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Symmetrien von Teilchen

• Symmetrie als Ordnungsprinzip für Teilchenzoo

• einfachstes Beispiel: Isospin für Proton und Neutron (Heisenberg 1932)

• Proton und Neutron haben fast gleiche Masse mN ≃ 938 MeV

• Proton und Neutron als ein Teilchen (Nukleon) mit zusätzlicher Quan-
tenzahl

• Symmetrie: führe „Flavor-Dublett“ (ψp,ψn) (zwei Dirac-Spinoren)

• SU(2)-Operationen auf „Flavor-Raum“

• Nukleon: Isospin I = 1/2, I3 = diag(1/2,−1/2)mit I3p =−I3n = 1/2

• Physik der starken WW (näherungsweise) invariant unter Isospinrotatio-
nen

• Proton und Neutron verhalten sich bzgl. starker WW (fast) gleich

Der achtfache Pfad

• ab den 1950-1960ern „Teilchenzoo“ entdeckt

• die meisten sind Hadronen: Teilchen, auf die starke Kraft wirkt

• Gell-Mann, Zweig, Ne’eman (1961): alle Hadronen als gebundene Zu-
stände von Spin-1/2-Teilchen mit elektrischen Ladungen−1/3 und+2/3

• Gell-Mann: Wie sollen sie heißen? Quarks!
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• Symmetrieprinzipien brachten Ordnung ins Chaos:

– drei Quarks (up, down, strange)

– drei Flavors: SU(3)-Symmetrie

– Zustände nur aus (up,down):
Isospin SU(2)-Untergruppe)

– Murray Gell-Mann: Nobelpreis für Physik (1969)

Die Symmetriegruppe SU(3)

• hier: näherungsweise „Flavor-Symmetrie“

• Baryonen (z.B. Protonen, Neutronen, Hyperonen) näherungsweise glei-
che Massen

• lassen sich nach Multiplets der irreduziblen Darstellungen der SU(3) ord-
nen

• ursprünglich (1961 vor der QCD!): angewandt auf Hadronen

• drei „leichte Quarks“: up, down, strange

• drei Flavor-Zustände

|1〉= |u〉 , |2〉= |d 〉 , |3〉= |s 〉 .

• im Limes exakter SU(3)-Flavor-Symmetrie: unitäre SU(3) Symmetrietrans-
formation

U |i 〉=
3
∑

j=1

�

� j
�

Uj i , (Uj i ∈ SU(3))

• SU(3): unitäre C3×3-Matrizen: Û †Û = Û Û † =13 mit detU = 1

3



• infinitesimale Transformationen:

U = 1+ iδϕH +O (δϕ2)

• Unitarität:

Û †Û = 1− iδϕ(Ĥ †− Ĥ ) +O (δϕ2) != 1+O (δϕ2) ⇒ Ĥ = Ĥ †

• Determinante:

detÛ = det(1+δϕĤ+O (δϕ2)) = 1+iδϕTr Ĥ+O (δϕ2) != 1+O (δϕ2) ⇒ Tr Ĥ = 0.

• Generatoren der SU(3): spurlose hermitesche C3×3-Matrizen

• 3 reelle Diagonalelemnte mit
∑

j H j j = 0⇒ 2 unabhängige Diagonalele-
mente 3 unabhängige komplexe Einträge in der oberen Dreiecksmatrix
⇒weitere 6 reelle Parameter

• ⇒ 8-dimensionale reelle Lie algebra

• analog zu Pauli-Matrizen der SU(2): Gell-Mann-Matrizen

λ̂1 =





0 1 0
1 0 0
0 0 0



 , λ̂2 =





0 −i 0
i 0 0
0 0 0



 , λ̂3 =





1 0 0
0 −1 0
0 0 0



 ,

λ̂4 =





0 0 1
0 0 0
1 0 0



 , λ̂5 =





0 0 −i
0 0 0
i 0 0



 , λ̂6 =





0 0 0
0 0 1
0 1 0



 ,

λ̂7 =





0 0 0
0 0 −i
0 i 0



 , λ̂8 =
1
p

3





1 0 0
0 1 0
i 0 −2



 .

