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Streutheorie: Wirkungsquerschnitt

¢ Streuexperimente Haupterkenntnisquelle iiber Teilchen und Wechselwir-
kungen

Wirkungsquerschnitt/Streuquerschnitt

e aus historischen Griinden: definiert in ,Laborsystem* eines Fixed-Tar-
get-Experiments

im Teilchenbild
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_ Anzahl der Teilchen pro Zeit in Raumwinkel i Y)

Stromdichte der einlaufenden Teilchen

¢ Quantenfeldtheoretische Beschreibung

- ,Prédparation”: 2 Teilchen mit gut bestimmten Impulsen (evtl. Spins/Polarisation)
- weit voneinander entfernt: ,,asymptotische frei“

- Messung: registriere Teilchen mit ihren Impulsen und evtl. Spins/Polarisation

- weit weg voneinander: asymptotisch frei

- NB: Teilcheninterpretation im Rahmen der relativistischen QFT: nur
fiir (asymptotisch) freie Zustdnde



¢ Problemstellung:

Zustand: anfangs (t, — —o0) prapariert als

i) =a), (B1)b], (B)I0)

Erzeuger und Vernichter (asymptotisch freier) Teilchen

Schrédinger-Bild der Zeitentwicklung:
[W(2)) = exp[—iHg(z —1o)]|i) = Cs(z, 10)[0)

Ubergangswahrscheinlichkeitsamplitude zu asymptotisch freien End-
zustand (¢ — 00)

(B0 Bl 0| = Qe (B)-+ dg, (B)
¢ Streumatrix(-Element)

0= (f |Cstoo, 00| )= s]1)
¢ S-Operator § = Cg(00,—00): Unitédrer Operator

- bildet asymptotisch freie Anfangszustinde |i,in) in asymptotisch
freie Endzustdnde | f out> ab

- gewisse Wahrscheinlichkeit, dass gar nichts passiert + echte Streu-
ung/Teilchenreaktionen

- es gilt Energie-Impuls-Erhaltung
Spi=0p; +i(27f)45(4)(£f —P)T;;.
|2

- Problem: Ubergangswahrscheinlichkeit: formal a la Born: |Sy;

— fiir Streuquerschnitt: Ubergangswahrscheinlichkeit pro Zeit und pro
Volumen

- regularisierte §-Distribution fiir grof3e aber endliche Zeit von An-
fangs- zu Endzustand (—7'/2, T /2) und endliches Volumen (wie bei
Box-Regularisierung der freien QFT)

T/2
(Zn)“areg(gf—gi):f drf dtexp(idp-x), AP=P~P, V=(-L/2,L/2)
—T/2 1% -
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fiir ,echte Streuprozesse” |i) # | f ):

()2 (e s,

e @) e (P = P)| Ty B

1 (reg)
TIL3 Sf i

¢ Lorentz-invarianter Streuquerschnitt

Wabhrscheinlichkeit (pro Zeit), dass |i) in gegebenen Endzustand | f >
tibergeht

Zahl der asymptotisch freien Endzustinde von Teilchen k: d3 ]'9’,2 V /(2101)3:

dw = (27)'6" e
w=(2n) (Bf_gi){Tfi{ Vl_[ (2m)3
k=1

sollte Lorentz-invariant sein

abfaktorisieren der Normierungsfaktoren1/,/2E, V in den Moden-
funktionen der asymptotisch freien Felder:

2 1 5 dp

dw = (zn)45(4)(£f ~P) |J/gfl.| SE2E,V l:! (27'[)3’;?2kE12
da freie Teilchen on-shell sind, p° = E,, = v/p2 + m2istd*p/E,, Lor-
entz-invariant und damit auch .#;
Streuquerschnitt definiert in Ruhsystem von Teilchen 2 in |i), i.e
Ey =my
Streuquerschnitt: Teilchenzahlstromdichte fiir Teilchen 1: f =p/(VE)=
VA%
schreibe j = |7| in (halb-)kovarianter Form

(£ (M
P, = B ) P,=\ 6

Bl VEE—mZ  JEImE—mZmi /(P pP—(mmP g
E,V  EBV Eym,V B p,-p,V " E\EV

=)=

= invarianter Streuquerschnitt

dw n
dU':T_(ZTC)4 Pf P |Jlfl~ l—[m

¢ Aufgabe:

berechne invariante Matrixelemente ./ y; mit QFT
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Wechselwirkende Felder und LSZ-Formalismus

