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Endlichdimensionale Darstellungen
der Lorentz-Gruppe

Literatur: [Col18, Wei95, SU01, LL91]
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

▶ eigentlich brauchen wir unitäre Darstellungen der Poincarégruppe

▶ Raum-Zeit-Translationen: alle Felder Skalare

▶ kanonische Feldquantisierung: über Energie- und Impuls via Noether

▶ Lorentz-Gruppe: eigentliche orthochrone Lorentz-Gruppe SO(1, 3)↑

▶ diskrete Symmetrien CPT: modellabhängig!

▶ für QED und QCD: mindestens Raumspiegelungs-Invarianz
(es sind aber C, P und T alle separat Symmetrien)

▶ schwache Wechselwirkung: verletzt alle diskreten Symmetrien bis auf CPT
(muss erfüllt sein gemäß CPT-Theorem)

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 4



Endlichdimensionale Darstellungen der Lorentz-Gruppe
▶ Lie-Algebra der SO(1, 3)↑

▶ kann alle Λ̂ durch Boosts und Drehungen zusammensetzen: Λ̂= B̂ (η, n⃗ )R̂ (ϕ, n⃗ ′)
▶ Beweis: schreibe
Λ̂= (e 0, e 1, e 2, e 3):

e µ · e ν =ηµν, Λ0
0 = e 0

0 > 1, det Λ̂=+1.

▶ Boost:

B̂ (η, n⃗ )≡ B̂ =

�

coshη n⃗ T sinhη

n⃗ sinhη (coshη−1)n⃗ n⃗ T +13

�

, η= artanh v, B̂−1 = B̂ (−η, n⃗ ),

B̂−1Λ̂= (B̂−1e 0, B̂−1e 1, B̂−1e 2, B̂−1e 3)
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

▶ setze n⃗ = e⃗0/|e⃗0| ⇒

e ′0 = B̂−1e 0 =

�

coshηe 0
0 − sinhηn⃗ · e⃗0

−sinhηe 0
0 n⃗ + (coshη−1)(n⃗ · e⃗0)n⃗ + e⃗0

�

.

▶ setze e⃗ ′0 = 0⇒mit n⃗ (n⃗ · e⃗0) = e⃗0

coshη|e⃗0| − e 0
0 sinhη= 0 ⇒ tanhη=

|e⃗0|
e 0

0

.

▶ wegen e 0
0 =
Æ

1+ e⃗ 2
0 ist η ∈R⇒ e ′0 = (1, 0, 0, 0)T ⇒

Λ̂′ = B̂−1Λ̂=
�

e ′0, e ′1, e ′2, e ′3
�

⇒ e ′j
0 = e ′0 · e

′
j = 0
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
▶ damit e⃗ j · e⃗k =δ j k und e⃗1 · (e⃗2× e⃗3) = det Λ̂′ = 1 ⇒ ∃R̂ ∈ SO(3)

R̂−1 =

�

1 0⃗T

0⃗ R̂−1

�

,

so dass R̂−1Λ̂′ = R̂−1B̂−1Λ̂=14⇒

Λ̂= B̂ (η, n⃗ )R̂ (ϕ, n⃗ ′).

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 7



Endlichdimensionale Darstellungen der Lorentz-Gruppe
▶ Infinitesimale Erzeugende (Lie-Algebra)
▶ endliche Boosts und Drehungen

B̂ =

�

coshη n⃗ T sinhη

n⃗ sinhη (coshη−1)n⃗ n⃗ T +13

�

, R̂ =

�

1 0⃗T

0⃗ n⃗ n⃗ T + (13− n⃗ n⃗ T )cosϕ+ n⃗ · ˆ⃗εsinϕ

�

.

mit
(ε̂ j )i k = εi j k =−ε j i k .

▶ für kleine δη bzw. δϕ ist

B̂ =14+ iδηn⃗ · ˆ⃗k , R̂ =14− iδϕn⃗ · ˆ⃗s .

mit

k⃗ =−idηB̂ |η=0 =−i

�

0 n⃗ T

n⃗ 03

�

, ŝ j = idϕR̂ϕ=0 =−i

�

0 0⃗T

0⃗ ε̂ j

�
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
▶ Kommutatoren (direkt nachrechnen)

�

k̂ a , k̂ b
�

=−iεa b c ŝ c ,
�

ŝ a , ŝ b
�

=+iεa b c ŝ c ,
�

k̂ a , ŝ b
�

=
�

ŝ a , k̂ b
�

= iεa b c k̂ c .

▶ Boosts bilden keine Untergruppe und sind i.a. nicht kommutativ
▶ Hintereinanderausführung zweier drehungsfreier(!) Boosts in verschiedenen

Richtungen nicht drehungsfrei
▶ nur zwei Boosts in gleicher Richtung bilden abelsche Untergruppe mit

B̂ (η1, n⃗ )B̂ (η2, n⃗ ) = B̂ (η1+η2, n⃗ ).
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

▶ Bestimmung der (irreduziblen) Darstellungen
▶ definiere „Pseudospins“

â j =
1

2

�

ŝ j + ik̂ j
�

, b̂ j =
1

2

�

ŝ j − ik̂ j
�

▶ Kommutatoren (einfach direkt nachrechnen!)

�

â j , â k
�

= iε j k l â l ,
�

â j , â k
�

= iε j k l â l ,
�

â j , b̂ k
�

= 0.