• λ̂1, λ̂2, λ̂3 bilden su(2)-Unteralgebra⇒ Isospin (u , d -Quarks): ˆ⃗F = (λ̂1, λ̂2, λ̂3)/2

• zwei simultan diagonalisierbare su(3)-Matrizen: F̂3 = λ̂3/2 =̂ Isospin-La-
dung I3 =±1/2 und Hyperladung Ŷ = 1/

p
3λ̂8 (Y = 1/3,−2/3)

• Antiquarks: transformieren sich mit Û ∗ bzw. infinitesimal

Û ∗ = 1+ iδϕa

�

−
λ̂∗a
2

�

+O (δϕ2) = 1+ iδϕa

�

−
λ̂T

a

2

�

+O (δϕ2)
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• im Gegensatz zur su(2) bzw. SU(2) ist die konjugiert-Komplexe 3-dimensionale
Darstellung (als 3∗ bezeichnet) nicht äquivalent zur ursprünglichen Fun-
damentaldarstellung. Entsprechend haben Antiquarks zwar die gleichen
Isospin-Ladungen I3 = ±1/2 wie Quarks aber entgegengesetze Hyperla-
dungen Y =−1/2,+2/3.

• einige Eigenschaften der Gell-Mann-Matrizen:

tr(λ̂a λ̂b ) = 2δa b ,
�

λ̂a/2, λ̂b /2
�

= i fa b c λ̂c /2.

• Strukturkonstanten

fa b c =
1

4i
Tr
��

λ̂a , λ̂b

�

λ̂c

�

⇒ fa b c ∈R und total antisymmetrisch

• adjungierte Darstellung definiere C = caλa/2≡ Ĉ mit ca ∈C als „Vekto-
ren“ im Raum der spurlosen hermiteschen 3×3-Matrizen

• Skalarprodukt
〈C 1 |C 2 〉= 2 tr(C †

1 C 2)

• Gruppendarstellung:
D̂ (Û )C = Û Ĉ Û †.

• ⇒ 8-dimensionale irreduzible „adjungierte Darstellung“

• infinitesimale Erzeugende:

• mehr zur Mathematik der SU(3) [Lip66]

(F̂ (ad)
a )b c = i fa c b =−i fa b c .

• Hadronen

– Quarks wurden nie als asymptotisch freie Teilchen beobachtet ⇒
Confinement (Quarkeinschluss)

– Ladungsartige Quantenzahlen von Hadronen

– erhalten bei Reaktionen aufgrund der starken WW

* Baryonenzahl B : BMesons = 0, Bq = 1/3, Bq =−1/3

* Isospin: (u,d)-Quarks und -Antiquarks I = 1/2, I3u = −I3u =
+1/2, I3d =−I3d =−1/2, Is = 0
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* Strangeness: Su = Sd = 0, Ss =−1, Ss =+1

* Relation zur Hyperladung: Y = S +B

* elektrische Ladung: Q = I3 + Y /2 ⇒ Qu = −Qu = +2/3, Qd =
−Qd =Qs =−Qs =−1/3

– „Standard-Hadronen“:

* Mesonen⇔ gebundene Zustände aus einem Quark und einem
Antiquark⇒ ganzzahlige Spins⇒ Bosonen

* Baryonen⇔ gebundene Zustände aus 3 Quarks⇒ halzahlige
Spins⇒ Baryonen

– „Ausreduktion“ von zusammengesetzten SU(3)-Flavors in irreduzi-
ble Multiplets

* Mesonen: 3⊗3∗ = 1⊕8

* Baryonen: 3⊗3⊗3= 10⊕8⊕8⊕10

• Gewichtsdiagramme: trage Isospin und Hyperladung in Koordinatensys-
tem auf

• für Quarks (3-Darstellung) und Antiquarks (3∗-Darstellung)

Quelle: [Nac86]

• Mesonen: I3 = I3q + I3q , Y = Yq + Yq ⇒ „geometrische Addition“ im Ge-
wichtsdiagramm
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Quelle: [Nac86]

• Beispiel: leichteste pseudoskalare Mesonen

Quelle: [Nac86]

• Baryonen leichtestes Dekuplett und Oktett
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Quelle: [Nac86]

• Erfolge des Quark-Modells

– alle leichten Mesonen und Baryonen lassen sich in Schema einord-
nen

Quelle: [N+24]

– Gell-Mann-Okubo-Massenformel⇒SU(3) nur näherungsweise gül-
tig: Quarkmassen nicht alle gleich

– Annahme exakter Isospin-Symmetrie (auch nur näherungsweise er-
füllt!): mu =md <ms

– mit 3 Parametern m , δm1 und δm2:

mBaryon =m +Y δm1+
�

I (I +1)−
1

4
Y 2
�

δm2

– folgt aus Betrachtungen zur Flavor-SU(3)-Symmetrie mit Verletzung
durch Massendifferenz zwischen (u,d)- und s-Quarks als Störung

– Details: s. [Nac86]

• Problem: man erhält nur alle Baryonen, wenn man drei Quarks im glei-
chen Zustand erlaubt!

