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Endlichdimensionale Darstellungen
der Lorentz-Gruppe
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

eigentlich brauchen wir unitire Darstellungen der Poincarégruppe
Raum-Zeit-Translationen: alle Felder Skalare

kanonische Feldquantisierung: iiber Energie- und Impuls via Noether
Lorentz-Gruppe: eigentliche orthochrone Lorentz-Gruppe SO(1, 3)!
diskrete Symmetrien CPT: modellabhédngig!

vV vV vy vV VY

fiir QED und QCD: mindestens Raumspiegelungs-Invarianz
(es sind aber C, P und T alle separat Symmetrien)

» schwache Wechselwirkung: verletzt alle diskreten Symmetrien bis auf CPT
(muss erfiillt sein gem&R CPT-Theorem)
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
» Lie-Algebra der SO(1,3)'

> kann alle A durch Boosts und Drehungen zusammensetzen: A = B(n, #)R(¢p, it’)
> Beweis: schreibe

A=(ey e, e, 5):

€, €y =TMun AO(]:@00>1, detf\:+1_

=u

> Boost:
Bn, )= B = coshn it sinhn _artanhe, 51— B )
nn)=b= fisinhn  (coshn—D)AAT +15)° n=artanhv, =B(—n, ),
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

> setze ii = 8,/|é,)| =

/g coshne,®—sinhnii- &
e, = = . - 2> 2\ -
=0 =0 \—sinhne,°7i +(coshn—1)(7i - &)7i + &
> setze é =0 = mit ii(ii- &) =&
|&|

coshn|é)|—e,’sinhn=0 = tanhn=—;.
€

> wegen e,°=4/1+8&; istneR = e} =(1,0,0,0)" =

a A7 A 0
N=B"A=(ep e} e5e5) = e =e;-e;=0

Kerne & Teilchen 1 Hendrik van Hees Goethe-1UIniversitit Frankfurt



Endlichdimensionale Darstellungen der Lorentz-Gruppe
> damit &;-&, =6, und & - (& x &)=detA’=1 = 3R €SO(3)

. 1 0of
-1 _

sodass R'A’=R'B'A=1,=

A= 3(77’ ﬁ)ﬁ(% ﬁ/)
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
» Infinitesimale Erzeugende (Lie-Algebra)
» endliche Boosts und Drehungen

B coshn i’ sinhn P
fisinhn  (coshn—1)AAT +1;)

1 o7
“\0 AAT+ (13— 7T )cosp +7A-Esing )’

mit
(éj)ik :Eijk :—Ejik.

> fiir kleine 61 bzw. d p ist

B=1,+i6ni-k, R=1,—isph 3.

5> (o AT . . (o 0T
k=—1dnB|,7:0=—1(ﬁ 03), sf=1d¢Rw:0=—1(6 éf)
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
» Kommutatoren (direkt nachrechnen)

~

[I:? ]% ] ubcg,c [§a,§b]=+i6ahcgc, [ka §b] [ k ]_ieabcfcc.

> Boosts bilden keine Untergruppe und sind i.a. nicht kommutativ

> Hintereinanderausfiihrung zweier drehungsfreier(!) Boosts in verschiedenen
Richtungen nicht drehungsfrei

» nur zwei Boosts in gleicher Richtung bilden abelsche Untergruppe mit

B(ny, #)B(n,, )= B(n, +ny, 7).
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

» Bestimmung der (irreduziblen) Darstellungen
> definiere ,,Pseudospins*

al = %(§j+ifcj), b :%(N—ikf)

» Kommutatoren (einfach direkt nachrechnen!)

N

[dj,(ik]zifjkldl, [dj,dk]:iejkl(jl, [ﬁj,bk]zo.