¢ Heisenberg-Bild der Zeitentwicklung

einfachster Modell-Lagrangian ®*-Theorie: reelles Klein-Gordon-Feld

1 m? A
—_ [V, VAN,
£ =280 - T-at)- Lo

Zeitentwicklung im Schrédingerbild

®s =Pg(X), |Ws(2))=exp[—iH(t —1p)][Ws(10)) = U(z, o) [Ws(10))
Erwartungswerte fiir lokale Observablen Og(x)= Og[®s(X)]

(05) ()= (Ws()| 05| Ws(1)) = (Ws(10) | U (1, 1) 05 Uz, 10)| Ws(19))
zeitabhdngige unitdre Transformation = Heisenberg-Bild

[Ty £)) = U (2, 1) [Ws(£)) = [Ws(£0)) := [pa(20)) ,
04 =U"(¢,4)05U(t, 1)

speziell fiir Feldoperatoren:
®yy(x) = U'(2, 10)s() U (2, 1)

1
= 0y Pu(x)= u'(z, l‘o);[‘l’s(f), H] U(z, £y)
1

= - [®n(x), Hs].

entsprechende Zeitentwicklungsgleichungen gelten demnach fiir al-
le Operatoren, auch fiir die kanonischen Feld-Impulse

Klein-Gordon-Gleichung mit Wechselwirkungsterm

Problem: man kann keine Formulierung mit Erzeugern und Ver-
nichtern finden wie fiir freie Felder

= Teilcheninterpretation fiir wechselwirkende Felder problematisch
= keine Normalordnung fiir Wechselwirkungsterm formulierbar

divergente Ausdriicke zu erwarten

¢ Asymptotenhypothese



Annahme:

®(x) = VZ®y(x), ®(x) T VZ® (%),

®,, und &, freie Feldoperatoren

Normierungsfaktor v'Z: wechselwirkende Feldoperatoren, die auf
Einteilchenzustinde wirken, fithren i.a. auf Mehrteilchenzustiande

Asymptotenformeln gelten im schwachen Sinne, also nur fiir die
Matrixelemente der Operatoren

kann nicht als Operatoridentitét (,starker Limes*) gelten, weil sonst
wegen gleichzeitigen kanonischen Kommutatorregeln Z =1 folgen
wiirde

dann wire die Theorie aber nicht wechselwirkend

¢ [.SZ-Reduktionsformel

benannt nach Harry Lehmann, Kurt Symanzik und Wolfhart Zim-
mermann (iszss

druckt die S-Matrix-Elemente durch Korrelationsfunktionen von Fel -
doperatoren bzgl. des Vakuumzustands aus

Spi= <1‘9’1’,...ﬁ,’l;out|ﬁ1,ﬁ2,in>
nehme fiir das Folgende an: kein 7] stimmt mit p; oder p, iiber =
nur ,.echte Streuprozesse*
Modenfunktionen freier KG-Felder

1 .
"= 2nP2E, exp(—ip - )

pOZEp

1. Reduktionsschritt (s. Vorl. 6 bzgl. Extraktion der Erzeuger/Vernichter
aus ®(x))

Syt =B, Brsout|an(B)'| Boyin)

— . - AV N - > .
=—iz71/2 tginmfdequﬁl(ﬁl)atl <p1/,...,p,/1;out|<l>(§1)|p2;1n>.



fiir beliebige Funktion f(t)
Tim f(£)— lim_f(r)= fRdtdtf(t)
damit
SfiziZ—1/2f d*x, 8, [upl( e (B, ., By; out | 1)}pz,m]
R4

Beitrag von oberer Grenze t — oo verschwindet, denn

—if A3z hm “pl( )0, <p1, ,pn,out|<l> 1)|p2,1n>—>\/_<p1, ,pn,out{aout(pl |p2,1n)
R3

lasse out-Erzeuger als out-Vernichter auf linken Vektor wirken =
da p| # P verschwindet dieses Matrixelement

Zeitableitungen auf up :
Sfi:iZ_l/zf d*xup, (x NEZ+0] )(pl’,...,ﬁ,'l;out|¢l>(11)}ﬁz;in>
R4
. —1/2 4 2, 22, A2\/= 57, 5 .
=iz7V fwd X up, (x,)(m* + Py +8tl)<p1’,...,p;l,out}(b(glﬂp2,1n>

mit p? up, =—Aup und partieller Integration (keine Randterme, da
wir @ im rdumlich Unendlichen als verschwindend annehmen diir-
fen (wir miissen ohnehin Wellenpakete betrachten!)