• ABER: Quarks müssen Spin 1/2 besitzen⇒Quarks sind Fermionen

• andererseits funktioniert das Modell:
vorhergesagtes Baryon

�

�Ω−
�

= |sss〉wurde gefunden!
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• Lösung: Jede Quarksorte kommt in drei „Farben“ vor

• Alle Quarks von derselben Art sind gleich, können aber verschiedene Far-
bquantenzahlen besitzen⇒ exakte Symmetrie!

• beobachtbar nur farbneutrale „weiße“ Zustände

– 3 Quarks mit Farben RGB⇒ farbneutrale Baryonen

– Quark+Antiquark jeweils mit Farbe und dazugehöriger Antifarbe⇒
farbneutrale Mesonsn

• Farbfreiheitsgrad: SU(3)c-Symmetrie

• „geeicht“⇒Quantenchrmodynamik als fundamentale Theorie der star-
ken Wechselwirkung

2 Quantenchromodynamik

Quantenchromodynamik

Literatur: [Nac86]
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Erinnerung: Quantenelektrodynamik (QED)

• beginne mit freiem Lagrangian für Elektronen und Positronen

L =ψ(i /∂ −me)ψ

• Symmetrie unter Änderung der Phase

ψ′ = exp(−iqeα)ψ, ψ
′
= exp(+iqeα)ψ, α= const

• Elektronenladung qe =−e

• mache Symmetrie lokal: α→α(x )

• führe masseloses Vektorfeld Aµ ein

• ersetze alle partiellen Ableitungen durch eichkovariante Ableitungen

∂µ→Dµ := ∂µ+ iq Aµ

• antisymmmetrischer Feldstärketensor→ (E⃗ , B⃗ )

Fµν = ∂µAν− ∂νAµ =









0 E 1 E 2 E 3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0









• Lagrangian

L =−
1

4
FµνF µν+ψ[i( /∂ + iqe /A)−m ]ψ,

• invariant unter lokalen Eichtransformationen

ψ′(x ) = exp[−iqeα(x )]ψ(x ), ψ
′
(x ) = exp[+iqeα(x )]ψ(x ), A′µ(x ) = Aµ(x )+∂µα(x )

• NB: Eichinvarianz keine Symmetrie, da Eichtransformation keine neue
physikalische Situation bedeutet!
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Quantisierung

• Felder⇒ Feldoperatoren

• Physikalische Größen: S-Matrixelemente: |Tf i |2 Übergangswahrschein-
lichkeiten

• lokale, mikrokausale QFT mit stabilem Grundzustand

– Spin-Statistik-Theorem: Halbzahliger Spin⇔Fermionen, ganzzah-
liger Spin⇔ bosons

• Störungstheorie (in Feynman-Eichung)

= iGµν
γ (p)

= iGe(p)

µ νp

p

Internal lines: Propagators

= ieγµ

µ
εµ

(εµ)∗

External lines: Initial and final states

e+ in initial state or
e− in initial state
e+ in final state or

e− in final state

• G
µν
γ =−ηµν/(p 2+ i0+), Ge = (/p −m )/(p 2−m 2+ i0+)

Quantenchromodynamik: QCD

• C. N. Yang, R. Mills: mache nichtabelsche Symmetrien lokal ⇒ nichta-
belsche Eichtheorien [YM54]

• H. Fritzsch, M. Gell-Mann, H. Leutwyler:
Konstruiere Theorie mit lokaler SU(3)c-Eichinvarianz [FGML73]

• Starte mit Quarks: ψ f c mit Flavors f ∈ {u, d, c, s, t, b} und Farben c ∈
{1, 2, 3}

