
Einführung in die theoretische Kern- und
Teilchenphysik

Vorlesung 10: Feynman-Regeln der QED

Hendrik van Hees

Inhaltsverzeichnis

1 Quantisierung des elektromagnetischen Feldes 2 1

2 Literatur 6

1 Quantisierung des elektromagnetischen Feldes 2

Quantisierung des
elektromagnetischen Feldes 2

Wechselwirkende Theorie

Literatur: [LL91, Hat92, Hee02]

1



Quantisierung des elektromagnetischen Feldes 2

• LSZ-Reduktion analog zu Skalarbosonen

– asymptotisch freie Photonen: nur transversale Moden

– entsprechend zeitgeordnete Feynman-Photonen-Green-Funktionen
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F (x 1, x2, . . . , x n ) =
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– Eichinvarianter Lagrangian

LQED =−
1

4
FµνF µν+Ψ(i /∂ −m )Ψ −AµqΨγµΨ

︸ ︷︷ ︸

jµ

=
1

2
(E⃗ 2− B⃗ 2) +Ψ(i /∂ −m )Ψ −AµqΨγµΨ

︸ ︷︷ ︸

jµ

– Bewegungsgleichungen nicht eindeutig wegen Eichinvarianz

– arbeite wieder in Coulomb-Eichung

* Vorteil: nur physikalische transversale Freiheitsgrade

* Nachteil: nicht manifest kovariant

* Ziel: leite trotzdem kovariante Feynman-Regeln her

– Löse Maxwell-Gleichungen in Coulomb-Eichung

δS

δAµ
= 0 ⇒ ∂µF µν = jµ.

– äquivalent zu Maxwell-Gleichungen (s. Vorl. 8)

E⃗ =−Π⃗=−∇⃗A0− ˙⃗A, B⃗ = ∇⃗× A⃗, ∇⃗ · A⃗ = 0,

∇⃗ · E⃗ =−∆A0 = j 0,

∇⃗× B⃗ − ∂t E⃗ =□A⃗+ ∇⃗Ȧ0 = j⃗ .

– Π0 = 0⇒ A0 kein dynamischer Freiheitsgrad

– in der wechselwirkenden theorie ist aber zwingend A0 ̸= 0:

A0(x ) =

∫

R3

d3 x⃗ ′
j 0(t , x⃗ ′)

4π|x⃗ − x⃗ ′|
=−

1

∆
j 0(x ).
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– damit wird auch Gleichung für A⃗ komptibel mit Coulomb-Eichbe-
dingung:

□A⃗ = j⃗ −∇⃗Ȧ0 = j⃗ +
1

∆
∇⃗∂t j 0 = j⃗ −∇⃗

1

∆
(∇⃗ · j⃗ ) := j⃗⊥.

– dabei haben wir benutzt, dass ∂µ jµ = j̇ 0+∇⃗· j⃗ = 0 (Noether für U(1)
globale (!) Eichsymmetrie)

– benötige wieder Lösung mit Randbedingungen

A⃗(x )−−−−→
t→±∞

= 0

⇒ verwende Feynman-Propagator für freies em. Eichfeld

– gleiche Rechnung wie für Skalarfelder (vgl. Übungsblatt 9)

iD̃
αβ

F (p ) =

(

0 für α= 0 oder β = 0,
1

p 2+i0+

�

δa b − p a p b

p⃗ 2

�

für a , b ∈ {1, 2, 3}

– Fazit: in Coulomb-Eichung

* nur A⃗ mit ∇⃗ · A⃗ = 0 dynamische Felder

* nur diese (und die Dirac-Felder) werden „kanonisch quanti-
siert“

* zusätzlich instantane Coulomb-Wechselwirkung

– schreibe Lagrangian um:

L =
1

2
(E⃗ 2− B⃗ 2) +ψ(i /∂ −m ) + j 0 1

∆
j 0+ j⃗ · A⃗

mit
E⃗ =−∂t A⃗
︸︷︷︸

E⃗⊥

−∇⃗A0
︸ ︷︷ ︸

E⃗∥

, B⃗ = ∇⃗× A⃗
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– ⇒muss E⃗∥ auch noch eliminieren⇒ Beitrag zur Wirkung:

SE =
1

2

∫

V (4)
d4 x E⃗ 2 =

1

2

∫

V (4)
d4 x (∂t A⃗+ ∇⃗A0)2

=
1

2

∫

V (4)
d4 x
�

˙⃗A2+2 ˙⃗A · ∇⃗A0+ (∇⃗A0)2
�

=
1

2

∫

V (4)
d4 x
h

˙⃗A2−��
��

2(∇⃗ · ˙⃗A)A0−A0∆A0
i

=
1

2

∫

V (4)
d4 x
�

E⃗ 2
⊥ +A0 j 0
�

=
1

2

∫

V (4)
d4 x
�

E⃗ 2
⊥ − j 0 1

∆
j 0
�

.

