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Streutheorie: Wirkungsquerschnitt
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Streutheorie: Wirkungsquerschnitt
> Streuexperimente Haupterkenntnisquelle tiber Teilchen und Wechselwirkungen
» Wirkungsquerschnitt/Streuquerschnitt

» aus historischen Griinden: definiert in , Laborsystem* eines Fixed-Target-
Experiments

» im Teilchenbild

o
|«
-~
(=9
Q

__Anzahl der Teilchen pro Zeit in Raumwinkel d’Q
7= Stromdichte der einlaufenden Teilchen
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Streutheorie: Wirkungsquerschnitt

» Quantenfeldtheoretische Beschreibung

Kerne & Teilchen 1

N

lqJ'.'.'z

,Praparation“: 2 Teilchen mit gut bestimmten Impulsen (evtl. Spins/Polarisation)
weit voneinander entfernt: ,asymptotische frei“

Messung: registriere Teilchen mit ihren Impulsen und evtl. Spins/Polarisation
weit weg voneinander: asymptotisch frei
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Streutheorie: Wirkungsquerschnitt

» NB: Teilcheninterpretation im Rahmen der relativistischen QFT: nur fiir
(asymptotisch) freie Zustdnde

» Problemstellung:
» Zustand: anfangs (f, — —o00) prédpariert als

li) =al, (Bb, ()10
> Erzeuger und Vernichter (asymptotisch freier) Teilchen
> Schrodinger-Bild der Zeitentwicklung:

(1)) = exp[—iHs(t — 1o)]]i) = Cs(z, ) i)

> Ubergangswahrscheinlichkeitsamplitude zu asymptotisch freien Endzustand
(t — 00)
<]_9)1/»0'/1; . ,]_9);,0'/,1| = <Q| ca;(ﬁ;)daﬁ,(ﬁ;)
» Streumatrix(-Element)

Sy, =(f|Cso0,~00)| 1)={78] 1)
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Streutheorie: Wirkungsquerschnitt
» S-Operator § = Cg(00,—00): Unitdrer Operator
> bildet asymptotisch freie Anfangszustdnde |7,in) in asymptotisch freie Endzustdande
{ f out) ab
> gewisse Wahrscheinlichkeit, dass gar nichts passiert
+ echte Streuung/Teilchenreaktionen
> es gilt Energie-Impuls-Erhaltung

Spi=6 +i(2ﬂ)45(4)(£f —P)T};.

> Problem: Ubergangswahrscheinlichkeit: formal a la Born: |Sf,~|2
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Streutheorie: Wirkungsquerschnitt

> fiir Streuquerschnitt: Ubergangswahrscheinlichkeit pro Zeit und pro Volumen

> regularisierte 0 -Distribution fiir grof3e aber endliche Zeit von Anfangs- zu
Endzustand (—T /2, T /2) und endliches Volumen (wie bei Box-Regularisierung der
freien QFT)

T/2
(21)!6reg(P;—P)) =J d f dzexp(idp-x), AP=P,~P, V=(-L/2,L/2)
—T/2 v -
> fiir ,echte Streuprozesse” |i) # | f ):
2 ( 2 )( 2 )3 (sin(APOT/Z))Z li[(sin(APkL/z))2 T |2
“\t/\L AP,/2 AP /2 fi

k=1
|2

1
TL3

(reg)
fi

—— (2n)'6"¥(P; — P)| T}

T,L—00

» Lorentz-invarianter Streuquerschnitt
> Wahrscheinlichkeit (pro Zeit), dass |i) in gegebenen Endzustand | f ) iibergeht
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Streutheorie: Wirkungsquerschnitt

Kerne & Teilchen 1

> Zahl der asymptotisch freien Endzusténde von Teilchen k: d*p V /(2I1)*:

n 33

(s ? ||dka
dw =(@2n)'6"(P; —P)|Tyi] Vk (2m)?
=1

sollte Lorentz-invariant sein
abfaktorisieren der Normierungsfaktoren 1/,/2E, V in den Modenfunktionen der
asymptotisch freien Felder:

n 32
(o s@(p _ 21 d°pr
dw =(@n)' 52, ~P,)|M| 21512152V1k_l1 (2np2E]

da freie Teilchen on-shell sind, p° = E, = /P2 + m2 ist d*p/E,, Lorentz-invariant
und damit auch ./;