• im Folgenden einfachψ, Eichsymmetrie: SU(3)c:ψ transformieren un-
ter fundamentaler Darstellung 3

• Lagrangian für freie Quarks

L =ψ(i /∂ − M̂ )ψ

• M̂ = (M f1 f2
) = diag(mu, . . . , mb): Massenmatrix der Quarks (wirkt im Fla-

vor-Raum) QCD
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• L symmetrisch unter globalen SU(3)c-Transformationen:

ψ′ = Ûψ, ψ̄′ = ψ̄Û †, Û = exp(−igαa T̂a ), T̂ a = λ̂a/2

• mache Invarianz lokal αa →αa (x )

• eich-kovariante Ableitung: führe 8 masselose Eichfelder Aa
µ ein

• ersetze partielle durch eich-kovariante Ableitungen

Dµ = ∂µ+ ig Aa ,µT̂ (adj)
a , T

(adj)
a ,b c =−i fa b c

• für kinetischen Term der Eichfelder: Feldstärke-Tensor

Fcµν =
1

ig

�

Dµ,Dν
�

c
= ∂µAc ,ν− ∂νAc ,µ− g fa b c Aa ,µAb ,ν

• minimale Kopplung in Lagrangian ∂µ→D

LQCD =−
1

4
F µνa Fa ,µν+ψ(i /D − M̂ )ψ

• Eichinvarianz: Lagrangian invariant unter nichtabelschen lokalen Eichtrans-
formationen

ψ′(x ) = Û (x )ψ, ψ̄′(x ) = ψ̄Û †, Û (x ) = exp[−igαa (x )T̂a ],

A ′µ(x ) = Û (x )Aµ(x )Û †(x )−
i

g
Û (x )∂µÛ †(x )

• „Teilchen“

– ψ: Quarks mit Flavors (u, d, c, s, t, b)

– M̂ = diag(mu, md, ms, . . .) Stromquarkmassen

– Aa ,µ: Eichbosnen der SU(3)c-Eichgruppe: 8 Gluonen

– Caveat: Quarks im QCD-Lagrangian nicht die Konstituentenquarks
des Gell-Mann-Quarksmodells für Hadronen

– Herausforderung: erkläre Hadronenphänomenologie mit QCD

* Confinement: keine freien Quarks oder Gluonen beobachtet

* leichte Quarks im QCD-Lagrangian: mu = (2,16 ± 0,07) MeV,
md = (4,7±0,07)MeV, ms = (93,5±0,8)MeV [N+24]
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* woher kommen die Massen der leichten Hadronen
z.B. mp = 938,27208816±0,00000029 MeV [N+24]

• Vergleich QED (abelsche Eichtheorie) vs. QCD (nichtabelsche Eichtheo-
rie:

– Gluonen „selbstwechselwirkend“ in Lagrangian

– Feynman-Regeln für Gluon-Selbstwechselwirkung

– Quark-Gluon-Wechselwirkung

• wichtige Schlussfolgerung aus nichtabelscher Eichinvarianz: Kopplungs-
konstante gleich für alle „Materiefelder“

• in QED mit abelscher Eichinvarianz: im Prinzip könnte jedes Materiefeld
eigene Ladung haben

• NB: vollständige Feynman-Regeln der QCD komplizierter:

• Faddeev-Popov-Quantisierung [FP67] erfordert Pfadintegrale (nächste Vor-
lesung und [AL73])
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Eigenschaften der QCD

• Renormierung: um Unendlichkeiten in höherer Ordnung Störungstheo-
rie zu beseitigen: muss Wellenfunktionsnormierungsfaktoren, Massen und
Kopplungskonstante renormieren

• Subtraktion von divergenten Ausdrücken von Selbst-Energie- und Ver-
texfunktion

• ⇒muss Energieskala Λ als „Renormierungspunkt“ einführen

• Kopplungskonstante: g → g (Λ)

• spezielle Eigenschaft nichtabelscher Eichtheorien

– asymptotische Freiheit: g (Λ)→ 0 für Λ→∞
– Störungstheorie: nur für Streuprozesse mit großem Impulsübertrag

anwendbar

– ⇒Hadronenphysik aus QCD nichtperturbativ!