▶ ⇒ ˆ⃗a und ˆ⃗b erfüllen Kommutatorrelationen für zwei unabhängige Spins
▶ alle (endlichdimensionalen) irreduziblen Darstellungen aus QM bekannt:

ˆ⃗a 2 |sa , ma 〉= sa (sa +1) |sa , ma 〉 , â 3 |sa , ma 〉=ma |sa , ma 〉 ,
ˆ⃗b 2 |sb , mb 〉= sb (sb +1) |sb , mb 〉 , b̂ 3 |sb , mb 〉=mb |sb , mb 〉

mit sa , sb ∈ {0, 1/2, 1, 3/2, . . .},
ma ∈ {−sa ,−sa +1, . . . , sa −1, sa }, mb ∈ {−sb ,−sb +1, . . . , sb −1, sb }.
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
▶ o.B.d.A: wie in QM können Pseudospins hermitesch gewählt werden:

â j † = â j , b̂ j † = b̂ j

▶ entspricht unitären Darstellungen der Drehgruppe SO(3) (ganzzahlige sa bzw. sb )
bzw. der SU(2) (halbzahlige sa , sb )

▶ Bestimmung der (irreduziblen) Darstellungen
▶ jede irreduzible Darstellung der so(1, 3)↑ eindeutig bestimmt durch

Paar von Pseudospinquantenzahlen (sa , sb )
▶ dann

ŝ j = â j + b̂ j , k̂ j =−i(â j − b̂ j )

▶ wirken auf Vektoren im Kronecker-Produktraum
▶ Basisvektoren

|ma , mb 〉= |ma 〉⊗ |mb 〉

▶ für sb = 0: |ma , mb 〉 ≡ |ma 〉
▶ (sa , sb )-Darstellung ist (2sa +1)(2s1+a )-dimensional
▶ (sa , sb )-Darstellung: Rotationsuntergruppe enthält irreduzible Spindarstellungen

s ∈ {|sa − sb |, |sa − sb |+1, · · · , sa + sb } (cf. Drehimpulsaddition in QM)
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

▶ ŝ j hermitesch⇒ Rotationsuntergruppe der SO(1, 3)↑ wird unitär dargestellt
▶ k̂ j † =−k̂ j : Boosts werden nicht unitär dargestellt
▶ ⇒ es gibt keine endlichdimensionalen unitären Darstellungen der SO(1, 3)↑

(außer der trivialen (0, 0)-Darstellung)
▶ für Spin s ≥ 1/2:

schließt a priori „relativistische Quantenmechanik“ a la 1. Quantisierung aus!
▶ (0, 0)-Darstellung führt auf Klein-Gordon-Felder/Teilchen
▶ vorige Vorlesung: in 1. Quantisierung keine positiv definite Ladungsdichte, die man

à la Born als Wahrscheinlichkeitsdichte interpretieren könnte!

▶ „kaonisch quantisiertes“ Klein-Gordon-Feld führt auf
Vielteilchenquantentheorie für Spin-0-Teilchen

▶ Poincaré-Symmetrie (Raumzeit-Translationen und SO(1, 3)†, also Drehungen und
Boosts) als unitäre Darstellung realisiert

▶ diskrete Symmetrien C , P , T (nur durch schwache Wechselwirkung verletzt

▶ C P T für lokale relativistische QFTn stets Symmetrie
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Spin 1/2: Weyl- und Dirac-Fermionen

Literatur: [Col18, PS95, Wei95, SU01, LL91]
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Spin-1/2-Darstellungen
▶ einfachste Darstellungen mit Spin 1/2: (1/2,0) und (0,1/2)

▶ enthalten nur Spin 1/2
▶ im Folgenden: (1/2,0)-Darstellung linkshändige Weyl-Spinoren

(0,1/2)-Darstellung rechtshändige Weyl-Spinoren
▶ Linkshändige Weyl-Spinoren
▶ Generatoren für Boosts und Drehungen:

â j
L =

1

2
σ̂ j , b̂ j

L = 0 ⇒ k̂ j
L =−

i

2
σ̂ j , ŝ j =

1

2
σ̂ j .

▶ Pauli-Matrizen

σ̂1 =

�

0 1
1 0

�

, σ̂2 =

�

0 −i
i 0

�

, σ̂3 =

�

1 0
0 −1

�

.

▶ Eigenschaften der Pauli-Matrizen (direkt nachrechnen)

σ̂ j † = σ̂ j , Trσ̂ j = 0,
�

σ̂ j ,σ̂k
�

= 2iε j k l σ̂l ,
�

σ̂ j ,σ̂k
	

= 2δ j k , Tr(σ̂ j σ̂k ) = 2δ j k .
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Spin-1/2-Darstellungen
▶ Endliche Boosts und Drehungen
▶ Boosts und Drehungen⇒wegen (n⃗ · ˆ⃗σ)2 = n⃗ 2 = 1 kann Exponentialreihe leicht

ausgewertet werden:

D̂B ,L = exp(iηn⃗ · ˆ⃗kL) = exp
�η

2
n⃗ · ˆ⃗σ
�

=12 cosh
�η

2

�

+ n⃗ · ˆ⃗σsinh
�η

2

�

,

D̂R ,L = exp(−iϕn⃗ · ˆ⃗sL) = exp
�

−i
ϕ

2
n⃗ · ˆ⃗σ
�

=12 cos
�ϕ

2

�

− in⃗ · ˆ⃗σsin
�ϕ

2

�

.

▶ Rechtshändige Weyl-Spinoren
▶ Generatoren für Boosts und Drehungen:

â j
L = 0, b̂ j

L =
1

2
σ̂ j ⇒ k̂ j

R =+
i

2
σ̂ j , ŝ j

R =
1

2
σ̂ j .

