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Endlichdimensionale Darstellungen der Lorentz-Gruppe

• eigentlich brauchen wir unitäre Darstellungen der Poincarégruppe

• Raum-Zeit-Translationen: alle Felder Skalare

• kanonische Feldquantisierung: über Energie- und Impuls via Noether

• Lorentz-Gruppe: eigentliche orthochrone Lorentz-Gruppe SO(1, 3)↑

• diskrete Symmetrien CPT: modellabhängig!

• für QED und QCD: mindestens Raumspiegelungs-Invarianz (es sind aber
C, P und T alle separat Symmetrien)

• schwache Wechselwirkung: verletzt alle diskreten Symmetrien bis auf CPT
(muss erfüllt sein gemäß CPT-Theorem)

• Lie-Algebra der SO(1, 3)↑

– kann alle Λ̂ durch Boosts und Drehungen zusammensetzen: Λ̂ =
B̂ (η, n⃗ )R̂ (ϕ, n⃗ ′)

– Beweis: schreibe

Λ̂= (e 0, e 1, e 2, e 3):

e µ · e ν =ηµν, Λ0
0 = e 0

0 > 1, det Λ̂=+1.

– Boost:

B̂ (η, n⃗ )≡ B̂ =

�

coshη n⃗ T sinhη

n⃗ sinhη (coshη−1)n⃗ n⃗ T +13

�

, η= artanh v, B̂−1 = B̂ (−η, n⃗ ),

B̂−1Λ̂= (B̂−1e 0, B̂−1e 1, B̂−1e 2, B̂−1e 3)

– setze n⃗ = e⃗0/|e⃗0| ⇒

e ′0 = B̂−1e 0 =

�

coshηe 0
0 − sinhηn⃗ · e⃗0

−sinhηe 0
0 n⃗ + (coshη−1)(n⃗ · e⃗0)n⃗ + e⃗0

�

.

– setze e⃗ ′0 = 0⇒mit n⃗ (n⃗ · e⃗0) = e⃗0

coshη|e⃗0| − e 0
0 sinhη= 0 ⇒ tanhη=

|e⃗0|
e 0

0

.
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– wegen e 0
0 =
q

1+ e⃗ 2
0 ist η ∈R⇒ e ′0 = (1, 0, 0, 0)T ⇒

Λ̂′ = B̂−1Λ̂=
�

e ′0, e ′1, e ′2, e ′3
�

⇒ e ′j
0 = e ′0 · e

′
j = 0

– damit e⃗ j · e⃗k =δ j k und e⃗1 · (e⃗2× e⃗3) = det Λ̂′ = 1 ⇒ ∃R̂ ∈ SO(3)

R̂−1 =

�

1 0⃗T

0⃗ R̂−1

�

,

so dass R̂−1Λ̂′ = R̂−1B̂−1Λ̂=14⇒

Λ̂= B̂ (η, n⃗ )R̂ (ϕ, n⃗ ′).

• Infinitesimale Erzeugende (Lie-Algebra)

– endliche Boosts und Drehungen

B̂ =

�

coshη n⃗ T sinhη

n⃗ sinhη (coshη−1)n⃗ n⃗ T +13

�

, R̂ =

�

1 0⃗T

0⃗ n⃗ n⃗ T + (13− n⃗ n⃗ T )cosϕ+ n⃗ · ˆ⃗εsinϕ

�

.

mit
(ε̂ j )i k = εi j k =−ε j i k .

– für kleine δη bzw. δϕ ist

B̂ =14+ iδηn⃗ · ˆ⃗k , R̂ =14− iδϕn⃗ · ˆ⃗s .

mit

k⃗ =−idηB̂ |η=0 =−i

�

0 n⃗ T

n⃗ 03

�

, ŝ j = idϕR̂ϕ=0 =−i

�

0 0⃗T

0⃗ ε̂ j

�

– Kommutatoren (direkt nachrechnen)
�

k̂ a , k̂ b
�

=−iεa b c ŝ c ,
�

ŝ a , ŝ b
�

=+iεa b c ŝ c ,
�

k̂ a , ŝ b
�

=
�

ŝ a , k̂ b
�

= iεa b c k̂ c .