Streuquerschnitt definiert in Ruhsystem von Teilchen 2 in |7), i.e., E, = m;
Streuquerschnitt: Teilchenzahlstromdichte fiir Teilchen 1: 7= p/(VE)=p,/V
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Streutheorie: Wirkungsquerschnitt

> schreibe j = |7| in (halb-)kovarianter Form

(B M
b= b))’ P.=\ o

Bl VEE—mi JEImi—mim; \/(El '32)2_(”117"2)2

1

2IEEvE TRV BEmyv %
1 1 1M, 21‘22

> = invarianter Streuquerschnitt

dw no P
do == = (2n)'6@(P —P)4I |4 ]_[m

> Aufgabe:
> berechne invariante Matrixelemente ./Zs; mit QFT

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Wechselwirkende Felder und
LSZ-Formalismus

Literatur: 11780, phizs, Heeo2]
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Wechselwirkende Felder und LSZ-Formalismus

> Heisenberg-Bild der Zeitentwicklung
» einfachster Modell-Lagrangian ®*-Theorie: reelles Klein-Gordon-Feld

1 m? A
— u_ 7" 52 _7(1)4
< 2(%@)(3 5 ®°) a

» Zeitentwicklung im Schrodingerbild

®s =5(X), [Ws(1)) = exp[—iH(t —10)][Ps(10)) = U(, 1) [¥s (1))
> Erwartungswerte fiir lokale Observablen Og(x)= Og[®¢(X)]

(05)(£) = (s(1)| 05| Ws(£)) = (Ws(15) \Uf(t, )05 U(z, to)iq’s(to»
> zeitabhdngige unitire Transformation = Heisenberg-Bild

[y (2)) = UT (2, 1) [T (£)) = [Ws(20)) := [Py(£)) ,
0, =U'(t,1,)05U(t, t,).
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Wechselwirkende Felder und LSZ-Formalismus
> speziell fiir Feldoperatoren:

®y(x)=U'(z, 1)®5(X)U(2, 1)

1
= 8,®4(x)=U"(z, fo) [@5(2), Hs] U (2, fo)
1
= T[‘I’H(l)rHS]-

> entsprechende Zeitentwicklungsgleichungen gelten demnach fiir alle Operatoren,
auch fiir die kanonischen Feld-Impulse

> Klein-Gordon-Gleichung mit Wechselwirkungsterm

> Problem: man kann keine Formulierung mit Erzeugern und Vernichtern finden wie
fiir freie Felder

» = Teilcheninterpretation fiir wechselwirkende Felder problematisch

> = keine Normalordnung fiir Wechselwirkungsterm formulierbar

> divergente Ausdriicke zu erwarten
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Wechselwirkende Felder und LSZ-Formalismus
»> Asymptotenhypothese

> Annahme:
®(x) —— VZ;,(x), B(x)—— VZ®u(x),

t——00

> &, und ®,,,: freie Feldoperatoren

> Normierungsfaktor v Z: wechselwirkende Feldoperatoren, die auf
Einteilchenzustiande wirken, fithren i.a. auf Mehrteilchenzustiande

> Asymptotenformeln gelten im schwachen Sinne, also nur fiir die Matrixelemente
der Operatoren

> kann nicht als Operatoridentitit (,starker Limes®) gelten, weil sonst wegen
gleichzeitigen kanonischen Kommutatorregeln Z = 1 folgen wiirde

» dann wiére die Theorie aber nicht wechselwirkend
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Wechselwirkende Felder und LSZ-Formalismus

» LSZ-Reduktionsformel
> benannt nach Harry Lehmann, Kurt Symanzik und Wolfhart Zimmermann 11szs5)
» driickt die S-Matrix-Elemente durch Korrelationsfunktionen von Feldoperatoren
bzgl. des Vakuumzustands aus