▶ Boosts und Drehungen

D̂B ,R = exp(iηn⃗ · ˆ⃗kR) = exp
�

−
η

2
n⃗ · ˆ⃗σ
�

=12 cosh
�η

2

�

− n⃗ · ˆ⃗σsinh
�η

2

�

,

D̂R ,R = exp(−iϕn⃗ · ˆ⃗sR) = exp
�

−i
ϕ

2
n⃗ · ˆ⃗σ
�

=12 cos
�ϕ

2

�

− in⃗ · ˆ⃗σsin
�ϕ

2

�

.
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Spin-1/2-Darstellungen
▶ Raumspiegelungen: Parität
▶ elektromagnetische und starke Wechselwirkungen: spiegelsymmetrisch⇒ brauche

Raumspiegelungen als Symmetrieoperator
▶ nehme an, P̂ = diag(1,−1,−1,−1) = P̂ −1 wird in Darstellungen linear (im

Feldformalismus unitär) dargestellt
▶ D̂P D̂ (Λ̂)D̂ −1

P = D̂ (P̂ Λ̂P̂ )
▶ für infinitesimale Boosts und Drehungen (direkt nachrechnen)

P̂ ˆ⃗k P̂ =− ˆ⃗k , P̂ ˆ⃗s P̂ = ˆ⃗s

▶ Anschaung: Boost in Richtung von Relativgeschwindigkeit zwischen

Inertialsystemen⇒ ˆ⃗k transformiert sich unter Spiegelungen wie Geschwindigkeiten

v⃗ →−v⃗ ⇒ ˆ⃗k ist polarer Vektor
ˆ⃗s transformiert sich wie Drehimpuls L⃗ = x⃗ × p⃗ →+L⃗ ⇒ ˆ⃗s ist axialer Vektor
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Spin-1/2-Darstellungen
▶ Parität und Weyl-Spinoren
▶ Verhalten unter Raumspiegelungen wie für Operatoren im Minkowski-Raum

(„fundamentale Darstellung“)

D̂P D̂B ,R/LD̂ −1
P = D̂P exp(iηn⃗ · ˆ⃗kL/R)D̂

−1
P = exp(−iηn⃗ · ˆ⃗kL/R) = exp(+iηn⃗ · ˆ⃗kR/L)

▶ für Theorien mit Raumspiegelsymmetrien braucht man Spinorfelder mit rechts-
und linkshändigen Weyl-Spinoren
▶ irreduzible Darstellung mit Spin 1/2 für SO(1, 3)↑ und P̂ ⇒O(1, 3)↑: (1/2, 0)⊕ (0, 1/2)
▶ vierkomponentige Bispinoren =Dirac-Spinoren

Ψ =

�

ψL

ψR

�

, D̂PΨ =

�

ψR

ψL

�

=

�

0 1
1 0

�

Ψ = γ̂0Ψ

▶ Raumspiegelung vertauscht links- und rechtshändige Weyl-Spinoren
▶ wie bei Händen: im Spiegel wird eine linke zu einer rechten Hand
▶ Eigenschaft wird „Händigkeit“ oder Chiralität genannt
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Spin-1/2-Darstellungen
▶ Generatoren für Lorentz-Transformationen für Dirac-Spinoren

ˆ⃗kD =
i

2

�

− ˆ⃗σ 0
0 ˆ⃗σ

�

, ⃗̂sD =
1

2

�

ˆ⃗σ 0
0 ˆ⃗σ

�

.

▶ Pseudo-Hermitezität:

γ̂0 ˆ⃗k †
Dγ̂

0 = ˆ⃗kD, γ̂0 ˆ⃗s †
Dγ̂

0 = ˆ⃗s †
D = ˆ⃗sD.

▶ endliche Boosts und Drehungen pseudo-unitär:

γ̂0D̂ †
B ,Dγ̂

0 = γ̂0 exp(−iη⃗ · ˆ⃗kD)γ̂
0 = exp(−iη⃗ · ˆ⃗kD) = D̂ −1

B ,D,

γ̂0D̂ †
R ,Dγ̂

0 = γ̂0 exp(+iϕ⃗ · ˆ⃗sD)γ̂
0 = exp(iϕ⃗ · ˆ⃗sD) = D̂ −1

R ,D.

▶ Dirac-Darstellung aller Lorentz-Transformationen pseudounitär
▶ Parität:

D̂P,D = γ̂0 ⇒ γ̂0D̂ †
P,Dγ̂

0 = (γ̂0)3 = γ̂0 = D̂ −1
P,D.
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Spin-1/2-Darstellungen
▶ Invariante Sequilinear-Formen
▶ um Lagrangians für freie Weyl- oder Dirac-Felder zu konstruieren⇒ benötige

Sesquilinear-Formen aus Spinoren, die sich wie Lorentz-Skalare bzw. -Tensoren
transformieren
▶ müssen Ableitungen ∂µ enthalten, das sich wie (kovariante) Vektorkomponenten

Transformiert
▶ Transformationsverhalten von adjungierten Weyl-Spinoren

▶ Boosts⇒wegen σ̂ j † = σ̂ j :

ψL/R −→̂
B

exp
�

±ηn⃗ · ˆ⃗σ
�

ψL/R ⇒ ψ†
L/R −→̂

B
ψ†

L/R exp
�

±ηn⃗ · ˆ⃗σ
�

.

▶ invariant („skalar“) sind also Ausdrücke wieψ†
LψR undψ†

RψL
▶ für Dirac-Spinoren ist

Ψ†γ̂0Ψ =ΨΨ

Skalar unter Boosts

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 19



Spin-1/2-Darstellungen
▶ Drehungen

ψL/R −→̂
R

exp
�

−iϕn⃗ · ˆ⃗σ
�

ψL/R ⇒ ψ†
L/R −→̂

R
ψ†

L/R exp
�

+iϕn⃗ · ˆ⃗σ
�

.