– Boosts bilden keine Untergruppe und sind i.a. nicht kommutativ

– Hintereinanderausführung zweier drehungsfreier(!) Boosts in ver-
schiedenen Richtungen nicht drehungsfrei

– nur zwei Boosts in gleicher Richtung bilden abelsche Untergruppe
mit

B̂ (η1, n⃗ )B̂ (η2, n⃗ ) = B̂ (η1+η2, n⃗ ).
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• Bestimmung der (irreduziblen) Darstellungen

– definiere „Pseudospins“

â j =
1

2

�

ŝ j + ik̂ j
�

, b̂ j =
1

2

�

ŝ j − ik̂ j
�

– Kommutatoren (einfach direkt nachrechnen!)

�

â j , â k
�

= iε j k l â l ,
�

â j , â k
�

= iε j k l â l ,
�

â j , b̂ k
�

= 0.

– ⇒ ˆ⃗a und ˆ⃗b erfüllen Kommutatorrelationen für zwei unabhängige
Spins

– alle (endlichdimensionalen) irreduziblen Darstellungen aus QM be-
kannt:

ˆ⃗a 2 |sa , ma 〉= sa (sa +1) |sa , ma 〉 , â 3 |sa , ma 〉=ma |sa , ma 〉 ,
ˆ⃗b 2 |sb , mb 〉= sb (sb +1) |sb , mb 〉 , b̂ 3 |sb , mb 〉=mb |sb , mb 〉

mit sa , sb ∈ {0, 1/2, 1, 3/2, . . .},
ma ∈ {−sa ,−sa +1, . . . , sa −1, sa }, mb ∈ {−sb ,−sb +1, . . . , sb −1, sb }.

– o.B.d.A: wie in QM können Pseudospins hermitesch gewählt wer-
den: â j † = â j , b̂ j † = b̂ j

– entspricht unitären Darstellungen der Drehgruppe SO(3) (ganzzah-
lige sa bzw. sb ) bzw. der SU(2) (halbzahlige sa , sb )

• Bestimmung der (irreduziblen) Darstellungen

– jede irreduzible Darstellung der so(1, 3)↑ eindeutig bestimmt durch
Paar von Pseudospinquantenzahlen (sa , sb )

– dann
ŝ j = â j + b̂ j , k̂ j =−i(â j − b̂ j )

– wirken auf Vektoren im Kronecker-Produktraum

– Basisvektoren
|ma , mb 〉= |ma 〉⊗ |mb 〉

– für sb = 0: |ma , mb 〉 ≡ |ma 〉
– (sa , sb )-Darstellung ist (2sa +1)(2s1+a )-dimensional
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– (sa , sb )-Darstellung: Rotationsuntergruppe enthält irreduzible Spin-
darstellungen s ∈ {|sa − sb |, |sa − sb |+1, · · · , sa + sb } (cf. Drehimpul-
saddition in QM)

– ŝ j hermitesch⇒Rotationsuntergruppe der SO(1, 3)↑wird unitär dar-
gestellt

– k̂ j † =−k̂ j : Boosts werden nicht unitär dargestellt

– ⇒ es gibt keine endlichdimensionalen unitären Darstellungen der
SO(1, 3)↑ (außer der trivialen (0, 0)-Darstellung)

– für Spin s ≥ 1/2: schließt a priori „relativistische Quantenmecha-
nik“ a la 1. Quantisierung aus!

– (0, 0)-Darstellung führt auf Klein-Gordon-Felder/Teilchen

– vorige Vorlesung: in 1. Quantisierung keine positiv definite Ladungs-
dichte, die man à la Born als Wahrscheinlichkeitsdichte interpretie-
ren könnte!