Syi =B, Byiout| B, Brin)

> nehme fiir das Folgende an: kein p; stimmt mit 7, oder p, iiber = nur ,echte
Streuprozesse*
» Modenfunktionen freier KG-Felder

up(x)= Zopib exp(—ip - x)

) pO=E,
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Wechselwirkende Felder und LSZ-Formalismus

» 1. Reduktionsschritt
(s. Vorl. 6 bzgl. Extraktion der Erzeuger/Vernichter aus ®(x))

Sfi=(ﬁl’,...,ﬁr’l;out|ain(i)’1)f|ﬁz,in>
=—iZ""2 lim f dsic’uﬁl(ll)(ﬁ—tl)(ﬁl/,...,ﬁ,’l;out|<l>(£1)|ﬁz;in>.
R3

——00

> fiir beliebige Funktion f(¢)

lim f(r)— lim_f(r)= J ded, f(1)
R

> damit

Spi= iZ_l/Zf d*x, 0, [uﬁl(gl)(a—tl)(ﬁf,...,ﬁ,’l;out|tl>(£1)| ﬁz;in>].
R4
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Wechselwirkende Felder und LSZ-Formalismus

> Beitrag von oberer Grenze ¢ — oo verschwindet, denn
. = . - - - = s
_1f d3x hm up( )0y, (pl, ,pn,out|<l’ ‘p2;1n>t_)—oo> ﬁ(pl’,...,p,’l;out|azm(pl)‘pz;ln,
R3

> lasse out-Erzeuger als out-Vernichter auf linken Vektor wirken
= da p; # P verschwindet dieses Matrixelement
> Zeitableitungen auf u; :

Spi= iZl/Zf d*x up (x)(E + 85)(;‘9’1',...,ﬁ;;out|¢(£1)| p;in)
R4
= iZ_l/zf dx, uﬁl(gl)(m2+f512 +é’f)(ﬁl’,...,]_o’,/l;out|<l’(11)| f)’z;in)
R4

> mit p? up, =—Aup und partieller Integration (keine Randterme, da wir ® im
rdumlich Unendlichen als verschwindend annehmen diirfen (wir miissen ohnehin
Wellenpakete betrachten!)

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 17



Wechselwirkende Felder und LSZ-Formalismus
> 1. Reduktionsschritt erreicht:
Spi :iZl/zf d*x up (x,)O + m2)<ﬁ1’,...,ﬁ;;out|(b(£1)| B3 in)
R
» 2. Reduktionschritt: analoge Rechnung fiir

(;’9’1’, . ..,ﬁr’l;out|<l>(£1)| ﬁz;in> = ([9’2', . ..,ﬁ,’l;out|aout(ﬁl’)tl>(£1)| ﬁz;in>

» damit beim Einfiihren der 2. Zeitableitung und Integration tiber ¢ der Beitrag mit
dem in-Vernichter (fiir t — —00) auf in-Vektor wirkt = Zeitordnung muss beachtet
werden

Sy =(iZI/2)2f d4x1f d4x{uﬁl(11)u;{(£'1)
R4 R4

(Dl + mz)(Dl’ + m2)<ﬁ2,) ceey ﬁ:l’ out |9¢I’(£1)‘I’(£/1)\ ﬁ211n>
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Wechselwirkende Felder und LSZ-Formalismus

> Zeitordnungsoperator: 7®(x,)®(x,) .- ¢(x,): Operatoren in der Reihenfolge, dass
Zeiten von rechts nach links zunehmen
> Wiederhole Prozedur fiir die {ibrigen in- und out-Zustdnde = LSZ-

Reduktionsformel

Spi=(iz~ ”“”f d*x fd“xzf dx]- fd‘*’

2
l_[<ppu L4 H‘pm] l—[Dc’+m l—[Dd+m)

d=1
<Q|9<1>(11 @;)«bm)... ®(x,)| ).

