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Wechselwirkende Theorie

Literatur: [LL91, Hat92, Hee02]
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Quantisierung des elektromagnetischen Feldes 2

▶ LSZ-Reduktion analog zu Skalarbosonen
▶ asymptotisch freie Photonen: nur transversale Moden
▶ entsprechend zeitgeordnete Feynman-Photonen-Green-Funktionen

iD (n )µ1µ2 ···µn

F (x 1, x2, . . . , x n ) =



Ω
�

�T Aµ1

H (x 1) · · ·A
µn

H (x n )
�

�Ω
�

▶ Eichinvarianter Lagrangian

LQED =−
1

4
FµνF µν+Ψ(i /∂ −m )Ψ −AµqΨγµΨ

︸ ︷︷ ︸

j µ

=
1

2
(E⃗ 2− B⃗ 2) +Ψ(i /∂ −m )Ψ −AµqΨγµΨ

︸ ︷︷ ︸

j µ

▶ Bewegungsgleichungen nicht eindeutig wegen Eichinvarianz
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Quantisierung des elektromagnetischen Feldes 2

▶ arbeite wieder in Coulomb-Eichung
▶ Vorteil: nur physikalische transversale Freiheitsgrade
▶ Nachteil: nicht manifest kovariant
▶ Ziel: leite trotzdem kovariante Feynman-Regeln her

▶ Löse Maxwell-Gleichungen in Coulomb-Eichung

δS

δAµ
= 0 ⇒ ∂µF µν = j µ.

▶ äquivalent zu Maxwell-Gleichungen (s. Vorl. 8)

E⃗ =−Π⃗=−∇⃗A0− ˙⃗A, B⃗ = ∇⃗× A⃗, ∇⃗ · A⃗ = 0,

∇⃗ · E⃗ =−∆A0 = j 0,

∇⃗× B⃗ − ∂t E⃗ =□A⃗+ ∇⃗Ȧ0 = j⃗ .
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Quantisierung des elektromagnetischen Feldes 2
▶ Π0 = 0⇒ A0 kein dynamischer Freiheitsgrad
▶ in der wechselwirkenden theorie ist aber zwingend A0 ̸= 0:

A0(x ) =

∫

R3

d3 x⃗ ′
j 0(t , x⃗ ′)

4π|x⃗ − x⃗ ′|
=−

1

∆
j 0(x ).

▶ damit wird auch Gleichung für A⃗ komptibel mit Coulomb-Eichbedingung:

□A⃗ = j⃗ −∇⃗Ȧ0 = j⃗ +
1

∆
∇⃗∂t j 0 = j⃗ −∇⃗

1

∆
(∇⃗ · j⃗ ) := j⃗⊥.

▶ dabei haben wir benutzt, dass ∂µ j µ = j̇ 0+ ∇⃗ · j⃗ = 0
(Noether für U(1) globale (!) Eichsymmetrie)
▶ benötige wieder Lösung mit Randbedingungen

A⃗(x )−−−−→
t→±∞

= 0

⇒ verwende Feynman-Propagator für freies em. Eichfeld
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Quantisierung des elektromagnetischen Feldes 2
▶ gleiche Rechnung wie für Skalarfelder (vgl. Übungsblatt 9)

iD̃ αβ
F (p ) =

(

0 für α= 0 oder β = 0,
1

p 2+i0+

�

δa b − p a p b

p⃗ 2

�

für a , b ∈ {1, 2, 3}

▶ Fazit: in Coulomb-Eichung
▶ nur A⃗ mit ∇⃗ · A⃗ = 0 dynamische Felder
▶ nur diese (und die Dirac-Felder) werden „kanonisch quantisiert“
▶ zusätzlich instantane Coulomb-Wechselwirkung
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Quantisierung des elektromagnetischen Feldes 2
▶ schreibe Lagrangian um:

L =
1

2
(E⃗ 2− B⃗ 2) +ψ(i /∂ −m ) + j 0 1

∆
j 0+ j⃗ · A⃗

mit
E⃗ =−∂t A⃗
︸︷︷︸

E⃗⊥

−∇⃗A0
︸ ︷︷ ︸

E⃗∥

, B⃗ = ∇⃗× A⃗

▶ ⇒muss E⃗∥ auch noch eliminieren⇒ Beitrag zur Wirkung:

SE =
1

2

∫

V (4)
d4 x E⃗ 2 =

1

2

∫

V (4)
d4 x (∂t A⃗+ ∇⃗A0)2

=
1

2

∫

V (4)
d4 x
�

˙⃗A2+2 ˙⃗A · ∇⃗A0+ (∇⃗A0)2
�

=
1

2

∫

V (4)
d4 x
h

˙⃗A2−����
2(∇⃗ · ˙⃗A)A0−A0∆A0

i

=
1

2

∫

V (4)
d4 x
�

E⃗ 2
⊥ +A0 j 0
�

=
1

2

∫

V (4)
d4 x
�

E⃗ 2
⊥ − j 0 1

∆
j 0
�

.
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▶ endgültiger Lagrangian

L =
1

2

�

˙⃗A2− (∇⃗× A⃗)2
�

+Ψ(i /∂ −m )Ψ +
1

2
j 0 1

∆
j 0+ j⃗ · A⃗, ∇⃗ · A⃗ = 0, j µ = qΨγµΨ.