▶ alle Kombinationen von links- und rechtshändigen Weyl-Spinorenψ†ψ sind „skalar
unter Drehungen“, also auch diejenigen, die auch Skalare unter Boosts sind

▶ Vierervektoren
▶ für Weylspinoren beider Art

V⃗ =ψ† ˆ⃗σψ

Vektor unter Drehungen
▶ Beweis (es genügen infintesimale Trafos!): mit δϕ⃗ = n⃗δϕ

δV⃗ =
i

2
δϕaψ

†
�

σ̂a , ˆ⃗σ
�

ψ=δϕ⃗× V⃗

▶ für Boosts: brauche vierte „Pauli-Matrix„ σ̂0 als „Zeitkomponente“⇒ ändert sich
nicht unter Drehungen⇒ σ̂0 =12
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Spin-1/2-Darstellungen

▶ betrachte

V µ
L/R =ψ

†
L/R

�

1

ηL/R
ˆ⃗σ

�

ψL/R

▶ transformiert sich als Vektor unter Drehungen (s.o.)
▶ infinitesimaler Boost: δη⃗=δηn⃗

δV µ
L/R =ψ

†
L/R

�

±δη⃗ · ˆ⃗σ

±ηL/Rδη⃗

�

ψL/R =

�

±δη⃗ · V⃗ /ηL/R

±δη⃗V 0ηL/R

�

.

▶ infinitesimaler Lorentz-Boost⇒ ηL/R =±1.
▶ es sind also

ψ†
L

�

12

σ⃗

�

ψL, ψ†
R

�

12

− ˆ⃗σ

�

ψR

Vierervektoren

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 21



Spin-1/2-Darstellungen
▶ Dirac-Spinoren

Ψ†

�

14

diag( ˆ⃗σ,− ˆ⃗σ)

�

Ψ =Ψγ̂0

�

14

diag( ˆ⃗σ,− ˆ⃗σ)

�

Ψ = e µΨγ̂
µΨ

▶ Dirac-Matrizen (chirale Darstellung)

γ̂0 =

�

0 12

12 0

�

, γ̂ j = γ̂0

�

σ̂ j 0
0 −σ̂ j

�

=

�

0 −σ̂ j

σ̂ j 0

�

.

▶ Eigenschaften der Dirac-Matrizen

γ̂0† = γ̂0, γ̂ j † =−γ̂ j ,
�

γ̂µ, γ̂ν
	

= 2ηµν
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Spin-1/2-Darstellungen
▶ Lorentz-kovariante Sesquilinearformen
▶ Transformationsverhalten mit Dirac-Matrix-Algebra und Pseudounitarität aller

Lorentz-Transformationen und Raumspiegelungen (also alle Dirac-
Darstellungsmatrizen der O(1, 3)↑):

Ψ ′ = D̂Λ,DΨ ⇒ Ψ
′
=Ψ†D̂ †

Λ,Dγ̂
0 =Ψγ̂0D̂ †

Λ,Dγ̂
0 =ΨD̂ −1

Λ,D.

▶ Skalar: ΨΨ
Ψ
′
Ψ ′ =ΨD̂ −1

Λ,DD̂Λ,DΨ =ΨΨ.

▶ Vierervektor Ψγ̂µΨ

Ψ
′
γ̂µΨ =ΨD̂ −1

Λ,Dγ̂
µD̂Λ,DΨ

▶ ⇒ Transformationsverhalten der Dirac-Matrizen

D̂ −1
Λ,Dγ̂

µD̂Λ,D =Λ
µ
νγ̂
ν.

▶ Tensoren höherer Stufe (Bsp. zweiter Stufe)

D̂ −1
Λ,Dγ̂

µγ̂νD̂Λ,D = D̂ −1
Λ,Dγ̂

µD̂Λ,DD̂ −1
Λ,Dγ̂

νD̂Λ,D =Λ
µ
ρΛ

ν
σγ̂
ρ γ̂σ
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Spin-1/2-Darstellungen
▶ Irreduzible Teile
▶ aus Ψ lassen sich offenbar 4×4= 16 unabhängige SesquilinearformenψΓ̂ψ bilden
▶ für Lagrangian: reelle Sesquilinerformen⇒ Γ̂ pseudo-hermitesch:

(ΨΓ̂Ψ)∗ =Ψ†Γ̂ †Ψ
†
=Ψγ0Γ̂ †γ0†Ψ =Ψγ0Γ̂ †γ0Ψ =ΨΓ̂Ψ.

▶ bereits identifiziert: Skalar (1) und Vierervektor (4)
▶ Tensor 2. Stufe: Zerlegung in symmetrischen und antisymmetrischen Teil

γ̂µγ̂ν =
1

2

�

γ̂µ, γ̂ν
	

+
1

2

�

γ̂µ, γ̂ν
�

= g µν− iσ̂µν

▶ symmetrischer Teil gibt wieder Skalar
▶ antisymmetrischer Teil ist unabhängig von Skalar und Vektor
⇒ antisymmetrischer Tensor 2. Stufe (6 unabhängige Komponenten)

σ̂µν =
i

2

�

γ̂µ, γ̂µ
�

, γ̂0σ̂µν†γ0 = σ̂µν ⇒ Ψσ̂µνΨ = (Ψσ̂µνΨ)∗.
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Spin-1/2-Darstellungen

▶ Tensor 3. Stufe: γµγνγρ

▶ kann nur neues geben, wenn alle drei Indizes verschieden sind. Andernfalls wegen
Antivertauschbarkeit von Diracmatrizen mit verschiedenen Indizes und (γ̂µ)2 =±1 nur
wieder Vektor

▶ Falls alle 3 Indizes verschieden⇒ total antisymmetrischer Tensor
▶ umkehrbar eindeutig auf Axial-Vektor abbildbar