4
> = d und b erfiillen Kommutatorrelationen fiir zwei unabhingige Spins
» alle (endlichdimensionalen) irreduziblen Darstellungen aus QM bekannt:

22 _ A3 _

a |Sa’ ma) - sa(sa + ]') |Sa’ ma>’ a |Sll’ ma) - ma |SLZY ma>’

3 a

b®|sy, mp) = sp(sp +1)Isp, mp),  b|sy, my) =my sy, my)

mit s,,s,<€{0,1/2,1,3/2,...},
mge{—s,,—S,+1,...,8,—1,8,}, mye{—sy,—sp,+1,...,5,—1,5,}.
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Endlichdimensionale Darstellungen der Lorentz-Gruppe
> 0.B.d.A: wie in QM kénnen Pseudospins hermitesch gewédhlt werden:
alt=aJ, hit=pi
» entspricht unitdren Darstellungen der Drehgruppe SO(3) (ganzzahlige s, bzw. s;,)
bzw. der SU(2) (halbzahlige s, s5)
» Bestimmung der (irreduziblen) Darstellungen

> jede irreduzible Darstellung der so(1,3)! eindeutig bestimmt durch
Paar von Pseudospinquantenzahlen (s, s;,)

» dann
st=a’+b’, k!/=—i(a’—->b’)
» wirken auf Vektoren im Kronecker-Produktraum
> Basisvektoren
|mm mb) = |ma> ® |mh>
> fiir s, =0: |m,, my) =|my)
>

(84, sp)-Darstellung ist (25, + 1)(2s; + a)-dimensional
(84, Sp)-Darstellung: Rotationsuntergruppe enthilt irreduzible Spindarstellungen
se{lsy—splIsa—spl+1,-++, 8, + s} (cf. Drehimpulsaddition in QM)

v
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Endlichdimensionale Darstellungen der Lorentz-Gruppe

> §/ hermitesch = Rotationsuntergruppe der SO(1,3)" wird unitir dargestellt

> |/t =—kJ: Boosts werden nicht unitir dargestellt

> = es gibt keine endlichdimensionalen unitiren Darstellungen der SO(1,3)'
(auller der trivialen (0, 0)-Darstellung)

> fiir Spin s > 1/2:
schlieBt a priori ,relativistische Quantenmechanik“ a la 1. Quantisierung aus!

> (0,0)-Darstellung fiihrt auf Klein-Gordon-Felder/Teilchen

> vorige Vorlesung: in 1. Quantisierung keine positiv definite Ladungsdichte, die man
ala Born als Wahrscheinlichkeitsdichte interpretieren kénnte!

» ,kaonisch quantisiertes“ Klein-Gordon-Feld fiihrt auf
Vielteilchenquantentheorie fiir Spin-0-Teilchen

» Poincaré-Symmetrie (Raumzeit-Translationen und SO(1, 3)f, also Drehungen und
Boosts) als unitidre Darstellung realisiert

» diskrete Symmetrien C, P, T (nur durch schwache Wechselwirkung verletzt
» CPT fiir lokale relativistische QFTn stets Symmetrie
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Spin 1/2: Weyl- und Dirac-Fermionen

Literatur: colis, pses, weios, suot, 1L191]
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Spin-1/2-Darstellungen
» einfachste Darstellungen mit Spin 1/2: (1/2,0) und (0,1/2)
» enthalten nur Spin 1/2
» im Folgenden: (1/2,0)-Darstellung linkshdndige Weyl-Spinoren
(0,1/2)-Darstellung rechtshiandige Weyl-Spinoren
» Linkshédndige Weyl-Spinoren
> Generatoren fiir Boosts und Drehungen:

C1 , S ,
al=-67, b'=0=>kl=—06’/, §'=-6'.
2

0 1 0 —i 1 0
Al _ A2 _ 43—

> Eigenschaften der Pauli-Matrizen (direkt nachrechnen)

» Pauli-Matrizen

¢l'=0l, moi=0, [6/,0F]=2icMe!, {6/,6"}=267% Tr6I6%)=26.
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Spin-1/2-Darstellungen
» Endliche Boosts und Drehungen

> Boosts und Drehungen = wegen (7 - &)? = 12 = 1 kann Exponentialreihe leicht
ausgewertet werden:

Dy =exp(inii - IcL) exp(gfi Fos =lzcosh(g)+ﬁ smh(g)
DR_L:exp(—iwﬁ-?L)zexp(—i%ﬁ-é)zlzcos(%)—iﬁ-f}sin(g)