• „kaonisch quantisiertes“ Klein-Gordon-Feld führt auf Vielteilchenquan-
tentheorie für Spin-0-Teilchen

• Poincaré-Symmetrie (Raumzeit-Translationen und SO(1, 3)†, also Drehun-
gen und Boosts) als unitäre Darstellung realisiert

• diskrete Symmetrien C , P , T (nur durch schwache Wechselwirkung ver-
letzt

• C P T für lokale relativistische QFTn stets Symmetrie

2 Spin 1/2: Weyl- und Dirac-Spinoren

Spin 1/2: Weyl- und Dirac-
Fermionen

Literatur: [Col18, PS95, Wei95, SU01, LL91]
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Spin-1/2-Darstellungen

• einfachste Darstellungen mit Spin 1/2: (1/2,0) und (0,1/2)

• enthalten nur Spin 1/2

• im Folgenden: (1/2,0)-Darstellung linkshändige Weyl-Spinoren (0,1/2)-
Darstellung rechtshändige Weyl-Spinoren

• Linkshändige Weyl-Spinoren

– Generatoren für Boosts und Drehungen:

â
j

L =
1

2
σ̂ j , b̂

j
L = 0 ⇒ k̂

j
L =−

i

2
σ̂ j , ŝ j =

1

2
σ̂ j .

– Pauli-Matrizen

σ̂1 =

�

0 1
1 0

�

, σ̂2 =

�

0 −i
i 0

�

, σ̂3 =

�

1 0
0 −1

�

.

– Eigenschaften der Pauli-Matrizen (direkt nachrechnen)

σ̂ j † = σ̂ j , Trσ̂ j = 0,
�

σ̂ j ,σ̂k
�

= 2iε j k l σ̂l ,
�

σ̂ j ,σ̂k
	

= 2δ j k , Tr(σ̂ j σ̂k ) = 2δ j k .

• Endliche Boosts und Drehungen

– Boosts und Drehungen⇒ wegen (n⃗ · ˆ⃗σ)2 = n⃗ 2 = 1 kann Exponenti-
alreihe leicht ausgewertet werden:

D̂B ,L = exp(iηn⃗ · ˆ⃗kL) = exp
�η

2
n⃗ · ˆ⃗σ
�

=12 cosh
�η

2

�

+ n⃗ · ˆ⃗σsinh
�η

2

�

,

D̂R ,L = exp(−iϕn⃗ · ˆ⃗sL) = exp
�

−i
ϕ

2
n⃗ · ˆ⃗σ
�

=12 cos
�ϕ

2

�

− in⃗ · ˆ⃗σsin
�ϕ

2

�

.

• Rechtshändige Weyl-Spinoren

– Generatoren für Boosts und Drehungen:

â
j

L = 0, b̂
j

L =
1

2
σ̂ j ⇒ k̂

j
R =+

i

2
σ̂ j , ŝ

j
R =

1

2
σ̂ j .
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– Boosts und Drehungen

D̂B ,R = exp(iηn⃗ · ˆ⃗kR) = exp
�

−
η

2
n⃗ · ˆ⃗σ
�

=12 cosh
�η

2

�

− n⃗ · ˆ⃗σsinh
�η

2

�

,

D̂R ,R = exp(−iϕn⃗ · ˆ⃗sR) = exp
�

−i
ϕ

2
n⃗ · ˆ⃗σ
�

=12 cos
�ϕ

2

�

− in⃗ · ˆ⃗σsin
�ϕ

2

�

.

• Raumspiegelungen: Parität

– elektromagnetische und starke Wechselwirkungen: spiegelsymme-
trisch⇒ brauche Raumspiegelungen als Symmetrieoperator

– nehme an, P̂ = diag(1,−1,−1,−1) = P̂ −1 wird in Darstellungen line-
ar (im Feldformalismus unitär) dargestellt

– D̂P D̂ (Λ̂)D̂ −1
P = D̂ (P̂ Λ̂P̂ )

– für infinitesimale Boosts und Drehungen (direkt nachrechnen)

P̂ ˆ⃗k P̂ =− ˆ⃗k , P̂ ˆ⃗s P̂ = ˆ⃗s

– Anschaung: Boost in Richtung von Relativgeschwindigkeit zwischen

Inertialsystemen⇒ ˆ⃗k transformiert sich unter Spiegelungen wie Ge-

schwindigkeiten v⃗ →−v⃗ ⇒ ˆ⃗k ist polarer Vektor ˆ⃗s transformiert sich
wie Drehimpuls L⃗ = x⃗ × p⃗ →+L⃗ ⇒ ˆ⃗s ist axialer Vektor