Âµ = εµνρσγ̂νγ̂ρ γ̂σ = γ̂
µεανρσγ̂αγ̂νγ̂ρ γ̂σ

▶ definiere

1

4!
εµνρσγ̂µγ̂νγ̂ρ γ̂σ = γ̂0γ̂1γ̂2γ̂3 =−γ̂0γ̂1γ̂2γ̂3 =−iγ̂5 ⇒ γ̂5 =−iγ̂0γ̂1γ̂2γ̂3 =

�

−12 0
0 12

�

▶ Da γ̂µ wie Vektor transformiert (auch unter Spiegelungen) aber εµνρσ zwar invarianter
Tensor unter SO(1, 3)-Trafos ist, aber unter Spiegelungen wegen det P̂ =−1 Vorzeichen
wechselt, transformiert γ̂5 unter SO(1, 3)↑-Trafos wie Skalar, wechselt aber Vorzeichen
unter Spiegelungen⇒ γ̂5 ist Pseusoskalar
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Spin-1/2-Darstellungen
▶ Eigenschaften

(iγ̂5)
† =−iγ̂5, γ̂0(iγ̂5)

†γ̂0 = iγ̂5, γ̂2
5 =14, D̂P,Dγ̂5D̂P,D = γ̂

0γ̂5γ̂
0 =−γ̂5, γ̂5γ̂

µ =−γ̂µγ̂5.

▶ Projektion auf links- und rechtshändige Anteile des Dirac-Spinors

1− γ̂5

2
Ψ =

�

12 0
0 0

��

ψL

ψR

�

=

�

ψL

0

�

=ΨL,
1+ γ̂5

2
Ψ =

�

0 0
0 12

��

ψL

ψR

�

=

�

0

ψR

�

=ΨR.

▶ damit alle 16 reellen irreduziblen Lorentz-kovarianten Sesquilinearformen:

ΨΨ : Skalar (1 Komponente)

iΨγ̂5Ψ : Pseudoskalar (1 Komponente)

Ψγ̂µΨ : Vierervektor (4 Komponenten)

Ψγ̂5γ̂µΨ : Pseudovierervektor (4 Komponenten)

Ψσ̂µνΨ : antisymmetrischer Tensor 2. Stufe (6 Komponenten)
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Spin-1/2-Darstellungen
▶ für später wichtig: endlicher Boost in Dirac-Matrizenschreibweise

D̂B ,D = exp(iηn⃗ · ˆ⃗kD)

=

�

cosh(η/2)12+ sinh(η/2)n⃗ · ˆ⃗σ 0
0 cosh(η/2)12− sinh(η/2)n⃗ · ˆ⃗σ

�

=Uµγ
µγ0 =

�

U012+U⃗ · ˆ⃗σ 0
0 U012−U⃗ · ˆ⃗σ

�

⇒ U =

�

cosh(η/2)
n⃗ sinh(η/2)

�

▶ ⇒

D̂B ,D =Uµγ
µγ0 mit U =

�

cosh(η/2)
n⃗ sinh(η/2)

�

.
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Spin-1/2-Darstellungen
▶ Äquivalente Darstellungen der Dirac-Algebra
▶ die Antikommutatorrelationen

�

γ̂µ, γ̂ν
	

= 2ηµν bleiben unter beliebigen
Ähnlichkeitstransformationen erhalten: ˆ̃γµ = T̂ γ̂µT̂ −1

▶ damit Relationen zwischen σ̂µν und ˆ⃗kD und ˆ⃗sD so erhalten bleiben, dass ˆ⃗sD unitär

und ˆ⃗kD antiunitär bleibt⇒ T̂ = Û muss unitär sein
▶ neue Dirac-Spinoren: Ψ̃ = ÛΨ
▶ andere verbreitete Konventionen

▶ unsere bislang verwendete chirale Darstellung ist Konvention wie in [LL91]

▶ Konvention für chirale Darstellung in z.B. [PS95]: Û = γ̂0

γ̃0 = γ̂0, γ̃ j =−γ̂ j , γ̃5 =−γ̂5

▶ „Standarddarstellung“ (z.B. [BD65])

Û =
1
p

2

�

12 12

12 −12

�

, γ̃0 =

�

12 0
0 −12

�

, γ̃ j =

�

0 σ̂ j

−σ̂ j 0

�

=−γ̂ j .

▶ Vorteil: Paritätseigenzustände
⇒ die beiden oberen (unteren) Spinkomponenten entsprechen Parität +1 (-1)
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Spin 1/2 + Parität:
Quantisiertes Dirac-Feld

Literatur: [Col18, PS95, Wei95, SU01, LL91]
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Quantisiertes Dirac-Feld

▶ historische Idee Diracs: finde Wellengleichung mit nur 1. Ableitungen

▶ Motivation: löst Problem mit nicht positiv definierter erhaltener Ladung (wie bei
nichtrelativistischer Schrödinger-Gleichung!)

▶ moderner Zugang: verwende obige Analyse der Darstellungen der O(1, 3)↑

▶ such reelle Lagrangefunktion für freies Diracfeld Ψ mit nur einer Ableitung

▶ Raumspiegelung P̂ soll Symmetrie sein
▶ zur Verfügung stehen die reellen Sesquilinearformen und der Einteilchen-Energie-

Impulsoperator i∂µ
▶ man kann nur den Vektorstrom mit dem polaren Vektor i∂µ „überschieben“; mit

Axialvektor wäreL nicht spiegelsymmetrisch
▶ antisymmetrischer Tensor scheidet aus, weil man zusammen mit nur einem ∂µ

keinen Skalar erzeugen kann
▶ für von ∂µ freie Terme kommt nur der Skalar in Frage; Pseudoskalar bricht wieder

Spiegelsymmetrie

L =
i

2
Ψγµ
←→
∂µ Ψ −mΨΨ
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Quantisiertes Dirac-Feld

▶ nützliche Abkürzung: Feyman-Dolch mit beliebigen Vektoren oder
Vektoroperatoren: Aµγ̂

µ = /A oder ∂µγ̂
µ = /∂

▶ Feldgleichungen: Variiere Ψ und Ψ als unabhängige Felder (für die 2×4 reellen
Feldfreiheitsgrade)
▶ ⇒ freie Dirac-Gleichung

(i /∂ −m )Ψ = 0.

