µ − g f a b c Ab
µAc

ν

– Strukturkonstaten f a b c : [T̂ a , T̂ b ] = i f a b c T̂ c , T̂ a = (T̂ a )† ∈C3×3

• Teilcheninhalt

– ψ: Quarks mit Flavor (u , d ; c , s ; t , b ) (Masseneigenzustände!)

– M̂ = diag(mu , md , ms , . . .) =Stromquarkmassen

– Aa
µ Gluonen, Eichbosonen der SU(3)color

• Symmetrien

– fundamentale lokale SU(3)color-Symmetrie

– im Sektor der leichten Quarks u, d, (s): näherungsweise chirale Sym-
metrie (M̂ → 0)

– Skaleninvarianz für M̂ → 0

Eigenschaften der QCD

• asyptotische Freiheit bei großen Impulsüberträgen in Stößenαs = 4πg 2
s →

0

• Laufen der Kopplungskonstante aus der Renormierungsgruppengleichung:
Physik-Nobelpreis 2004 an D. Gross, F. Wilczek, H. D. Politzer

α
s

1 10 100
(GeV)µ

0.3

0.2

0.1

0
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• Quarks und Gluonen in farb-neutralen Hadronen eingeschlossen (Con-
finement)

• theoretisch noch nicht vollständig verstanden (nichperturbatives Phä-
nomen!)

• Gitter-QCD-Rechnungen: QCD beschreibt erfolgreich das Massenspek-
trum der Hadronen

• bei niedrigen Energien: effektive hadronische Theorien

• grundlegendes Prinzip: näherungsweise chirale Symmetrie im leichten
Quarksektor

• (effektive theorie für schwere Quarks)

Chirale Symmetrie der (masselosen) QCD

• betrachte nur leichte u- und d -Quarks

• Isospin-Dublett:ψ=

�

u
d

�

=

�

ψ1

ψ2

�

• NB:ψ at 3 Indizes: Dirac-Spinor, Color und Isospin!

• γ-Matrizen:
�

γµ,γν
	

= 2ηµν1, γ5 := iγ0γ1γ2γ3, γ5γµ = −γµγ5, γ†
5 = γ5,

γ2
5 =1

• Dirac-Beziehungen für links- und rechtshändige Komponenten

ψL =
1−γ5

2
ψ= PLψ, ψR =

1+γ5

2
ψ= PRψ,

P 2
L/R = PL/R , PR PL = PL PR = 0, PL/Rγ5 = γ5PL/R =∓PL/R

PL/Rγµ = γµPR/L , PLψ=ψPR , PRψ=ψPL

ψγµψ=ψLγµψL +ψRγµψR , ψψ=ψLψR +ψRψL

• ψ :=ψ†γ0, γ5ψ=ψ†γ†
5γ0 =−ψγ5

• im masselosen Limtes (mu =md = 0)

Lu ,d =ψi /Dψ=ψL i /DψL +ψR i /DψR

16



Chirale Symmetrie der (masselosen) QCD

• im masselosen Limes (mu =md = 0)⇒ globale chirale Symmetrien:

– Änderung von voneinander unabhängigen für die links- and rechts-
händigen Komponenten:

ψL (x )→ exp(−iφL )ψL (x ), ψR (x )→ exp(−iφR )ψR (x )

– Symmetriegruppe U(1)L ⊗U(1)R
– unabhängige Isospinrotationen:

ψL (x )→ exp(−iα⃗L · T⃗ )ψL (x ), ψR (x )→ exp(−iα⃗R · T⃗ )ψR (x )

– T⃗ = τ⃗/2, τ⃗: Pauli-Matrizen; Symmetriegruppe SU(2)L ⊗SU(2)R

• alternative Notation skalare und pseudoskalare Phasenänerung und Isop-
spinrotationen

ψ→ exp(−iφs )ψ, ψ→ exp(−iγ5φa )ψ

ψ→ exp(−iα⃗V · T⃗ )ψ, ψ→ exp(−iγ5α⃗A · T⃗ )ψ

• U(1)s und SU(2)V sind Untergruppen der chiralen Symmetrien, die auch
Symmetrien bleiben, wenn mu =md ̸= 0⇒Heisenbergs Isospinsymme-
try!