• Parität und Weyl-Spinoren

– Verhalten unter Raumspiegelungen wie für Operatoren im Minkow-
ski-Raum („fundamentale Darstellung“)

D̂P D̂B ,R/LD̂ −1
P = D̂P exp(iηn⃗ · ˆ⃗kL/R)D̂

−1
P = exp(−iηn⃗ · ˆ⃗kL/R) = exp(+iηn⃗ · ˆ⃗kR/L)

– für Theorien mit Raumspiegelsymmetrien braucht man Spinorfel-
der mit rechts- und linkshändigen Weyl-Spinoren

– irreduzible Darstellung mit Spin 1/2 für SO(1, 3)↑ und P̂ ⇒ O(1, 3)↑:
(1/2, 0)⊕ (0, 1/2)

– vierkomponentige Bispinoren =Dirac-Spinoren

Ψ =

�

ψL

ψR

�

, D̂PΨ =

�

ψR

ψL

�

=

�

0 1
1 0

�

Ψ = γ̂0Ψ
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– Raumspiegelung vertauscht links- und rechtshändige Weyl-Spino-
ren

– wie bei Händen: im Spiegel wird eine linke zu einer rechten Hand

– Eigenschaft wird „Händigkeit“ oder Chiralität genannt

• Generatoren für Lorentz-Transformationen für Dirac-Spinoren

ˆ⃗kD =
i

2

�

− ˆ⃗σ 0
0 ˆ⃗σ

�

, ⃗̂sD =
1

2

�

ˆ⃗σ 0
0 ˆ⃗σ

�

.

• Pseudo-Hermitezität:

γ̂0 ˆ⃗k †
Dγ̂

0 = ˆ⃗kD, γ̂0 ˆ⃗s †
Dγ̂

0 = ˆ⃗s †
D = ˆ⃗sD.

• endliche Boosts und Drehungen pseudo-unitär:

γ̂0D̂ †
B ,Dγ̂

0 = γ̂0 exp(−iη⃗ · ˆ⃗kD)γ̂
0 = exp(−iη⃗ · ˆ⃗kD) = D̂ −1

B ,D,

γ̂0D̂ †
R ,Dγ̂

0 = γ̂0 exp(+iϕ⃗ · ˆ⃗sD)γ̂
0 = exp(iϕ⃗ · ˆ⃗sD) = D̂ −1

R ,D.

• Dirac-Darstellung aller Lorentz-Transformationen pseudounitär

• Parität:
D̂P,D = γ̂0 ⇒ γ̂0D̂ †

P,Dγ̂
0 = (γ̂0)3 = γ̂0 = D̂ −1

P,D.

• Invariante Sequilinear-Formen

– um Lagrangians für freie Weyl- oder Dirac-Felder zu konstruieren⇒
benötige Sesquilinear-Formen aus Spinoren, die sich wie Lorentz-
Skalare bzw. -Tensoren transformieren

– müssen Ableitungen ∂µ enthalten, das sich wie (kovariante) Vektor-
komponenten Transformiert

– Transformationsverhalten von adjungierten Weyl-Spinoren

* Boosts⇒wegen σ̂ j † = σ̂ j :

ψL/R −→̂
B

exp
�

±ηn⃗ · ˆ⃗σ
�

ψL/R ⇒ ψ†
L/R −→̂

B
ψ†

L/R exp
�

±ηn⃗ · ˆ⃗σ
�

.

* invariant („skalar“) sind also Ausdrücke wieψ†
LψR undψ†

RψL
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* für Dirac-Spinoren ist

Ψ†γ̂0Ψ =ΨΨ

Skalar unter Boosts

– Drehungen

ψL/R −→̂
R

exp
�

−iϕn⃗ · ˆ⃗σ
�

ψL/R ⇒ ψ†
L/R −→̂

R
ψ†

L/R exp
�

+iϕn⃗ · ˆ⃗σ
�

.