▶ Gleichung für Dirac-adjungierte Funktion: adjungiere zunächst Dirac-Gleichung

Ψ†(−i
←−
/∂

† −m ) = 0 ⇒Ψγ0(−i
←−
/∂

† −m ) = 0 ⇒ Ψγ0(−i
←−
/∂

† −m )γ0 =Ψ(−i
←−
/∂ −m ) = 0.

▶ impliziert auch Gültigkeit der Klein-Gordon-Gleichung:

(i /∂ +m )(i /∂ −m )Ψ =−( /∂ 2+m 2)Ψ =−(□+m 2)Ψ = 0.

▶ ⇒ quantisierte Theorie beschreibt
Spin-1/2=Teilchen und die dazugehörigen Antiteilchen mit Masse m .
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Quantisiertes Dirac-Feld
▶ außer Raum-Zeit-Symmetrien (s. nächste Übung!) Lagrangian auch

invariant unter globalen Phasenänderungen

Ψ ′ = exp(−iqα)Ψ, Ψ
′
= exp(+iqα)Ψ

▶ dazugehöriger erhaltener Noether-Strom

j µ = qΨγµΨ.

▶ checke Kontinuitätsgleichung

∂µ j µ = q [Ψγµ∂µ+
�

∂µγ
µΨ
�

Ψ] = qΨ(−im + im )Ψ = 0.

▶ j 0 = qΨγ0Ψ = qΨ†Ψ: für q > 0 positiv definit⇒Diracs Idee hat funktioniert
▶ ABER: Probleme mit negativen Energien wie bei Klein-Gordon-Feld
▶ daher Feldquantisisierung
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Quantisiertes Dirac-Feld

▶ Hamilton-Formalismus für „klassische“ Dirac-Feld
▶ vereinfacht sich mit etwas abgeänderter Lagrange-Dichte

L ′ =Ψ(i /∂ −m )Ψ

▶ äquivalent, weil Wirkung ungeändert, denn

L ′ =L +
i

2
∂µ
�

ΨγµΨ
�

▶ unterscheidet sich nur um Viererdivergenz von der Form Ωµ(Ψ,Ψ)
▶ mitL ′ nur ein von 0 verschiedener Feldimpuls

Π=
∂L ′

∂∂t Ψ

= iΨγ0 = iΨ†

▶ Hamilton-Dichte

H =Π∂tΨ −L ′ = iΨγ0∂tΨ −L ′ =−iΨ∂ j γ̂
jΨ +mΨΨ
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Quantisiertes Dirac-Feld
▶ mit Dirac-Gleichung

i(γ0∂t +γ
j ∂ j )Ψ =mΨ ⇒ (−i∂ jγ

j +m )Ψ = iγ0∂tΨ ⇒ H = iΨγ0∂tΨ = iΨ†∂tΨ.

▶ Quantisierung als Fermionen⇒ gleichzeitige kanonische Antikommutatoren:

�

Ψa (t , x⃗ ),Ψb (t , y⃗ )
	

= 0,
�

Ψa (t , x⃗ ),Πb (t , y⃗ )
	

= i
�

Ψa (t , x⃗ ),Ψ†
b (t , y⃗ )
	

= iδ(3)(x⃗ − y⃗ ).

▶ entwickele wieder nach Modenfunktionen positiver und negativer Frequenz (in
manifest kovarianter Form)

Up⃗ ,σ(x ) =
1
Æ

(2π)32Ep

uσ(p⃗ )exp(−ip · x )

�

�

�

�

�

p 0=Ep

,

Vp⃗ ,σ(x ) =
1
Æ

(2π)32Ep

vσ(p⃗ )exp(+ip · x )

�

�

�

�

�

p 0=Ep

, Ep =
Æ

m 2+ p⃗ 2.

▶ uσ(p⃗ ) und vσ(p⃗ ) geeignete Dirac-Spinoren,σ ∈ {1/2,−1/2}: Spin-Freiheitsgrade
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Quantisiertes Dirac-Feld
▶ wende gleich Feynman-Stückelberg-Trick an: Moden mit positiver (negativer) Frequenz

mit Vernichtern a(p⃗ ,σ) (Erzeugern b†(p⃗ ,σ)
▶ dabeiσ ∈ {1/2,−1/2} für ŝ 3

D-Eigenwerte

Ψ(x ) =

∫

R3

d3p⃗
∑

σ

�

aσ(p⃗ )Up⃗ ,σ(x ) +b†
σ(p⃗ )Vp⃗ ,σ(x )
�

▶ Dirac-Gleichung: Teilchen- bzw. Antiteilchen-Dirac-Spinoren
(im Folgenden immer „on-shell-Bedingung“ p 0 = Ep !)