IGUHD(X, s X0 XY )
> exakte zeitgeordnete n-Punkt-Green-Funktion

iGy(x,..,x <Q|9<I> (gn)|§2>.
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Storungsrechnung und Feynman-
Diagramme

Literatur: 11780, phizs, Heeo2]
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Storungsrechnung und Feynman-Diagramme

» Dirac-Bild der Zeitentwicklung

Kerne & Teilchen 1

>

vvyyvyy

vy

LSZ-Reduktionstheorem: berechne Erwartungswerte zeitgeordneter Heisenberg-
Bild-Feldoperatorprodukte

in geschlossener Form nur fiir freie Felder moglich

daher zeitabhingie Storungstheorie

Wahl eines beliebigen , Bildes“ der Zeitentwicklung

weitgehend willkiirliche Wahl der Verteilung der Zeitentwicklung auf Zustande und
Observablen-Operatoren

Physikalische Grof3en, insbes. S-Matrixelemente unabh#ngig vom Bild

beginne wieder mit dem Schrédinger-Bild

nehme an, dass Hamilton-Operator H und Observablen-Operatoren nicht explizit
zeitabhédngig sind

fiir unsere QFTn: Observablen-Operatoren sind Funktionale der Feld-Operatoren,
und der Lagrangian ist nicht explizit von ¢ abhéngig (und damit wegen der
Poincaré-Invarianz nicht von x)

Hendrik van Hees Goethe-Universitit Frankfurt 21



Storungsrechnung und Feynman-Diagramme

> Noether: H erhalten (totaler Hamiltonian, einschlief8lich Wechselwirkungen!)

Os(1)=0s(10), (t))s = Cs(t, &) (1)),
10, Cs(t, 1)) = HsCs(1, 1), Csltp, o) =1
=Cs(1, tp) = exp[—iHs(1 — 1)]

» physikalische Groflen invariant unter zeitabhdngigen unitdren Transformationen
> Resultierende Zeitabhéngigkeit: ,Dirac-Bild“

Op(1)=B(1,1)0s(1)BY (2, 15), V(1)) = B(t, ) [W(1))s,
B'(t,1,)=B7Y(t, 1), Bty t,)=1.

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 29



Storungsrechnung und Feynman-Diagramme

> Bewegungsgleichung fiir Zustdnde und Operatoren
10, [W(1))p =i(0, B)|¥(1))s + BHs[W(1))s
=i(2,B)B"[¥(1))p + BHsB'B[U(1)s
= | (i3, B)B + Hp | [¥(1))p
~—_——
Yn(1)
» Operator in Klammer Yp, selbstadjungiert:

H]g =Hp, weil Hg selbstadjungiert ist,
[ie,B)B']' =—iB4, B

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
> wegen BB =1

(,B)B"+B3,B'=0 = B3,B'=—(5,B)B’

[i(2,B)B']' =+i(3, B)B'
> Bewegungsgleichung fiir Zustand mit Yp(t)= YTD(t)
10, [W(1))p = Yp(£) (1))p .
> formale Losung: unitdrer Zeitentwicklungoperator Cp(t, £y):
[U(2))p = Cplt, %) 1¥(2o))p = &, Cplt, 1)) =—iYp(#)Cp(t, t).
> mit Cp(fy, f)=1 =

Cp(t,5)= l—if Yp(2)Cp(t, 1y).

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

> Stérungsrechnung: iteriere diese Gleichung

t
cOt, t)=1=> C(f“)(t,to):—if drYp(£)CY(t, tp).

1}
» Beitrag 2. Ordnung

t t b
C(l)(l‘yto)=—if d, Yp(r), €9z, t0)=—if dtl(_i)J dt, Yp(£)Yp(L,).
fo ) ‘

1 0

> bei Umkehrung der Integrationsreihenfolge: [ Y #;), Y £,)] # 0!

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 25



Storungsrechnung und Feynman-Diagramme

L

A .