– endgültiger Lagrangian

L =
1

2

�

˙⃗A2− (∇⃗× A⃗)2
�

+Ψ(i /∂ −m )Ψ+
1

2
j 0 1

∆
j 0+ j⃗ ·A⃗, ∇⃗·A⃗ = 0, jµ = qΨγµΨ.

– Wechselwirkungsbild mit

H I =−L =−
1

2
j0 1

∆
j0− j⃗ · A⃗.

– Photonenpropagator in kovarianter Form mitU = (1, 0, 0, 0)T⇒p 0 =
U ·p , p⃗ 2 = (U ·p )2−p 2

D̃
µν
F (p ) =

1

p 2+ i0+

�

−ηµν−
pµpν+p 2U µU ν− (U µpν+pµU ν)(U ·p )

(U ·p )2−p 2

�

– instantaner Coulomb-Propagator

D̃(inst)
µν =

UµUν
(U ·p )2−p 2

– in Raum-Zeit-Bereich

iD
µν

F (x ) =−
1

□F

�

−ηµν−
∂ µ∂ ν+□U µU ν− (U µ∂ ν+ ∂ µU ν)(U · ∂ )

∆

�

D̃(inst)
µν (p ) =

UµUν
p⃗ 2

, D(inst)
µν (x ) =−

UµUν
∆
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– Propagator für Dirac-Feld am einfachsten über DGL

(i /∂ −m )SF(x ) =δ
(4)(x )

– Fourier-Transformation

SF(x ) =

∫

R4

d4p

(2π)4
S̃F(p )exp(−ip · x ) ⇒ (/p −m )S̃F(p ) = 1 ⇒

S̃F(p ) =
/p +m

p 2−m 2+ i0+
.

– im letzten Schritt: (/p −m )(/p +m ) = p 2−m 2 und Randbedingungen
für zeitgeordneten Propagator

• Feynman-Regeln analog wie für Skalarfeld

• NB: für erzeugendes Funktional mit Fermionen: äußere Quellen antikom-
mutierende Grassmann-Zahlen (Details benötigen wir erst später)

k

µ ν
= − iq2

2 γ
µγνD̃

(inst)
µν (k)

µ ν

k

= iD̃Fµν(k)

p

= iS̃F(p)

µ

k = p− p′

pp′
= −iqγµ

= v(p, σ)
p

= u(p, σ) = v̄(p, σ)
p

= ǫ∗(p, λ)
p

p
= ǫ(p, λ)

= ū(p, σ)
p

p

• manifeste Kovarianz

– zu jedem Diagramm, das instantanen Coulomb-Vertex enthält, auch
entsprechendes Diagramm mit Coulomb-Propagator
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– Beiträge heben sich weg⇒ ersetze D̃Fµν durch

D̃(coul)
Fµν (p ) =

1

p 2+ i0+

�

−ηµν+
(p ·U )(pµUν+pνUµ)−pµpν

(p ·U )2−p 2

�

,

D(coul)
Fµν (x ) =−

1

□F

�

−ηµν+
(∂ ·U )(∂µUν+ ∂νUµ)− ∂µ∂ν

∆

�

,

– neue Feynman-Regeln (für die äußeren Linien keine Änderung)

µ ν

k

= iD(coul)
µν (k)

µ

k = p− p′

pp′
= ieγµ

p

= iG(p)

– innere Photonenlinien: entspricht Wirkung des Propgators auf er-
haltene Ströme⇒darf alle Terme mit pµ und/oder pν (bzw. ∂µ und/oder
∂ν weglassen)

– ersetze D(coul)
Fµν durch entsprechenden Propgator in der „Feynman-

Eichung“

D̃
(Feyn)

Fµν (p ) =−
ηµν

p 2+ i0+
, D

(Feyn)
Fµν (p ) =

ηµν

□F
,

– für die äußeren Photonenbeinchen sind die Propagtoren ohnehin
zu „amputieren“ und durch die oben angegebenen „Modenfunk-
tionen“ zu ersetzen

– ⇒manifest kovariante Feynman-Regeln für invariante S-Matrixelemente

– keine instantanen Coulomb-Wechselwirkung in S-matrix-Elemen-
ten!
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