Ströme: Beziehung mit Mesonen

• Quellen: [Koc97, Sch03, Din11]

• Noether: jede Symmetrie impliziert Erhaltungsgröße

• Noether-Ströme für chirale Symmetrien

jµs =ψγ
µψ, jµa =ψγ

µγ5ψ

j⃗
µ
V =ψγ

µT⃗ψ, j⃗
µ
A =ψγ

µγ5T⃗ψ

• Beziehung zu Mesonen über entsprechende Quantenzahlen:

– σ (bzw. f0):ψψ (Skalar und Isoskalar)

– π: iψT⃗ γ5ψ (Pseudoskalar und Isovektor)

17



– ρ’s:ψγµT⃗ψ (Vektor und Isovektor)

– a1’s:ψγµγ5T⃗ψ (Axialvektor und Isoaxialvektor)

• σ and π’s; ρ’s and a1’s haben nicht gleiche Masse

• QCD-Grundzustand nicht symmetrisch unter Pseudoscalar- and Pseu-
dovekto-Transformationen




Ω
�

�ψψ
�

�Ω
�

̸= 0

Spontane Symmetriebrechung

• spontan gebrochene Symmetrie: Grundzustand nicht symmetrisch

• ⇒ Grundzustand entartet

• Grundzustand symmetrisch unter isoskalaren und Isovektortransforma-
tionen U(1)L ×U(1)R gebrochen zu U(1)s ; SU(2)L × SU(2)R gebrochen zu
SU(2)V

• für jede gebrochene Symmetrie masseloses Nambu-Goldstone-Boson

• hier: drei Pionen sehr leicht im Vergleich zu anderen Hadronen (mπ ≃
140 MeV)

• mπ ̸= 0: explizite Brechung der chiralen Symmetrie durch mu , md

– kann störungstheoretisch beshandelt werden ⇒ chirale Störungs-
theorie

– Axialvektorstrom nur näherungsweise erhalten ⇒ PCAC (partially
conserved axial current)

– erklärt viele Hadroneneigenschaften

• U(1)a -Anomalie (Adler-Bell-Jackiw-Anomalie)

– klassische Theorie invariant unter U(1)a ⇒ in Quantenfeldtheorie
explizit gebrochen (hier ohne Beweis) [PS95]

– Grund: Pfadintegralmaß DψDψ nicht invariant unter U(1)a -Trafos
[Fuj79, Fuj80]

– wichtig für korrekte Vorhersage der Zerfallsrate für π0→ γγ
– pseudoskalarer Strom nicht erhalten: ∂µ j

µ
a = 3/8αsε

µνρσG a
µνG a

ρσ
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– weiterer Hinweis in SU(3)-Quarkmodell (Gell-Mann): pseudoskala-
res Mesonen-Nonet zwei isospinskalare Mesonenη (zumeist SU(3)-
Oktett) und η′ (zumeist SU(3)-Singulett)

– η ≃ qγ5λ̂8q (mit q = (u , d , s ))⇒ keine Anomalie des entsprechen-
den Axialvektorstroms

– aus gleichem Grund Isovektor-Axialvektorstrom ≃ qγ5γµ ˆ⃗τq erhal-
ten (keine Anomalie wegen tr ˆ⃗τ= 0)

– η schwerer als π’s wegen schwerer s-Quarkmasse

– η′ ≃ qγ5q ⇒ Axialvektorstrom anomal gebrochen

Minimales chirales Modell für Pionen und Nukleonen

• σ-Meson und Pionen (chirale Partner)

• Meson = q -q -Bindungszustand

• infiniteseimale chirale Transformationen für Quarks (T⃗ = τ⃗/2) in SU(2)L×
SU(2)R model

ψ→ (1− iδα⃗V · τ⃗/2)ψ (Isovektor-Transformation)

ψ→ (1− iγ5δα⃗A · τ⃗/2)ψ (Isoaxialvektor-Transformation)

• ⇒Transformationseigenschaften von Mesonenfeldern unter chiralen Trans-
formationen:σ∼ψψ, π⃗∼ iψτ⃗γ5ψ

σ→σ−δα⃗A · π⃗, π⃗→ π⃗+δα⃗V × π⃗+δα⃗Aσ

• σ2+π⃗2 invariant⇒ chirale Transformation durch SO(4)-Transformation
vonφ = (σ, π⃗)T realisiert

Minimalesσ-Modell für Mesonen

• chirale Symmetrie als SO(4)-Transformationen von Meson-Feldern φ ∈
R4

• beschreibtσ-Meson und die drei Pionen (π±, π0)