I Iy

| A 1

Ly -f >0
¢ t ¢ t
C(Z)(f,to)z—if dtz(—i)f dtlYD(tl)YD(tz)z_if dtl(_i)f dz, Yp(5)Yp(h).

to ty to h

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

> in beiden Versionen des Integrals: Yy, ¢)-Operatoren zeitgeordnet, d.h.
c?(, to)_(—')f dn( 1)J d67 Yp(t)Yp(t,)

= C(t, 1) = dt1 dt29'YD 1) Yp(ty)

» durch weitere Iteration (vollstindige Induktion):

cU(t, 1)) = dzr1 dt TYp(t) - Yp(t)).

» formal Exponentialreihe:

[oe] t
Cp(t, ty)= Z cY(t, ty)=T exp [—iJ dt'Ypt)|.
1

j=0

0

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt 27



Storungsrechnung und Feynman-Diagramme

» Zeitentwicklung der Observablen
> Zeitableitung der Observablen-Operatoren

0p(1)=BOg(t)B" = 8,0,(¢)=(5,B)0s(¢t)B"+ BO(1)3,B"
=(3,B)BT0Op(1)B(£)3, B’
=—i[0p(1), Xp(?)]
mit
Xp(t)=Hp(t)— Yp(t)=X]().

> unitdrer Zeitentwicklungsoperator fiir Observablen

Op(r)=Ap(t, to)OD(to)AB(t» f)
= 3,0p(t)=(0,Ap)Op(1)A], + Ap O ()0, A"
=(3,A)AT O (1) + Op(1)AG, AT
=—[0p(1),(2,:0)A"]

= —i[0p (1), Xp(1)]

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt



Storungsrechnung und Feynman-Diagramme
> = Bewegungsgleichung fiir Ap

(6 Ap)A], =iXp
= B[AD = iXDAD.

> Losung analog wie fiir Cp

Ap(t,ty)=T exp

t
+if dt’Xp(t)
I}

» Fazit: Zeitentwicklung in beliebigem Bild

> muss nicht erst im Schrédinger-Bild rechnen
> definiere einfach selbstadjungierte Operatoren Xp und Yp, so dass

HDZXD+YD

> dann Zeitentwicklung fiir Observablen und Zustdnde aus den oben hergeleiteten
Gleichungen fiir unitére Zeitentwicklungsoperatoren Cp(t, fy) und Ap(z, %)

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 29



Storungsrechnung und Feynman-Diagramme

» Umrechnung zwischen zwei Dirac-Bildern

» seien zwei Dirac-Bilder durch (X, Y;) und (X,, Y,) definiert
» Umrechnung zwischen Observablen und Zusténden

W(1))y = Cy [(to))y = €1 (1)), = C, €} (1)), = B =C,C}
Ol(t):Alol(IO)AI:AIOZ(tO)A-{:AIAZOZ(t)AZAI = B/=A1A;

> zu zeigen B=B’:
B=B' < C,C/=AA] & U, =AIC,=U,=A]C,.

> esgilt

2,U,=(,A)C,+Alo,C, =—iAl(X, +Y,)C,

=_1AIH1C1 :_].A‘{HIAIA-{ Cl_lz Hl(tO)Ul =_1H2(t0)U1
——

1

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

Kerne & Teilchen 1

» gleiche Rechnung fiir Bild 2 ergibt
0, U, =H,(1,)U,
> wegen U (1, ;) = U,(ty, ty) = 1 ergibt die Integration dieser DGLn
U, =exp[—iH,(%)(t — t)] = exp[-iH(%)(t — )] = U».

> im Folgenden: U; =U,=U
> garantiert gleiche Wahrscheinlichkeiten fiir Messungen...

10, £19(2)), =1 (0, 1o |A] C1 | W(1p)), =2 (0, 1o |AL Co| W(1p)), =2 (0, £ |W(1)),.

» ...und Erwartungswerte von Observablen

(0(2)) =1 (B(2)]0, (1) W(2)), =1 (¥(ty) | C]A, O1(1)A] C; | V(1o)),
2 (1) |U102(f0)U|‘I’(t0)>2
=, ((1)| 0,(1)| (1)),

Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
» bildunabhingige ,Zeitableitung*

. 1
oj(r)zg[oj,ﬂj], jef1,2,}

> 0 j(r) représentiert bildunabhéngig die Zeitableitung der Observablen O(¢)
» Ehrenfest-Theorem

d .
7; (0() =(0,(1).