• „laufende Kopplungskonstante“ aus QCD (Renormierungsgruppenglei-
chung) [GW73, Pol73]

• Physik-Nobel-Preis 2004 an D. Gross, F. Wilczek und H. D. Politzer

α
s

1 10 100
(GeV)µ

0.3

0.2

0.1

0

• Hinweis auf Erklärung für Confinement: Kopplung groß bei kleinen Ener-
gien

• Perturbative QCD:
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– perturbative Berechnung von Streuprozessen bei hohen Stoßener-
gie mit Hadronen

– Idee: Hadronen =̂Bindungszustand aus Quarks („Valenzquarks und
Seequarks“) und (virtuellen) Gluonen (Partonen)

– beschreibe Stoßprozess mit Hadron als: harten Stoß von Quarks/Gluonen
mit anderen Quarks/Gluonen in beteiligten Hadronen

– Verteilung der Quarks und Gluonen in Hadron: Partonverteilungs-
funktionen (PDFs) (abhängig von Energieübertrag beim Stoß)

– PDFs: nichtperturbative Größen⇒müssen gemessen werden

Experimentelle Bestätigung für Partonmodell/QCD

• Leptonenannihilation in Hadronen: e−+e+→Hadronen

Quelle: [P+16]

• Tiefinelastische Streuung von Elektronen an Hadronen (Protonen) [PRS+14]
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• Experimente am Stanford Linear Accelerator (SLAC) 1968

• Kinematik: P : Vierimpuls des Protons, q Viererimpuls des ausgetausch-
ten Photons (raumartig)

• invariante Masse W der Endprodukte (Viererimpuls P ′)

W 2 = P ′2 =M 2+2P ·q +q 2 lab= M 2+2Mν−Q 2, Q 2 =−q 2 > 0

• ν= P ·q/M Energieübertrag des Elektrons im Laborsystem, P = (M , 0⃗)T

• weitere Lorentz-invariante Größen

y =
P ·q
P ·p

lab=
E −E ′

E
, x =

Q 2

2P ·q
lab=

Q 2

2Mν

• x : Bjorken-Skalenvariable

• elastische Streuung: hadronischer Endzustand wieder einzelnes Proton
⇒W =M ⇒ x = 1

• inelastische Streuung: W >M ⇒ 0< x < 1

• x ist Maß für Inelastizität des Streuprozesses
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• Wirkungsquerschnitt

d2σ

d2ΩdE ′
=
�

dσ

dΩ

�

Mott

�

W2(Q
2,ν)+2W1(Q

2,ν) tan2
�

θ

2

��

• Mott-Streuung: Streuung eines Elektrons an Coulomb-Potential des Pro-
tons

• Strukturfunktionen: W2 elektrische, W1 magnetische Wechselwirkung

• dimensionslose Strukturfunktionen

F1(x ,Q 2) =M W1(Q
2,ν), F2(x ,Q 2) = νW2(Q

2,ν)

• invarianter differentieller Streuquerschnitt

dσ

dQ 2dx
=

4πα2

Q 4

��

1− y

x
−

M y

2E

�

F2(x ,Q 2) + y 2F1(x ,Q 2)
�
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• Formfaktoren hängen in guter Näherung nicht von Q ab

• Formfaktor: Fourier-Transformation der Ladungsverteilung (Bjorken-Ska-
lierung)

F (q⃗ ) =

∫

R3

d3 xρ(x⃗ )exp(−iq⃗ · x⃗ )

• Punktladung: ρ(x⃗ ) =δ(3)(x⃗ )⇒ F (q⃗ ) = 1= const

• tiefinelastische Elektronstreuung erfolgt an Punktladungen!

• Feynman ⇒ Partonmodell:
Proton ist gebundener Zustand von elementaren Partonen [Fey69, BP69]

• Interpretation im Breit-System: q 0 = 0

x =
Q 2

2P ·q
Breit=

Q

2|P⃗ |
⇒ Q

Breit= 2x |P⃗ |

• ⇒ x P⃗ Impuls des gestreuten Partons

• Ortsauflösung der Protonladungsverteilung: Wellenlänge des virtuellen
Photons

λ
Breit=

2π

Q

• Strukturfunktion F1: magnetische Wechselwirkung⇒ F1 = 0 für skalare
Teilchen

• für Spin-1/2-Teilchen
2x F1(x )

F2(x )
= 1
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• Partonen sind Spin-1/2-Teilchen: Quarks!
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