» Rechtshidndige Weyl-Spinoren
> Generatoren fiir Boosts und Drehungen:

al=0, bi= %af S k=1iol s=lol.
» Boosts und Drehungen
Dg r = expl(init - kR) exp( -
DR,R:exp(—i(pfi-?R)zexp(—i%fiff)=lzcos(%)—iﬁ-gsin(g).
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Spin-1/2-Darstellungen

» Raumspiegelungen: Paritit

Kerne & Teilchen 1

>

>

elektromagnetische und starke Wechselwirkungen: spiegelsymmetrisch = brauche
Raumspiegelungen als Symmetrieoperator

nehme an, P = diag(1,—1,—1,—1) = P~ wird in Darstellungen linear (im
Feldformalismus unitér) dargestellt

DpD(A)D,' =D(PAP)

fiir infinitesimale Boosts und Drehungen (direkt nachrechnen)

pkp=—Fk, Pp=%

Anschaung: Boost in Richtung von Relativgeschwindigkeit zwischen
Y
Inertialsystemen = k transformiert sich unter Spiegelungen wie Geschwindigkeiten

= = = .
U — —U = k ist polarer Vektor
§ transformiert sich wie Drehimpuls I = ¥ x p — +L = § ist axialer Vektor

Hendrik van Hees Goethe-Universitit Frankfurt 16



Spin-1/2-Darstellungen
» Paritdt und Weyl-Spinoren

> Verhalten unter Raumspiegelungen wie fiir Operatoren im Minkowski-Raum
(,fundamentale Darstellung*)

o A al N . L, 5 Al . L 2 -
DpDg gDy '= Dp exp(inii - kL/R)Dp '= exp(—in7i - kyg) = exp(+in#i - kg,1.)

> fiir Theorien mit Raumspiegelsymmetrien braucht man Spinorfelder mit rechts-
und linkshidndigen Weyl-Spinoren

> irreduzible Darstellung mit Spin 1/2 fiir SO(1,3)" und P = 0(1,3)": (1/2,0)®(0,1/2)

» vierkomponentige Bispinoren = Dirac-Spinoren

Y A Y 0 1 50
o) o= oer

» Raumspiegelung vertauscht links- und rechtshdndige Weyl-Spinoren
> wie bei Hinden: im Spiegel wird eine linke zu einer rechten Hand
> Eigenschaft wird ,Héndigkeit“ oder Chiralitdt genannt
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Spin-1/2-Darstellungen

» Generatoren fiir Lorentz-Transformationen fiir Dirac-Spinoren
2 _if=6 0) - _1(3 0
P72lo0 &) P 2\0 &)

S07t 20 _ 7 At 5
ykf; =kp, ysy sgst.

» Pseudo-Hermitezitit:

» endliche Boosts und Drehungen pseudo-unitir:

N .

7D} 57 = 7" expl—if] - kp)f® = exp(—i - kp) = Dy},
13- $)7° =exp(i@ - $) =Dy 1.

» Dirac-Darstellung aller Lorentz-Transformationen pseudounitir

» Paritit:
— (?0)3 — 0 — D"—l .
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Spin-1/2-Darstellungen
» Invariante Sequilinear-Formen
» um Lagrangians fiir freie Weyl- oder Dirac-Felder zu konstruieren => benétige
Sesquilinear-Formen aus Spinoren, die sich wie Lorentz-Skalare bzw. -Tensoren
transformieren
> miissen Ableitungen J, enthalten, das sich wie (kovariante) Vektorkomponenten

Transformiert
» Transformationsverhalten von adjungierten Weyl-Spinoren

> Boosts = wegen /T =& /:
= 3 = 3
YR —B) exp(ﬂ:r]n 'U)lPL/R = 1/)£/R —B) l/)LR exp (ﬂ:r)n . 0').
> invariant (,skalar*) sind also Ausdriicke wie '}y, und 1y,
> fiir Dirac-Spinoren ist _
0w = 0w

Skalar unter Boosts

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 19



Spin-1/2-Darstellungen

> Drehungen
Y —exp (—ip#-3)yir = l/JI/R Y lPI/R exp(+ipii-G).