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

» Wechselwirkungsbild

> im Folgenden Operatoren, Zustdnde etc. im Wechselwirkungsbild ohne Index
VsetzeX1=X=H0, Y1=Y=HI
> als einfachstes Beispiel: ®*-Theorie mit ® = &':

1 m? A
Ly=5:(0,0)0"'®):——- 8", L=—If ==

» Feldoperatoren und damit Observablen: freie Felder
> falls Lagrangian (und damit Hamiltonian) nicht explizit von x abhéngig:

H,=const = A=exp[iH(f —f)].
> als einfachstes Beispiel: ®*-Theorie mit ® = &':

1 m? A
_ . u . d2 - &l
Ly= 5 (Q8)0M):—— 9% L=—T e

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 29



Storungsrechnung und Feynman-Diagramme
> Losungen aus vorigen Vorlesungen bekannt
®(x) =f d’x [a(ﬁ)u,-s(ﬁ) + a*(ﬁ)u,’g(ﬁ)]-
R3
Beziehung zum Heisenberg-Bild

> XZZXHZHH, Y2=YH=0
» Bildtransformation

[(2)) g = [P(Lo))y = ¥(Lo)) = CT1W(£)) = B=C" = 0y(r)=C"O(z)C.

> im Folgenden t, — —oo und adiabatisches Ein- und Ausschalten der WW:

t

C(t)=C(t,—oo)=9exp[—if H () exp(—elt])|, e—0*

—00

> T sogrofd gewdhlt, dass —T < ty,...,1, < T

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

> aullerdemsei t; > £, >---> t,. Dann

Q|7 ey(x,)- ¢(x,)| Q) =(Q C'(1)@(x,)C(1)C(z)'
®(x,)C(1) - C'(£,)®(x,)C(1,)|)

> Zeitentwicklungsoperator erfiillt offenbar fiir #; > ¢,

C(5)= C(t;,—00)= C(f, £,)C(p,—00) = C(1;, 1) C(1,)
C(1,))CY(t,)=C(1,, 1)

(Q]F@u(x,)- ¢(x,)|2) = (Q C(1)®(x,)C (11, )P(x,)C(1, 13)B(x,)
- C(tyy, 1,)®(x,,)C(1,)192)

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 5



Storungsrechnung und Feynman-Diagramme
> weiter ist

C(00)=C(00,1;)C(,) = C(t;)= C'(00, £,)C(c0)
= C'(f;)= CT(c0)C(00, ;)

iG(xy,...,x,)=(Q]T®y(x,) - §(x,)| Q)

1 .
) m@‘%m)---mg exp [—1 f

—00

[ee]

dt’HI(t’)]

?

da das Vakuum stabil unter der Zeitentwicklung ist, also der obige Ausdruck das
Vakuum bis auf einen i.a. unbestimmten Phasenfaktor ist

> denn
C(00)|2) = (2| C(00)|2) [£2),

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
> Storungstheorie: entwickele Exponentialfunktion (s.o0.)
> = Beitrag k-ter Ordnung zur n-Punkt-Green-Funktion:

iG(x,),..., x,)(2]C(00) Q) = <Q' T(x,)-¥(x,)

(—ir/ank
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Storungsrechnung und Feynman-Diagramme

» Erzeugendes Funktional
» mit dullerer Quelle J(x)eR

ZlJ1= <Q '9 exp [1f d“y(l)cb(l)” Q>
R4
folgt (unter Verzicht auf Normalordnung!) mit

i 54
Z[J]=exp (—14—! fw d4ZW)ZOU]

iG¥(x,, .. x, ) (R1C(00)| ) = | -

ey er) V]

Berechnung von Z;[J]
> 7, ergibt sich aus obigem Formalismus fiir

1 m?
== Hep) —
£ =3(5,000"0) -0+ Jo

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
» Wechselwirkungsbild mit

H1=—f d* % J (x)®(x).
R3

> berechne also .
2

C(tl, t2)=9'exp |:—1f dtHI(t):|.