(/p −m )uσ(p⃗ ) = 0, (/p +m )vσ(p⃗ ) = 0.
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Quantisiertes Dirac-Feld
▶ Wigner-Basis [Wig39]

▶ irreduzible Darstellung der O(1, 3)↑⇒ kann alle Zustände zu p mit p ·p =m 2 > 0,

also p 0 = Ep durch Boosts aus den Zuständen zu p⃗ = 0 erreichen:

�

Ep

p⃗

�

= B̂

�

m

0⃗

�

=

�

coshη sinhηn⃗ T

sinηn⃗ (coshη−1)n⃗ n⃗ T +13

��

m

0

�

=

�

m coshη

m sinhηn⃗

�

Setze n⃗ = p⃗/|p⃗ | ⇒ η= artanh(|p⃗ |/Ep )> 0.
▶ Löse Gleichungen für die Dirac-Spinoren uσ(p⃗ ) und vσ(p⃗ ) bei p⃗ = 0
▶ definiere dann

uσ(p⃗ ) = D̂B ,Duσ(0⃗), vσ(p⃗ ) = D̂B ,Dvσ(0⃗).

▶ da Drehungen p⃗ = 0 ungeändert lassen⇒Drehungen Standuntergruppe
▶ „Wigner’s little group“ für massive Darstellungen m > 0
▶ wähle uσ(0⃗) und vσ(0⃗) als Eigenspinoren zu ŝ 3

D mit Eigenwertenσ=±1/2
▶ dann nur diese Zustände zu p⃗ = 0⃗ haben definite spin-z -Komponente
▶ da ˆ⃗kD nicht mit ŝ 3

D vertauschen ist das nicht der Fall für die Zustände mit p⃗ ̸= 0
▶ Spin als intrinsische Teilcheneigenschaft: definiert im Ruhsystem des Teilchens!
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Quantisiertes Dirac-Feld
▶ Konstruktion der uσ(p⃗ ) und vσ(p⃗ )
▶ Gleichungen für beliebige p mit p 2 =m 2:

(/p −m )uσ(p⃗ ) = 0, (/p +m )vσ(p⃗ ) = 0.

▶ Gleichungen für p⃗ = 0⇒ p = (m , 0, 0, 0)T

γ0uσ(0⃗) = uσ(0⃗), γ0vσ(0⃗) =−vσ(0⃗),

▶ im Ruhsystem des Teilchens: Teilchen (Antiteilchen) haben Parität 1 (−1)
▶ bestimme die linear unabhängigen Lösungen als Eigenspinoren von ŝ 3

D:

u1/2(0⃗) =
p

m









1

0

1

0









=:
p

m u ′1/2(0,+1/2), u−1/2(0⃗) =
p

m









0

1

0

1









=:
p

m u ′(0,−1/2),

v1/2(0⃗) =
p

m









1

0

−1

0









=:
p

m v ′(0,+1/2), v−1/2(0⃗) =
p

m









0

1

0

−1









=
p

m v ′−1/2(0⃗).
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Quantisiertes Dirac-Feld
▶ Boost zu p⃗ ̸= 0-Zuständen
▶ boost um η= artanh(|p⃗ |/Ep ) in Richtung von n⃗ = p⃗/|p⃗ |

uσ(p⃗ ) = D̂B ,Duσ(p⃗ ) = /U γ
0uσ(0⃗) = /U uσ(0⃗),

vσ(p⃗ ) = D̂B ,Dvσ(p⃗ ) = /U γ
0vσ(0⃗) =− /U vσ(0⃗),

U =

�

cosh(η/2)
sinh(η/2)n⃗

�

▶ drücke Hyperbelfunktionen mit Ep und |p⃗ | aus

coshη=
Ep

m
= 2 cosh2(η/2)−1 ⇒ cosh(η/2) =

√

√1+ coshη

2
=

√

√Ep +m

2m
,

coshη=
Ep

m
= 1+2 sinh2(η/2) ⇒ sinh(η/2) =

√

√coshη−1

2
=

√

√Ep −m

2m
.
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Quantisiertes Dirac-Feld

▶ NB:
|p⃗ |=
q

E 2
p −m 2

▶ Rechnung für uσ(p⃗ ):

uσ(p⃗ ) =

�

γ0

√

√Ep +m

2m
−

√

√Ep −m

2m

p⃗

|p⃗ |
· γ⃗

�

uσ(0⃗)

=
1
Æ

2(Ep +m )

�

(m +E )γ0− p⃗ ·γ
�

u ′σ(0⃗)

=
1
Æ

2(Ep +m )

�

(m +E )γ0− p⃗ ·γ
�

u ′σ(0⃗)

=

√

√

√

1

2(Ep +m )
(m + /p )u ′σ(0,σ)
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Quantisiertes Dirac-Feld
▶ analoge Rechung für vσ(p⃗ ):

vσ(p⃗ ) =

√

√

√

1

2(Ep +m )
(m − /p )v ′σ(0,σ)

▶ Pseudoorthogonalitätsrelationen

uσ(p⃗ )uσ′ (p⃗ ) = 2mδσ,σ′ , vσ(p⃗ )vσ′ (p⃗ ) =−2mδσ,σ′ ,

uσ(p⃗ )vσ′ (p⃗ ) = vσ(p⃗ )uσ′ (p⃗ ) = 0,

uσ(p⃗ )
†uσ′ (p⃗ ) = 2Eδσσ′ , vσ(p⃗ )

†vσ′ (p⃗ ) = 2Eδσσ′ ,

uσ(p⃗ )
†v (−p⃗ ,σ′) = vσ(p⃗ )

†uσ′ (−p⃗ ) = 0.
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Quantisiertes Dirac-Feld
▶ Spinsummen: Definiere

Â(p⃗ ) =
∑

σ

uσ(p⃗ )uσ(p⃗ ), B̂ (p⃗ ) =
∑

σ

vσ(p⃗ )vσ(p⃗ ).