> alle Kombinationen von links- und rechtshindigen Weyl-Spinoren "1 sind , skalar
unter Drehungen®, also auch diejenigen, die auch Skalare unter Boosts sind

> Vierervektoren
> fiir Weylspinoren beider Art

Vektor unter Drehungen
> Beweis (es geniigen infintesimale Trafos!): mit 6§ =76 ¢

6V =8¢ [0%,8]w =54V

> fiir Boosts: brauche vierte , Pauli-Matrix,, 6° als ,Zeitkomponente* = éndert sich
nicht unter Drehungen = 6° =1,
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Spin-1/2-Darstellungen

Kerne & Teilchen 1

> betrachte

L/R wL/R( 3.) wL/R

transformiert sich als Vektor unter Drehungen (s.o.)
infinitesimaler Boost: 67j = dnii

5V’u ( _)) z( i ‘
Un =i ) VIR 287V

infinitesimaler Lorentz-Boost = 1z =*1.

es sind also
1, 1,
zp{( &)wL, Yh (_3)¢R

Vierervektoren

Hendrik van Hees Goethe-UIniversitit Frankfurt
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Spin-1/2-Darstellungen
» Dirac-Spinoren
o' o =yf° U=e UP'D
(diag(é,—é)) 7 (diag(é,—é)) a
» Dirac-Matrizen (chirale Darstellung)
o [0 1) i of6) o0\ [0 -6/
Y‘(ﬂzo’y‘Yo—a—f_c}f 0o/
> Eigenschaften der Dirac-Matrizen

N 0 .

ror=9°  pif=—pl, {p#,77} =20

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Spin-1/2-Darstellungen
» Lorentz-kovariante Sesquilinearformen
» Transformationsverhalten mit Dirac-Matrix-Algebra und Pseudounitaritét aller
Lorentz-Transformationen und Raumspiegelungen (also alle Dirac-
Darstellungsmatrizen der O(1,3)"):
V=D, p¥ = ¥ =0'Df 7 =07"Df 7°=TD.].
> Skalar: U o B
VW =UD, | Dy p¥ = 0.
> Vierervektor U7+
U710 =D, L7 Dy o
> = Transformationsverhalten der Dirac-Matrizen
ADTMDAD A ?v
> Tensoren hoherer Stufe (Bsp. zweiter Stufe)
D/;]ID?H?VEA,D AD?’”DAD DYVDAD_AH A 7P 77

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Spin-1/2-Darstellungen

» Irreduzible Teile

>
>

Kerne & Teilchen 1

aus W lassen sich offenbar 4 x 4 = 16 unabhiingige Sesquilinearformen iy bilden
fiir Lagrangian: reelle Sesquilinerformen = I' pseudo-hermitesch:

@0y =W T =Ty 0Ty e = Ty 10w = T,
bereits identifiziert: Skalar (1) und Vierervektor (4)
Tensor 2. Stufe: Zerlegung in symmetrischen und antisymmetrischen Teil

[7.77]=g""—ic""

symmetrischer Teil gibt wieder Skalar
antisymmetrischer Teil ist unabhéngig von Skalar und Vektor
= antisymmetrischer Tensor 2. Stufe (6 unabhéngige Komponenten)

i . _ _
oM = E[f“,yﬂ], Py =61 = WU = (W6H D)

Hendrik van Hees Goethe-Universitit Frankfurt 24



Spin-1/2-Darstellungen

> Tensor 3. Stufe: y#y”y?
> kann nur neues geben, wenn alle drei Indizes verschieden sind. Andernfalls wegen
Antivertauschbarkeit von Diracmatrizen mit verschiedenen Indizes und (7#)? = +1 nur
wieder Vektor
> Falls alle 3 Indizes verschieden = total antisymmetrischer Tensor
» umbkehrbar eindeutig auf Axial-Vektor abbildbar

Ar= €Wp077v77p770 =fte” pUTaTv7P70

> definiere
L 0l a2n i . . (-1, ©
— P 7 P00 = PofaTets = =707 7270 = —ifs = 75 =—ip'7' P20 = °
4! 0 1,