151

> zerlege (¢, t,) in N > 1 Teilintervalle mit At =(t,— t;)/N und 7, = t; + 2k —1)A¢ /2
(ke{l,...,N}:

C(f, 1,)= A}im exp [—iAf Hy(7y)]exp [—IAt H(T )] - exp[—iAr Hy(T,)]
—00
» da[H;(7), Hi(t")] o< 1 kann man die Baker-Campbell-Hausdorff-Formel
1
expAexpB =exp|A+ B+ 3 [A, B]],
falls[A,[A, B]]=[B,[A, B]]=0

verwenden.
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Storungsrechnung und Feynman-Diagramme
> Beweis in nichster Ubung! =

ol 1
C(ﬁ,t2)=]\}i_l};oeXp[—iAtzHI(Tk)—EAfZ Z [HI(TIC))HI(TI)]:|
k=1

1<k<I<N

=exp [IJ d'xJ (£)¢(£)] @
%40}

1
exp I:_E f d4£1 f d4£2@( h— tz)](£1)](£2) [‘I’(ﬁl)’ 'I’(ﬁz)]:l .
%0 v
> bendtige davon Erwartungswert bzgl. |Q)
» 1. Faktor kann noch nicht berechnet werden

(2. Faktor ist o< 1 und wird in nidchster Ubung berechnet!)
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Storungsrechnung und Feynman-Diagramme

» kann 1. Faktor in Normalordnung bringen
» dazu nochmal BCH-Formel mit Zerlegung der Modenentwicklung nach Beitrdgen
mit Vernichtern und Erzeugern (positive/negative Frequenz-Moden)

oM(2)= J &’ BaBus(x), ()= J &’ pa’(p)uj(x) = 9™ (»),
R3 R3
=0 +¢0)

> da auch hier [®*)(x,),®7)(x,)] o< 1, folgt mit BCH-Formel

exp[f d'xJ(x ]—eXp[J d*xJ(x ()]eXP[i f d“y(ﬁ)‘l’”}(ﬁ)]
v 1%4C)

exp|+ d'x,

d*x, J(x,)](x,)[®" (11)»‘1’(+](£2)]]'

v V@)
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Storungsrechnung und Feynman-Diagramme
> da Kommutator o< 1 ist, kdnnen wir schreiben

[ (Xl) ‘I)+ (xg) | (il)’q’(ﬂ(iz):”Q)
— (08, 2).

» gilt auch fiir 2. Faktor in (1) =

C(t), ;) =exp [lf dxJ (1)4’(‘)(1)] exp[if d4£1(£)‘1’[+)(£)]
4G 4G

eXp[—%f d‘ilf d*x, 7 (x,)](2,)(2| 78 (x, )B(x, )| )]
V@ V@

> mit #; —»—o0 und £, — oo folgt schliefflich

ZylJ]=(Q|C(00,—00)|Q) = exp [—%f d&lf d*x,Dp(x, — x,)J (x)](x,)
R4 R4

> Feynman-Propagator
iDg(x) = (Q| 7 ®(x)#(0)| 2).
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Storungsrechnung und Feynman-Diagramme
» Feynman-Regeln

. N 4
Y
4l s *(h](g))
51 x:z = iDp(z; — 25)

® -—uw

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

» Beitrag zu Zy[ /] in k-ter Ordnung
a0 ® ®

¢ k-mal

—®

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
» Korrektur zu G, in fithrender Ordnung 0(A)

> 0(A): 1 Vertex = vier Ableitungen nach J fiir Z(W[J]
> G,: 2 weitere Ableitungen nach J = brauche Beitrag mit 6 J’s:

Sy - % DE e+ 994

o) =ilAT W

Q"T" 38 *—x*x
= i :(x : ' x—x+5&‘+§&
X%H +% 8] j’

il
Y

3 8} x=x t é)g
» Wick-Theorem: alle Beitrdge zu zeitgeordneten Green-Funktionen durch