1. Reduktionsschritt erreicht:
sf,.=iz—1/2J d* x up, (x,)(@ + m?)(B),..., By out|®(x,)| B in)
R4
2. Reduktionschritt: analoge Rechnung fiir
(Bl,..., By out |®(x,)| Bosin) = (By,..., B; out gy B )®(x, )| B in)
damit beim Einfiihren der 2. Zeitableitung und Integration iiber ¢

der Beitrag mit dem in-Vernichter (fiir t — —o00) aufin-Vektor wirkt
= Zeitordnung muss beachtet werden

Sp; =(iz'/% d4x1f d*afup, (x,us (x))
R4
(01 +m*) @y +m*)(B,,..., B, out| T ®(x,)®(x!)| B;in)
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- Zeitordnungsoperator: 7®(x,)®(x,)--- ¢(x, ): Operatoren in der Rei-
henfolge, dass Zeiten von rechts nach links zunehmen

- Wiederhole Prozedur fiir die {ibrigen in- und out-Zustédnde = LSZ-
Reduktionsformel

IZ 1/2)n+2f d4 f d4x2f dxl f d4 /
R4

l—[(p*’ = )n%b(xb)n(ﬂcf+m )l_l(lild+m

|9<1> X))o ®(x) )B(x,).. (x2)|§2>

¢ exakte zeitgeordnete n-Punkt-Green-Funktion

iGy(xy,-..,X,) = (Q TB(x)) - (x,,)| Q).

3 Storungsrechnung und Feynman-Diagramme

Storungsrechnung und Feynman-
Diagramme

Literatur: (zso, phizs, Heeo2)



Storungsrechnung und Feynman-Diagramme

¢ Dirac-Bild der Zeitentwicklung

LSZ-Reduktionstheorem: berechne Erwartungswerte zeitgeordne-
ter Heisenberg-Bild-Feldoperatorprodukte

in geschlossener Form nur fiir freie Felder moglich
daher zeitabhédngie Storungstheorie
Wahl eines beliebigen , Bildes“ der Zeitentwicklung

weitgehend willkiirliche Wahl der Verteilung der Zeitentwicklung
auf Zustdnde und Observablen-Operatoren

Physikalische GréRen, insbes. S-Matrixelemente unabhingig vom
Bild
beginne wieder mit dem Schrodinger-Bild

nehme an, dass Hamilton-Operator H und Observablen-Operato-
ren nicht explizit zeitabhéngig sind

fiir unsere QFTn: Observablen-Operatoren sind Funktionale der Feld-
Operatoren, und der Lagrangian ist nicht explizit von ¢ abhédngig
(und damit wegen der Poincaré-Invarianz nicht von x)

Noether: H erhalten (totaler Hamiltonian, einschlief8lich Wechsel-
wirkungen!)

Os(1)=0s(f),  1W(1))s = Cs(t, 1) 1¥(1))s,
10, Cs(t,19) = HsCs(t, 1p), Cs(to, tp)=1
= Cg(t, tp) = exp[—iHg(t — 1y)]

physikalische GréBen invariant unter zeitabh@ngigen unitiaren Trans-
formationen

Resultierende Zeitabhéngigkeit: , Dirac-Bild“
Op(1)=B(r,1)0s(1)B(z,15), [W(2))p = B(z, 6)[¥(1))s,
B'(t,1)=B7'(t, 1), B(t, fp)=1.