> Da 7 wie Vektor transformiert (auch unter Spiegelungen) aber e#*? zwar invarianter
Tensor unter SO(1, 3)-Trafos ist, aber unter Spiegelungen wegen det 2 = —1 Vorzeichen
wechselt, transformiert 75 unter SO(1, 3)-Trafos wie Skalar, wechselt aber Vorzeichen
unter Spiegelungen = 75 ist Pseusoskalar

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Spin-1/2-Darstellungen

> Eigenschaften

(if’s)f = _175: ?O(if’s)WO = if’sr ?§ =1, f)P,Df’sDP,D = 70?57’0 = _?Sr ?57ﬂ = _77”?5-

» Projektion auf links- und rechtshdndige Anteile des Dirac-Spinors

1-7° (1o O\(yu)_(¥u)_, 170, (0 o) wi)_(0)_
(o sl (5)e S L))

» damit alle 16 reellen irreduziblen Lorentz-kovarianten Sesquilinearformen:

W : Skalar (1 Komponente)

iU7;W: Pseudoskalar (1 Komponente)

U7HW:  Vierervektor (4 Komponenten)

U757  Pseudovierervektor (4 Komponenten)

WM antisymmetrischer Tensor 2. Stufe (6 Komponenten)

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt
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Spin-1/2-Darstellungen

> fiir spater wichtig: endlicher Boost in Dirac-Matrizenschreibweise

« L, 5
Dgp =exp(inn - kp)

_ (cosh(n/2)1, +sinh(n/2)i - & 0
B 0 cosh(n/2)1, —sinh(n/2)f - &
Upl,+U -6 0 cosh(n/2)
— a0 _ 0+L2 . —
ury ( 0 Uoﬂz—U-é) u (ﬁsinh(n/z))

cosh(n/2) )

DA = o0 i =
o =Uuy"y” mit U (ﬁsinh(n/z)
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Spin-1/2-Darstellungen

» Aquivalente Darstellungen der Dirac-Algebra

>

Kerne & Teilchen 1

die Antikommutatorrelationen {)"“, ?"} =2n""” bleiben unter beliebigen
Ahnlichkeitstransformationen erhalten: 7% = T7# 7!

. . . N > EN . Y a
damit Relationen zwischen 6" und kp und §, so erhalten bleiben, dass s, unitar

3 N A

und kp antiunitér bleibt = 7' = U muss unitir sein
neue Dirac-Spinoren: ¥ = U W

andere verbreitete Konventionen

>
>

unsere bislang verwendete chirale Darstellung ist Konvention wie in [1191]
Konvention fiir chirale Darstellung in z.B. (psos): U = 7°

~0 N

7'=7° Fl=—p, Fs=—Fs

»Standarddarstellung® (z.B. [Bpes))

S 1 (1, 1,) L, (1, o0 (o e
U‘,/z(nz —112)’ "=lo -1,)) "7\=6i o777

Vorteil: Paritdtseigenzustdnde
= die beiden oberen (unteren) Spinkomponenten entsprechen Paritit +1 (-1)

Hendrik van Hees Goethe-UIniversitit Frankfurt 28



Spin 1/2 + Paritit:
Quantisiertes Dirac-Feld

Literatur: colis, pses, weios, suot, 1L1o1]

Kerne & Teilchen 1
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Quantisiertes Dirac-Feld

> historische Idee Diracs: finde Wellengleichung mit nur 1. Ableitungen

> Motivation: 16st Problem mit nicht positiv definierter erhaltener Ladung (wie bei
nichtrelativistischer Schrédinger-Gleichung!)