▶ Wirkung auf Basis (uσ(p⃗ ), vσ(p⃗ ): verwende Pseudoorthogonalitätsrelationen und

/p uσ(p⃗ ) =m uσ(p⃗ ), /p vσ(p⃗ ) =−m uσ(p⃗ )

Â(p⃗ )uσ′ (p⃗ ) =
∑

σ

uσ2mδσ,σ′ = 2m uσ′ (p⃗ ) = (/p +m )uσ′ (p⃗ ),

Â(p⃗ )vσ′ (p⃗ ) = 0= (/p +m )vσ′ (p⃗ ),

B̂ (p⃗ )uσ′ (p⃗ ) = 0= (/p −m )uσ′ (p⃗ )

B̂ (p⃗ )vσ′ (p⃗ ) =−
∑

σ

vσ(p⃗ )2mδσ,σ′ =−2m vσ′ (p⃗ ) = (/p −m )vσ′ (p⃗ );

⇒

Â(p⃗ ) =
∑

σ

uσ(p⃗ )uσ(p⃗ ) = /p +m , B̂ (p⃗ ) =
∑

σ

vσ(p⃗ )vσ(p⃗ ) = /p −m ,

Â(p⃗ )− B̂ (p⃗ ) =
∑

σ

�

uσ(p⃗ )uσ(p⃗ )− vσ(p⃗ )vσ(p⃗ )
�

= 2m14.
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Quantisiertes Dirac-Feld
▶ Orthonormiertheit der Modenfunktionen

(Up⃗ ,σ,Up⃗ ′,σ′ ) =

∫

R3

d3 x⃗U †
p⃗ ,σ(x )Up⃗ ′,σ′ (x ) =δσσ′δ

(3)(p⃗ − p⃗ ′),

(Vp⃗ ,σ, Vp⃗ ′,σ′ ) =

∫

R3

d3 x⃗U †
p⃗ ,σ(x )Up⃗ ′,σ′ (x ) =δσσ′δ

(3)(p⃗ − p⃗ ′),

(Vp⃗ ,σ,Up⃗ ′,σ′ ) = (Up⃗ ′,σ′ , Vp⃗ ,σ)
∗ =

∫

R3

d3 x⃗ V †
p⃗ ,σ(x )Up⃗ ′,σ′ (x ) = 0.

▶ damit und gleichzeitigen Antikommutaturrelationen der quantisierten Dirac-Felder

�

aσ(p⃗ ), aσ′ (p⃗
′)
	

=
�

aσ(p⃗ ), bσ′ (p⃗
′)
	

=
�

bσ(p⃗ ), bσ′ (p⃗
′)
	

=
�

aσ(p⃗ ), b†
σ′ (p⃗

′)
	

= 0,
�

aσ(p⃗ ), a†
σ′ (p⃗

′)
	

=
�

bσ(p⃗ ), b†
σ′ (p⃗

′)
	

=δσσ′δ
(3)(p⃗ − p⃗ ′).

▶ in „Box-Regularisierung“ wie bei Klein-Gordon-Feld

δ(3)(p⃗ − p⃗ ′)→δp⃗ ,p⃗ ′ , p⃗ ∈
2π

L
Z3
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Quantisiertes Dirac-Feld
▶ Besetzungzahl- oder Fock-Zustände: simultane Eigenzustände für

N a ,σ(p⃗ ) = a†
σ(p⃗ )aσ(p⃗ ) und N b ,σ(p⃗ ) = b†

σ(v e c p )bσ(p⃗ )
▶ Na/b ,σ(p⃗ ) ∈ {0, 1}, denn a†2

σ (p⃗ ) = 0 (wegen Antikommutatorregeln)⇒ Pauli-Verbot

�

�{Na ,σ(p⃗ ), Nb ,σ(p⃗ )}σ,p⃗

�

=
∏

σ,p⃗

a†Na ,σ(p⃗ )
σ (p⃗ )b†Nb ,σ(p⃗ )

σ (p⃗ ) |Ω〉

▶ Vakuumzustand
aσ(p⃗ ) |Ω〉= bσ(p⃗ ) |Ω〉= 0.
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Quantisiertes Dirac-Feld
▶ Energie, Impuls, Drehimpuls und Ladung
▶ Normalordnung: bringe alle Erzeugungsoperatoren nach links alle

Vernichtungsoperatoren nach rechts
▶ beinhaltet dabei das Vorzeichen der Permutation, um von ursprünglicher zur

Normalordnung zu gelangen, z.B.

: aσ(p⃗ )a
†
σ′ (p⃗

′) :=−a†
σ′ (p⃗

′)aσ(p⃗ ).

▶ Energie (Hamilton-Operator): Noether bzgl. zeitlicher Translationsinvarianz

H =

∫

R3

d3 x⃗ i :Ψ†(x )∂tΨ(x ) :=
∑

σ

∫

R3

d3p⃗ Ep [N a ,σ(p⃗ ) + N b ,σ(p⃗ )]

▶ Erhaltungsgröße
▶ positiv definit, Teilchenzahloperatoren haben die erwartete Bedeutung
▶ hätte nicht funktioniert, wenn wir bosonisch quantisiert hätten⇒ Spin-Statistik-

Theorem: ganz- (halb-) zahliger Spin⇒ Bosonen (Fermionen)

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universität Frankfurt 44



Quantisiertes Dirac-Feld

▶ Ladung
▶ Noether von globaler Phasenänderungstransformation

Q = q

∫

R3

d3 x⃗ :Ψ†Ψ := q
∑

σ

∫

R3

d3p⃗ [N a ,σ(p⃗ )− N b ,σ(p⃗ )]

▶ Übrige Erhaltungsgrößen, C, P, T⇒Übungen
▶ Ergebnis
▶ Gesamt-Energie, -Impuls, -Drehimpuls, Energieschwerpunkt:

erzeugen unitäre Darstellung der eigentlich orthochronen Poincaré-Gruppe
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