▶ Wechselwirkungsbild mit

H I =−L =−
1

2
j0 1

∆
j0− j⃗ · A⃗.

▶ Photonenpropagator in kovarianter Form mit U = (1, 0, 0, 0)T ⇒ p 0 =U ·p ,

p⃗ 2 = (U ·p )2−p 2

D̃µν
F (p ) =

1

p 2+ i0+

�

−ηµν−
pµpν+p 2U µU ν− (U µpν+pµU ν)(U ·p )

(U ·p )2−p 2

�
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Quantisierung des elektromagnetischen Feldes 2
▶ instantaner Coulomb-Propagator

D̃(inst)
µν =

UµUν
(U ·p )2−p 2

▶ in Raum-Zeit-Bereich

iD µν
F (x ) =−

1

□F

�

−ηµν−
∂ µ∂ ν+□U µU ν− (U µ∂ ν+ ∂ µU ν)(U · ∂ )

∆

�

D̃(inst)
µν (p ) =

UµUν
p⃗ 2

, D(inst)
µν (x ) =−

UµUν
∆
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Quantisierung des elektromagnetischen Feldes 2

▶ Propagator für Dirac-Feld am einfachsten über DGL

(i /∂ −m )SF(x ) =δ
(4)(x )

▶ Fourier-Transformation

SF(x ) =

∫

R4

d4p

(2π)4
S̃F(p )exp(−ip · x ) ⇒ (/p −m )S̃F(p ) = 1 ⇒

S̃F(p ) =
/p +m

p 2−m 2+ i0+
.

▶ im letzten Schritt: (/p −m )(/p +m ) = p 2−m 2 und Randbedingungen für
zeitgeordneten Propagator

▶ Feynman-Regeln analog wie für Skalarfeld

▶ NB: für erzeugendes Funktional mit Fermionen: äußere Quellen
antikommutierende Grassmann-Zahlen (Details benötigen wir erst später)
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k

µ ν
= − iq2

2 γ
µγνD̃

(inst)
µν (k)

µ ν

k

= iD̃Fµν(k)

p

= iS̃F(p)

µ

k = p− p′

pp′
= −iqγµ

= v(p, σ)
p

= u(p, σ) = v̄(p, σ)
p

= ǫ∗(p, λ)
p

p
= ǫ(p, λ)

= ū(p, σ)
p

p
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Quantisierung des elektromagnetischen Feldes 2
▶ manifeste Kovarianz
▶ zu jedem Diagramm, das instantanen Coulomb-Vertex enthält, auch

entsprechendes Diagramm mit Coulomb-Propagator
▶ Beiträge heben sich weg⇒ ersetze D̃Fµν durch

D̃(coul)
Fµν (p ) =

1

p 2+ i0+

�

−ηµν+
(p ·U )(pµUν+pνUµ)−pµpν

(p ·U )2−p 2

�

,

D(coul)
Fµν (x ) =−

1

□F

�

−ηµν+
(∂ ·U )(∂µUν+ ∂νUµ)− ∂µ∂ν

∆

�

,
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▶ neue Feynman-Regeln (für die äußeren Linien keine Änderung)

µ ν

k

= iD(coul)
µν (k)

µ

k = p− p′

pp′
= ieγµ

p

= iG(p)

▶ innere Photonenlinien: entspricht Wirkung des Propgators auf erhaltene Ströme
⇒ darf alle Terme mit pµ und/oder pν (bzw. ∂µ und/oder ∂ν weglassen)
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Quantisierung des elektromagnetischen Feldes 2

▶ ersetze D(coul)
Fµν durch entsprechenden Propgator in der „Feynman-Eichung“

D̃ (Feyn)
Fµν (p ) =−

ηµν

p 2+ i0+
, D(Feyn)

Fµν (p ) =
ηµν

□F
,

▶ für die äußeren Photonenbeinchen sind die Propagtoren ohnehin zu „amputieren“
und durch die oben angegebenen „Modenfunktionen“ zu ersetzen
▶ ⇒manifest kovariante Feynman-Regeln für invariante S-Matrixelemente
▶ keine instantanen Coulomb-Wechselwirkung in S-matrix-Elementen!
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