» moderner Zugang: verwende obige Analyse der Darstellungen der O(1,3)!
» such reelle Lagrangefunktion fiir freies Diracfeld ¥ mit nur einer Ableitung

» Raumspiegelung P soll Symmetrie sein

> zur Verfiigung stehen die reellen Sesquilinearformen und der Einteilchen-Energie-
Impulsoperator id,

> man kann nur den Vektorstrom mit dem polaren Vektor ig, ,liberschieben®; mit
Axialvektor wére .Z nicht spiegelsymmetrisch

> antisymmetrischer Tensor scheidet aus, weil man zusammen mit nur einem g,
keinen Skalar erzeugen kann

> fiir von g, freie Terme kommt nur der Skalar in Frage; Pseudoskalar bricht wieder
Spiegelsymmetrie

i—  — _
%= 51117"“ 0, ¥—muy

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt 20



Quantisiertes Dirac-Feld

Kerne & Teilchen 1

>

niitzliche Abkiirzung: Feyman-Dolch mit beliebigen Vektoren oder
Vektoroperatoren: A, * = A oder 37" = d
Feldgleichungen: Variiere & und ¥ als unabhingige Felder (fiir die 2 x 4 reellen
Feldfreiheitsgrade)
= freie Dirac-Gleichung

(id —m)v=0.

Gleichung fiir Dirac-adjungierte Funktion: adjungiere zunéchst Dirac-Gleichung

—

UH—d" —m)=0 =2 y°=id" —m)=0 = Ty°(=id" —m)y* =T(—id —m)=0.
impliziert auch Giiltigkeit der Klein-Gordon-Gleichung:
(id + m)id —m)¥ =—(3@° + m*)¥ =—@+ m*) W =0.

= quantisierte Theorie beschreibt
Spin-1/2=Teilchen und die dazugehorigen Antiteilchen mit Masse m.

Hendrik van Hees Goethe-Universitit Frankfurt 21



Quantisiertes Dirac-Feld

> auler Raum-Zeit-Symmetrien (s. nichste Ubung!) Lagrangian auch
invariant unter globalen Phasendnderungen

W =exp(—iga)¥, ¥ =exp(+iga)¥

v

dazugehdoriger erhaltener Noether-Strom

J*=quyrtu.

v

checke Kontinuititsgleichung

8, j" = q[¥r* 8, +(8,7"%)¥] = qU(—im +im)¥ =0.

v

j%=q¥y°W = qU' W fiir g > 0 positiv definit = Diracs Idee hat funktioniert
ABER: Probleme mit negativen Energien wie bei Klein-Gordon-Feld
daher Feldquantisisierung

vy
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Quantisiertes Dirac-Feld

» Hamilton-Formalismus fiir ,klassische“ Dirac-Feld
> vereinfacht sich mit etwas abgednderter Lagrange-Dichte

L =0(id —m)¥

> dquivalent, weil Wirkung ungeédndert, denn
i =
L= +30, (Tytw)

> unterscheidet sich nur um Viererdivergenz von der Form QX(, )
> mit ¥’ nur ein von 0 verschiedener Feldimpuls

/

M=
O

=iwy’ =iw'

» Hamilton-Dichte
S =10,V — < =i0y°0,¥— L' =—00;#/V + mI¥

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt

22



Quantisiertes Dirac-Feld
> mit Dirac-Gleichung
i(7°0, +7/0))U=m¥ = (—ig;y + m)¥ =iy°0,¥ = # =i0y°0,¥ =i¥'5,V.

> Quantisierung als Fermionen = gleichzeitige kanonische Antikommutatoren:

{"I’a(t)z)v"l‘b(t’y))} =0, {q’u(t’x))’nb(t’ j})} =i{q’a(t,f),q’2(f»?)} 215(3)(3—5_5})-

> entwickele wieder nach Modenfunktionen positiver und negativer Frequenz (in
manifest kovarianter Form)

1
Uy o(®) = ————up(Bexpl—ip-2)|
pol¥)= e, PP X))
pO=E,
‘Gaa(x)=;va(ﬁ)exp(+ip-x) . E,=Jm’+p?
T (/enp2E, = P
-p

> u.(p)und v,(p) geeignete Dirac-Spinoren, o € {1/2,—1/2}: Spin-Freiheitsgrade

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Quantisiertes Dirac-Feld

> wende gleich Feynman-Stiickelberg-Trick an: Moden mit positiver (negativer) Frequenz
mit Vernichtern a(, o) (Erzeugern b' (B, o)
> dabei o €{1/2,—1/2} fiir §3-Eigenwerte

xf Z[a«f Up.o(2)+b] (B)Vj o (x)]

> Dirac-Gleichung: Teilchen- bzw. Antiteilchen-Dirac-Spinoren
(im Folgenden immer ,on-shell-Bedingung® p° = E,!)