Bewegungsgleichung fiir Zustdnde und Operatoren

10, [(1))p =1i(; B)[¥(t))s + B Hs|¥(1))s
=i(2,B)B"[W(1))p + BHsBB [U(1))s

= |(i8,B)BT + Hp | (1))
N——————

Yp(?)
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Operator in Klammer Y selbstadjungiert:
H‘LD =Hp, weil Hg selbstadjungiert ist,
[i,B)B'] =—iB3, BT

wegen BBT =1

(6,B)B"+B3,B'=0 = B4,B'=—(3,B)B’

i3, B)B']" =+i(3,B)BT
Bewegungsgleichung fiir Zustand mit Yp(¢)= YTD(t)
10, [W(1))p = Yp () N()p .
formale Losung: unitédrer Zeitentwicklungoperator Cp(¢, ty):
[(2))p = Cpl(t, 1) [¥(%))p = ; Cpl(t, to) =—iYp(2)Cp(t, fo).

mlt CD(to, to) =1=

t

CD(t, to): ]]_—IJ YD(t)CD(t, to).

0

Storungsrechnung: iteriere diese Gleichung
t
COr,1)=1 = cU*V(s, 1) =—1J drYp(£)CY(t, t).
Io
Beitrag 2. Ordnung

3]

t t
C(l)(f,fo)z—if di, Yp(t,), C(Z)(l‘yfo)z—ij dtl(_i)f d, Yp(5)Yp(ta).
1 fo 1

0 0

bei Umkehrung der Integrationsreihenfolge: [ Y #;), Y 75)] # 0!

h=t

L/ H
To I

11



C(Z)(f»to)z—if dtz(—i)J dtlYD(tl)YD(tZ):_if dtl(_i)f d, Yp(22)Yp(h).

- in beiden Versionen des Integrals: Yt)-Operatoren zeitgeordnet,
d.h.

t

ZCQUJd=PﬂJ

[

@2
(2)(l‘,l”o)=7f dtlf d6,7 Yp(t;)Yp(t2)

dtl(_i)J dt,7 Yp(t1)Yp(t2)

- durch weitere Iteration (vollstdndige Induktion):
N t t
() (=)
C]([,to):T dtl"' dtngD(tl)YD(t])
]. t() to

- formal Exponentialreihe:

t

o(t, o) ZC )¢, to) 9exp[—if dt'Ypt')|.
j=0

)

¢ Zeitentwicklung der Observablen

- Zeitableitung der Observablen-Operatoren
0p(t)=BOg(t)B" = 3,0(¢)=(3,B)0s(t)B"+ BOg(£)3, B
=(8,B)BTOp(£)B(£)3,B'
—i[Op(?), Xp(1)]
mit
Xp(t)=Hp(t)— Yp(r)=X[(2).
- unitdrer Zeitentwicklungsoperator fiir Observablen
Op()=Ap(t, 1) Op(to)AL(t, to)
= 0,0p(t)=(0,Ap)Op(t)Al +Ap Op(1)0, A
=(6,A)AT O (1) + Op(t)AS, AT
—[0p(1),(A)AT]
=—i[0p(1), Xp(1)]

12



- = Bewegungsgleichung fiir Ap

(0, Ap)Al, =iXp
= 5,AD = iXDAD.

- Losung analog wie fiir Cp

AD(t, to) =T exp

t
+iJ dt’Xp(t)
1

0

¢ Fazit: Zeitentwicklung in beliebigem Bild

— muss nicht erst im Schrédinger-Bild rechnen

- definiere einfach selbstadjungierte Operatoren X und Yp, so dass
HD = XD + YD

- dann Zeitentwicklung fiir Observablen und Zustédnde aus den oben
hergeleiteten Gleichungen fiir unitire Zeitentwicklungsoperatoren
Cp(?, tp) und Ap(t, 1))

¢ Umrechnung zwischen zwei Dirac-Bildern

seien zwei Dirac-Bilder durch (X3, Y;) und (X5, Y,) definiert

Umrechnung zwischen Observablen und Zustinden

[B(£)), = C1 [¥(ty)); = C; [¥(£y)), = C, CJ (), = B=C,C}
0,(1)=A,0,(t)Al = A, 0,(1,)AT =A,A] 0,(1)AA] = B =AA]

zu zeigen B=B":

B=B < C,C]=AA] & U,=AlCc,=U,=AlC,.

es gilt

3, U,=(3,A1)C, +A]4,C, =—iAl(X, + Y,)C,
:—IA.{chl :—IA-{HlAlAI Cl—l: HI(IO)UI :_IHZ(tO)UI
——

1
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- gleiche Rechnung fiir Bild 2 ergibt
0, Uy =Hj(1))U,
- wegen U (¢, o) = U,(ty, tg) = 1 ergibt die Integration dieser DGLn
U, =exp[—iH(%)(t — tp)] = exp[-iH(fo)(t — fp)] = U».