Lχ limit =
1

2
(∂µφ)(∂

µφ)−V (φ) =
1

2
(∂µφ)(∂

µφ)−
λ

4
(φ2− f 2

π )
2
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• spontane Symmetriebrechung: „Sombrero-Potential“

φ1

φ2

V

φ0

• Entartung des Grundzustands⇒man braucht keine Energie, um Felder
innerhalb des Potentialminimums zu drehen
⇒masselose Nambu=Goldstone-Bosonen (Pionen)

• Vakuumerwartungswert



φ0
�

= fπ ̸= 0 (NB: Vakuum immer noch Poin-

caré-invarianter Zustand



Φ0
�

= const

• Symmetrie spontan gebrochen von SO(4) zu SO(3)V (dim SO(4) = 4 ∗3/6,
dimSO (3) = 3∗2/2= 3 ⇒ 6−3= 3 Nambu-Goldstone-Bosonen (Pionen)

• Teilcheninhalt des Modells: vier skalare reelle Feldfreiheitsgrade⇒3 mas-
selose Pionen und 1 massivesσ-Meson

Pionenzerfall und PCAC

• schwacher Zerfall π+→µ++νµ

• schwache Wechselwirkung (chirale Eichtheorie mit Eichgruppe SU(3)w-iso⊗
SU(3)w-Y-Eichgruppe∝ J

µ
V − J

µ
A

• Pion pseudoskalar⇒ Zerfall wegen Axialstrom⇒

〈0|J aµ
A (x )|πb (p )〉= ipµδa b fπ exp(−ip · x )

• Zerfallsrate⇒ fπ ≃ 93 MeV

〈0|∂µ J
aµ

A (x )|πb (p )〉=− fπp 2δa b exp(−ip · x ) =− fπm 2
πδ

a b exp(−ip · x )

• exakte chirale Symmetrie⇒mπ = 0 (Goldstone-Theorem))⇒ ∂µ J
aµ

A = 0
Noether

• mπ ̸= 0 aber „klein“⇒näherungsweise erhaltener Axialvektorstrom (PCAC)

• im effektiven Modell

J
aµ

A,π = fπ∂µφ
a , a ∈ {1, 2, 3}
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Explizite Symmetriebrechung

• explizite Brechung wegen mu, md ̸= 0

• symmetriebrechender Term in QCD:LχSB =−mψψ

• m = (mu +md )/2; wegenψψ∼σ⇒ in hadronischem Modell

LχSB =−εσ

• σ-π-Potential:

V (σ, π⃗) =
λ

4

�

(σ2+ π⃗2)− v 2
0

�2−εσ

• Potential in σ-Richtung verkippt ⇒ führt zu korrekten „Richtung“ des
(nun nicht mehr entarteten) Vakuums

• Minimum bei fπ⇒

v0 = fπ−
ε

2λ f 2
π

, m 2
σ = 2λ f 2

π +
ε

fπ
, m 2

π =
ε

fπ

• Noether + explizite Brechung der Symmetrie + PCAC (consistency!):

∂µ J
aµ

A =−επa PCAC= − fπm 2
ππ

a ⇒ ε= fπm 2
π

• χSB in der QCD wie im effektiven Modell ⇒ Gell-Mann-Oaks-Renner-
Relation [GMOR68]

〈0|εσ|0〉= fπε=m 2
π f 2
π =−m〈0|ψψ|0〉

Nukleonen imσ-Modell

• Axialstrom von Nukleonen Ψ = (p , n )T-Isospin-Dublett

J⃗
µ

A,nucl = gaΨγ
µγ5
τ⃗

2
Ψ

• β-Zerfall des Neutrons⇒ ga = 1.25

• Gesamt-Axialvektorstrom J⃗
µ

A = J⃗
µ

A,π + J⃗
µ

A,nucl sollte PCAC erfüllen ∂µ J⃗
µ

A =
− fπm 2

ππ⃗⇒

(□+m 2
π)π⃗=−ga i

M

fπ
Ψγ5τ⃗Ψ

21



• Goldberger-Treiman-Relation

gπN N = ga
M

fπ
≃ 12.6 vs. g exp

πN N = 13.4

• Erweiterung des linearenσ-Modells

Lnucl =Ψi /∂ Ψ − gπN N



iΨγ5τ⃗Ψ · π⃗+ΨΨσ
︸ ︷︷ ︸

chiraler SO(4)-Skalar!




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