(p—m)u,(p)=0, (p+m)v,(P)=0.

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt 5



Quantisiertes Dirac-Feld
» Wigner-Basis (wigs)

Kerne & Teilchen 1

>

v

VVYy VVYYVY

irreduzible Darstellung der O(1,3)" = kann alle Zustinde zu p mit p - p = m? >0,
also p° = E,, durch Boosts aus den Zusténden zu p = 0 erreichen:

(E,,)_B(m)_(coshn sinhn i’ )(m)_( mCOSth)
p) "\0) \sinnit (coshn—DAAT+1;, ~ \ msinhni
Setze it = p/|p| = n = artanh(|p|/E,) > 0
Lose Gleichungen fiir die Dirac-Spinoren u,(p) und v,(p) bei p =0
definiere dann

us(p)= ﬁB,D uu‘(a)! ve(P)= DB,D Vo‘(a)-

da Drehungen p =0 unge’cindert lassen = Drehungen Standuntergruppe
»Wigner’s little group ‘ fiir massive Darstellungen m>0

wihle ug(O) und UU(O) als Elgensplnoren zu sD mit Eigenwerten o = £1/2
dann nur diese Zustinde zu p = 0 haben definite spin-z-Komponente

da kD nicht mit §3 vertauschen ist das nicht der Fall fiir die Zustinde mit p # 0
Spin als 1ntr1n51sche Teilcheneigenschaft: definiert im Ruhsystem des Teilchens!

Hendrik van Hees Goethe-UIniversitit Frankfurt
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Quantisiertes Dirac-Feld
» Konstruktion der u,(p) und v, (p)
> Gleichungen fiir beliebige p mit p* = m*:
(p —mus(p)=0, (p+m)v,(p)=0.

> Gleichungen fiir p=0= p=(m,0,0, o)’

1ty 0)=u,(0), 1°v,(0)=—v,(0),

» im Ruhsystem des Teilchens: Teilchen (Antiteilchen) haben Paritédt 1 (—1)
> bestimme die linear unabhingigen Losungen als Eigenspinoren von §3:

1 0
o) =V | | =V ,041/2), uye®)=vim| | | = vmu(o,-172),
0 1
1 0
vp@=vm| ° | =m0 +1/2), vp@=vm| | =V, 0
0 Goelhe-lIniversi;ll%ankfurt 27
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Quantisiertes Dirac-Feld
» Boost zu p # 0-Zustinden
> boost um 1) =artanh(|p|/E,) in Richtung von 7i = p /| p|

Uy (B)= Dy ptie(B)= Ur°us(0) = ¥ us(0),
Ua(ﬁ) = DB,D VU’(ﬁ) = wTO Va’(a = _wva(a)r

cosh(n/2)
sinh(n/2)#

> driicke Hyperbelfunktionen mit E, und | Pl aus

E, 1+coshn E,+m
hn=—2=2cosh?(n/2)—1 h 22% =Q a )
coshn - cosh”(n/2) = cosh(n/2) 5 ™
E coshn—1 E,—m
hn=—2=1+2sinh?*(n/2 inh 2:% =\J P,
coshn = sinh“(n/2) = sinh(n/2) 5 ™
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Quantisiertes Dirac-Feld
> NB:

> Rechnung fiir u,(p):

‘/Z(E +m) =Pl

=1 2(E (m+pu (0,0)
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Quantisiertes Dirac-Feld
> analoge Rechung fiir v, (p):

1

v (P)= m(m—p)vf,(&a)