- im Folgenden: U; =U,=U

- garantiert gleiche Wahrscheinlichkeiten fiir Messungen...
— T — T —
10, 11W(1))1 =1 (0» lo |A1C1|‘I’([0)>1 =2 <0, lo |A2C2}‘I’(t0)>2 =3 (0, t|¥(1)),.
- ...und Erwartungswerte von Observablen

(O(1)) =1 (W(1)| 01 (£)B(2))y =1 (V(4)| CIA; 01 (56)A] C1| (1)),
=, (W(15) | UT0,(10) U| (1)),
=, (U(1)] 0,(1)| (1)),

- bildunabhéngige ,Zeitableitung“
. 1 .
-0 j(r) représentiert bildunabhéngig die Zeitableitung der Observa-

blen O(t)

— Ehrenfest-Theorem

¢ Wechselwirkungsbild

im Folgenden Operatoren, Zustidnde etc. im Wechselwirkungsbild
ohne Index

setze X;=X=H, Y;=Y=H;

als einfachstes Beispiel: ®*-Theorie mit & = ®':

2 A

_ L. L mm o _ _ L&A
o= (8)0"R):—— ¥, Lf=—sf=—] @

N —

Feldoperatoren und damit Observablen: freie Felder

14



- falls Lagrangian (und damit Hamiltonian) nicht explizit von x ab-
hingig:
H,=const => A=exp[iHy(t —t)].

— als einfachstes Beispiel: ®*-Theorie mit ® = ®':
1 m? A
L= > :(9,®)(0"®): — 9%, L=—"19":
- Losungen aus vorigen Vorlesungen bekannt

®(x)= f d*3 [a(B)up(x) +a' (B)us(x)].
R3

Beziehung zum Heisenberg-Bild
- X2=XH=HH, Y2=YH=0

- Bildtransformation

[B(£))y = [W(Lo))y = 1W(2p)) = CT1¥(2)) = B=C" = 0y(r)=C'0(r)C.

im Folgenden f; — —oo und adiabatisches Ein- und Ausschalten
der WW:

t

C(t)= C(t,—oo)=ﬂexp[—iJ H(t")exp(—e|t])|, e—0"

—0Q

T so grol§ gewdhlt, dass —T <K f4,...,t, < T

aullerdem sei t; > t, >---> t,,. Dann

(2|7®y(x)) 9(x,)|2) = C'(11)®(x,)C(1)C(r,)"
®(x,)C(13)-- C'(2,)®(x,,)C(1,)12)

Zeitentwicklungsoperator erfiillt offenbar fiir #; > ¢,

C(1;)= C(t;,—00) = C(1y, £,)C(tp,—00) = C(1, 1) C(1,)
= C(1,)C'(t)=C(1y, 1)
=
(2|7 @u(x))- 9(x,)|Q)=(Q CT(1)®(x,)C(1, 1)8(x,) C (23, 13)B(x;)
"C(tn—l»tn)‘l’(ﬁn)c(tn”Q)

15



— weiter ist

C(00)=C(00,1)C(t;) = C(t)= C (o0, 1;)C(c0)
= C'(#1)=C'(c0)C(00, 1))

=
iG(xy,...,x,)=(Q|Tyu(x))- ¢ (x,)| Q)
1 3 «° / /
=m<ﬂ‘9¢(ﬁl)m¢(zn)eXp[—ledt HI(t)] Q>
- denn

C(00)|2) = (2| C(00)|) €2),

da das Vakuum stabil unter der Zeitentwicklung ist, also der obige
Ausdruck das Vakuum bis auf einen i.a. unbestimmten Phasenfak-
tor ist

¢ Storungstheorie: entwickele Exponentialfunktion (s.o.)
- = Beitrag k-ter Ordnung zur n-Punkt-Green-Funktion:
Gy Xy, -0 x,)(QUC(00)|2) = <Q‘ Te(x,) - ®(x,)