Zweipunkt-Korrelationsfunktionen (, Kontraktionen von zwei Feldoperatoren®)
darstellbar (wicso;
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Storungsrechnung und Feynman-Diagramme
» Korrektur zu G, in fithrender Ordnung 0(A)
> G,: 2 weitere Ableitungen nach J:

4
ez = & “./%L

. X, .53 = B

| 4+ 1L

e Q‘*38) )
LML [N K. A

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
» Korrektur zu G, in fithrender Ordnung 0(A)
> Beitrag zu (Q|S|Q)

&%
IS
X
UN) (")'*

R

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt
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Storungsrechnung und Feynman-Diagramme
> endgiiltiges Resultat fiir G,

' 1 16( 1
o Enn) = 3, T (2]

2 St

. . A
1Gy(xy, x,) = iDp(x; —x,)— = Dy(0) f d*yDr(x, — y)Dr(y —,).
divergent! !

> divergentes , Tadpole-Diagramm*

> riihrt von zwei Feldoperatoren am gleichen Raum-Zeit-Punkt her = kommt aus H;
= verschwindet mit Normalordnung

> alternativ Renormierung: Tadpole = Korrektur zu m? = wird abgezogen, weil wir m
als physikalische Masse definieren

> alle Diagramme mit Schleifen i.a. divergent = Renormierung ohnehin notwendig

> ¢*-Theorie renormierbar < alle Divergenzen kénnen durch Renormierung der
Feldnormierungskonstanten, Masse und Kopplungskonstante beseitigt werden
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Storungsrechnung und Feynman-Diagramme

» Feynman-Regeln im Impulsraum
» definiere fiir alle Gro8en Fourier-Transformierte via

® “p ® i
(x)= fw 2 (p)exp(—ip - x).

> Propagator (vgl. Ubungsblatt 9)

d*p _ B
DF(L)=JR4 (ZH;DF(B)eXp(_iE -x) mit Dg=

> dann (Beweise zur Ubung):

f d4x1f d*x,J(x1)Dp(x, — x,)J (x,)

‘p
=J @ f G 280 p, +p,)5%p,
R4 R4

Kerne & Teilchen 1 Hendrik van Hees
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Storungsrechnung und Feynman-Diagramme
und

d*p d*

p i
fxd(x)= =1 ... T4 o4 5@ $(p )
L X 0= | G| e (£1+BZ+£3+_P4),C|:II (p)

> lasse bei Berechnung von Matrixelementen .4 i die 6 -Funktionen (und die oben
beschriebenen 1/,/[(27)32E, -Faktoren aus Modenfunktionen weg
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Storungsrechnung und Feynman-Diagramme

» Diagramm-Regeln fiir iG(")(Bl, s P)

Kerne & Teilchen 1

e :Bzfrn2+10+

zeichne alle Diagramme mit n du8eren Beinchen, die dullere Punkte verbinden
jeder Diagrammteil muss wenigstens ein dulleres Beinchen enthalten (keine
Vakuumdiagramme)

fiir Ordnung A*: k Vertizes

verbinde die dufleren Punkte und Vertexpunkte

zdhle dabei die Moglichkeiten (fiir kombinatorische Faktoren)
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Storungsrechnung und Feynman-Diagramme

> an jedem Vertex gilt Viererimpulserhaltung (impliziert Viererimpulserhaltung des
gesamten Diagramms)
> {iber unabhingige Impulse in Schleifen ist mit f pi 4°p/(270)* Zu integrieren

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Storungsrechnung und Feynman-Diagramme

» Diagramme fiir verbundene .7 y;

» zeichne die Diagramme fiir die entsprechenden zusammenhéngenden n-
Punktfunktionen

> lasse die dulleren Beinchen weg (geméaf’ LSZ-Reduktionsformel)

» in unserer Konvention ist der Faktor aus der Modenfunktion einfach durch 1 zu
ersetzen

> 4uBere Viererimpulse sind on-shell mit p° = E, = /p2 + m?2
» fiir do = Dreierimpulsintegrale: d*/[(211)*2E),]
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