» Pseudoorthogonalitédtsrelationen

( )ua’( )= 2m50,0” Va(ﬁ)va’(ﬁ)z_zmao,a’»
uo(p)va’( )_vo(ﬁ)ua’(ﬁ)zo;

uqs(p )ua'/( )=2Eb44, Ua(ﬁ)fvo’(ﬁ)=2E5aa’r
ua(P)TV(—P,U’)z V(r(ﬁ)Jr ua’(_ﬁ)z 0.
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Quantisiertes Dirac-Feld
» Spinsummen: Definiere
AP)= ueBVie(B),  B(B)=_ ve(B)T(P).
g g
» Wirkung auf Basis (u,(p), v, (p): verwende Pseudoorthogonalititsrelationen und

=mug(P), pro(P)=—muy(p)

Puo(p)=
A(ﬁ)ua’ ﬁ)zzuazm‘sma’zzmua’(ﬁ)z(p+m)ua’( )
A(ﬁ)va"(ﬁ): :(FH‘m)Ua/( )
B(P)ug (B)=0=(p— m)uq(p)
B(B)vo(B) == 0(P)2M8 g 0 =—2m 15 () = (p — M) (B);

=
AP)=D us(P)ig(B)=p+m, Zvc, JUo(B)=p—m,
A(ﬁ)—ﬁ’(ﬁ)=2[ua(ﬁ)ﬁg(ﬁ)—vg(p)vg(p)]=2m14

Hendrik van Hees
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Quantisiertes Dirac-Feld

» Orthonormiertheit der Modenfunktionen
(Up.00 Upro) = J 3 & RUS ,(DUpo/(2) = 5506 (B—P),
R
(Vsor Vo) = fRB &ERUY () Uy 0/(2) = 660/ 5V(B—B),
(Voo Upro) = (Upro0, Vo) = J 3 &2V (1)Up o (x)=0.
R

» damit und gleichzeitigen Antikommutaturrelationen der quantisierten Dirac-Felder

> in ,Box-Regularisierung“ wie bei Klein-Gordon-Feld

5(3) =3 =2/ —>5* S = _ZS
(P—p)—0pp PET
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Quantisiertes Dirac-Feld

> Besetzungzahl- oder Fock-Zustidnde: simultane Eigenzustidnde fiir
Na,a(ﬁ) = a:r;(ﬁ)aa(ﬁ) und Nb,a(ﬁ) = b;(ve Cp)ba(ﬁ)
> Nu/po(P)€{0,1}, denn a’f( P) =0 (wegen Antikommutatorregeln) = Pauli-Verbot

{{(Na.o (B), Nio (B} ) ]_[a*Nw (B)bLN P () 1)

» Vakuumzustand
a,(P)I) =b,(P)I) =

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt 43



Quantisiertes Dirac-Feld
» Energie, Impuls, Drehimpuls und Ladung

» Normalordnung: bringe alle Erzeugungsoperatoren nach links alle
Vernichtungsoperatoren nach rechts

> beinhaltet dabei das Vorzeichen der Permutation, um von urspriinglicher zur
Normalordnung zu gelangen, z.B.

ra,(Plal, (B):=—al,(B)as(P).

> Energie (Hamilton-Operator): Noether bzgl. zeitlicher Translationsinvarianz
H =f 3w (00, 9(x) =D f dBE[N1,0(B)+ N (D)
R3 o JR3

» Erhaltungsgrole

> positiv definit, Teilchenzahloperatoren haben die erwartete Bedeutung

> hitte nicht funktioniert, wenn wir bosonisch quantisiert hatten = Spin-Statistik-
Theorem: ganz- (halb-) zahliger Spin = Bosonen (Fermionen)

Kerne & Teilchen 1 Hendrik van Hees Goethe-Universitit Frankfurt

a4



Quantisiertes Dirac-Feld

» Ladung
> Noether von globaler Phasendnderungstransformation

Q:qJ dsjc';llﬂlll ::qZJ dsﬁ[Na,u’(ﬁ)_Nb,U(ﬁ)]
R3 o JR3
» Ubrige Erhaltungsgréen, C, B, T = Ubungen

> Ergebnis

> Gesamt-Energie, -Impuls, -Drehimpuls, Energieschwerpunkt:
erzeugen unitédre Darstellung der eigentlich orthochronen Poincaré-Gruppe
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