(—iA/4nk
TJR4 d411 ...fR4 d41k :@4(11) tees :‘1,4(111): ‘Q>

¢ Erzeugendes Funktional

- mit dullerer Quelle /(x)eR
zomz<sz'9exp[i f d“zf(z)@(z)”ﬂ>
R4
folgt (unter Verzicht auf Normalordnung!) mit

iA o4
ZU1=exp (‘147 fw d4151(y)4)z°” !
1 o

—_— cee 6
in6/(x) 6J(x,)

iGM(xy,..., x,)(QC(c0) Q) = ZU]

J=0

Berechnung von Z[ /]

16



Zy ergibt sich aus obigem Formalismus fiir
1 m?

Wechselwirkungsbild mit
H;= —f d°3J (2)@(x0).
R3

berechne also

1)

C(t1, 1)=T exp [—i[ dtHy(t)

3]

zerlege (1, t,) in N > 1 Teilintervalle mit At =(t, —t;)/N und 7 =
Hh+QR2k—1At/2(kef{l,...,N}:

C(n, )= A}I_I)T;O exp[—iAt Hy(7 y)]exp[—iArHi(Ty_1)]---exp[—iAt Hy(7,)]

da [H;(7), Hi(7’)] o< 1 kann man die Baker-Campbell-Hausdorff-
Formel

1
expAexp B =exp [A+ B+ 3 [A, B]|,
falls[A,[A, B]]=[B,[A, B]]=0
verwenden.

Beweis in nichster Ubung! =

C(tl,tz)lei_r)I;oeXp

N
—lAtZ HI(T]C)—%AZ'Z Z [HI(Tk)rHI(TZ)]]

k=1 1<k<I<N

=exp [1[ d*xJ (z)d’(z)]
VI

1)
1
exp [_EJ d4£1 f d4£z@( fh—1)J(x,)J(x,) [‘I’(ll)’@(EZ)]] :
V@ V@
(D

benotige davon Erwartungswert bzgl. |©2)

1. Faktor kann noch nicht berechnet werden (2. Faktor ist o< 1 und
wird in nidchster Ubung berechnet!)

17



kann 1. Faktor in Normalordnung bringen

- dazu nochmal BCH-Formel mit Zerlegung der Modenentwicklung
nach Beitrdgen mit Vernichtern und Erzeugern (positive/negative
Frequenz-Moden)

#(2)= J & paplup(n), #(3)= f dpa'(P)uy(x)= 2 (x),

R3 R3
¢ =0+

— daauch hier [<I>(+)(1 D @(_)(12)] o< 1, folgt mit BCH-Formel

exp[i f d4y(£)<l>(£)]=exp[if d“y(ﬁ)‘l'(‘)(z)]exp H d@@)w@]
V@ V@ V@

exp

%f dx, f d4£2](£1)](£2)[4’(_)(£1),‘1’(+)(£2)]]-
vV4) V(4)

- da Kommutator o< 1 ist, konnen wir schreiben
[27)(x,), 2 (x,)] = (Q|[@7(x,), 8 (x,)]|2)

0).

- —<Q ‘tb(*)(ﬂ)‘l’(_)(ﬁl)

- gilt auch fiir 2. Faktor in (1) =
C(ty, 1) =exp [IJ d'xJ (£)¢(_)(£)] exp [IJ d*xJ (£)¢(+)(£)]
v V@
1
exp [_Ef d*x, f d*x, 7 ()] (x,)(Q] 7 ®(x, )8(x,)| Q)]
V) V@)
- mit #; ——o0 und ¢, — oo folgt schliellich
i
ZlJ1= (2] €(00,—00)|2) = exp [‘EJ d‘*zlJ d'x,De(x, —12)1(11)1(12)]
R4 R4
— Feynman-Propagator

iDp(x) = (2|7 (x)8(0)] ).

¢ Feynman-Regeln

18



ix [ ot

1l /u TV

Y = —

¢ Beitrag zu Z;[J] in k-ter Ordnung

¢ k-mal

¢ Korrektur zu G, in fiihrender Ordnung /(1)

— O(A): 1 Vertex = vier Ableitungen nach J fiir Z([]]

- G,: 2 weitere Ableitungen nach J = brauche Beitrag mit 6 J’s:
g._—x
2:(ul 1] =Y 3\2} ‘%H +&?\\x——x+ %% ]
= ¢ ‘(——x ) Lf
=0y

8***‘7@

- i'& ):__XK xﬁ—\('f 3&(4—}’&

r_Jl\ﬁ -4\*

- Wick-Theorem: alle Beitrdge zu zeitgeordneten Green-Funktionen
durch Zweipunkt-Korrelationsfunktionen (,,Kontraktionen von zwei
Feldoperatoren®) darstellbar wicso
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¢ Korrektur zu G, in fiihrender Ordnung /(A7)

- Gy: 2 weitere Ableitungen nach J:

.
s = & ng

X y > Bq

X, .3 =

Us, 50 ::——f.:sl &A‘(‘ . 8) ‘(‘41,%&* ey

A X5

¢ Korrektur zu G, in fiihrender Ordnung 0'(A)
- Beitrag zu (|S|Q)

i) = % 31 eR " A

A
W X = 0

A
(AT g
= E

U5y X) = 3 + ALl to( 1)
» -):A X,
A
iGZ(lpﬁz):iDF(ﬁl _12)_5 Dg(0) J d4ZDF(£1_Z)DF(Z_£2)-

. R4
divergent!

- divergentes , Tadpole-Diagramm®*

- riihrt von zwei Feldoperatoren am gleichen Raum-Zeit-Punkt her
= kommt aus H; = verschwindet mit Normalordnung

20



— alternativ Renormierung: Tadpole = Korrektur zu m? = wird abge-
zogen, weil wir m als physikalische Masse definieren

- alle Diagramme mit Schleifen i.a. divergent = Renormierung oh-
nehin notwendig

- ¢*-Theorie renormierbar < alle Divergenzen kénnen durch Re-
normierung der Feldnormierungskonstanten, Masse und Kopplungs-
konstante beseitigt werden

¢ Feynman-Regeln im Impulsraum

— definiere fiir alle Grof8en Fourier-Transformierte via

®(x)= d4£ci i
(x)= fw 2nt (p)exp(—ip - x).

- Propagator (vgl. Ubungsblatt 9)

d*p _ _ . A 1
DH3)= | Gy Deplesplip- ) mit D= o

- dann (Beweise zur Ubung):

J d4£1 f d4£2](x1)DF(£1 _ﬁz)](ﬁl)
R4 R4
p

p, TPy 15w ) (p Vi(p 1D
- JRW fR (@r) o™ p, +p,)07(p,—p ) (P )(p,Dr(p,)

s (2m)t
und
d*p d*p 4
xdt(x)= =L —=on)isW d(p ).
fwdﬁ () fw 2ny JW @ e™'0 (BﬁBz*Bg*&)g )

— lasse bei Berechnung von Matrixelementen ./ ; die 6-Funktionen
(und die oben beschriebenen 1/,/[(27)32 E,, -Faktoren aus Moden-
funktionen weg

* Diagramm-Regeln fiir iG(”)(El, D)
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b= p* —m?4i0+

- zeichne alle Diagramme mit n dulleren Beinchen, die duliere Punk-
te verbinden

- jeder Diagrammteil muss wenigstens ein duf3eres Beinchen enthal-
ten (keine Vakuumdiagramme)

— fiir Ordnung A¥: k Vertizes
- verbinde die dulleren Punkte und Vertexpunkte
- zdhle dabei die Moglichkeiten (fiir kombinatorische Faktoren)

- anjedem Vertex gilt Viererimpulserhaltung (impliziert Viererimpul-
serhaltung des gesamten Diagramms)

- {iber unabhingige Impulse in Schleifen ist mit fR4 d*p/(2m)* zuin-
tegrieren o

* Diagramme fiir verbundene .7 ;

¢ zeichne die Diagramme fiir die entsprechenden zusammenhéngenden
n-Punktfunktionen

¢ lasse die dulderen Beinchen weg (gemil LSZ-Reduktionsformel)

¢ inunserer Konvention ist der Faktor aus der Modenfunktion einfach durch
1 zu ersetzen

* dulere Viererimpulse sind on-shell mit p° = E,=+/p2+m?2

* fiir do = Dreierimpulsintegrale: d*p/[(27)*2E),]

4 Literatur

Literatur
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