– alle Kombinationen von links- und rechtshändigen Weyl-Spinoren
ψ†ψ sind „skalar unter Drehungen“, also auch diejenigen, die auch
Skalare unter Boosts sind

• Vierervektoren

– für Weylspinoren beider Art

V⃗ =ψ† ˆ⃗σψ

Vektor unter Drehungen

– Beweis (es genügen infintesimale Trafos!): mit δϕ⃗ = n⃗δϕ

δV⃗ =
i

2
δϕaψ

†
�

σ̂a , ˆ⃗σ
�

ψ=δϕ⃗× V⃗

– für Boosts: brauche vierte „Pauli-Matrix„ σ̂0 als „Zeitkomponente“
⇒ ändert sich nicht unter Drehungen⇒ σ̂0 =12

– betrachte

V
µ

L/R =ψ
†
L/R

�

1

ηL/R
ˆ⃗σ

�

ψL/R

– transformiert sich als Vektor unter Drehungen (s.o.)

– infinitesimaler Boost: δη⃗=δηn⃗

δV
µ

L/R =ψ
†
L/R

�

±δη⃗ · ˆ⃗σ

±ηL/Rδη⃗

�

ψL/R =

�

±δη⃗ · V⃗ /ηL/R

±δη⃗V 0ηL/R

�

.

– infinitesimaler Lorentz-Boost⇒ ηL/R =±1.
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– es sind also

ψ†
L

�

12

σ⃗

�

ψL, ψ†
R

�

12

− ˆ⃗σ

�

ψR

Vierervektoren

– Dirac-Spinoren

Ψ†

�

14

diag( ˆ⃗σ,− ˆ⃗σ)

�

Ψ =Ψγ̂0

�

14

diag( ˆ⃗σ,− ˆ⃗σ)

�

Ψ = e µΨγ̂
µΨ

– Dirac-Matrizen (chirale Darstellung)

γ̂0 =

�

0 12

12 0

�

, γ̂ j = γ̂0

�

σ̂ j 0
0 −σ̂ j

�

=

�

0 −σ̂ j

σ̂ j 0

�

.

– Eigenschaften der Dirac-Matrizen

ˆγ0† = γ̂0, γ̂ j † =−γ̂ j ,
�

γ̂µ, γ̂ν
	

= 2ηµν

• Lorentz-kovariante Sesquilinearformen

– Transformationsverhalten mit Dirac-Matrix-Algebra und Pseudou-
nitarität aller Lorentz-Transformationen und Raumspiegelungen (al-
so alle Dirac-Darstellungsmatrizen der O(1, 3)↑):

Ψ′ = D̂Λ,DΨ ⇒ Ψ
′
=Ψ†D̂ †

Λ,Dγ̂
0 =Ψγ̂0D̂ †

Λ,Dγ̂
0 =ΨD̂ −1

Λ,D.

– Skalar: ΨΨ
Ψ
′
Ψ′ =ΨD̂ −1

Λ,DD̂Λ,DΨ =ΨΨ.

– Vierervektor Ψγ̂µΨ

Ψ
′
γ̂µΨ =ΨD̂ −1

Λ,Dγ̂
µD̂Λ,DΨ

– ⇒ Transformationsverhalten der Dirac-Matrizen

D̂ −1
Λ,Dγ̂

µD̂Λ,D =Λ
µ
νγ̂
ν.

– Tensoren höherer Stufe (Bsp. zweiter Stufe)

D̂ −1
Λ,Dγ̂

µγ̂νD̂Λ,D = D̂ −1
Λ,Dγ̂

µD̂Λ,DD̂ −1
Λ,Dγ̂

νD̂Λ,D =Λ
µ
ρΛ

ν
σγ̂
ργ̂σ
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• Irreduzible Teile

– aus Ψ lassen sich offenbar 4× 4 = 16 unabhängige Sesquilinearfor-
menψΓ̂ψ bilden

– für Lagrangian: reelle Sesquilinerformen⇒ Γ̂ pseudo-hermitesch:

(ΨΓ̂Ψ)∗ =Ψ†Γ̂ †Ψ
†
=Ψγ0Γ̂ †γ0†Ψ =Ψγ0Γ̂ †γ0Ψ =ΨΓ̂Ψ.

– bereits identifiziert: Skalar (1) und Vierervektor (4)

– Tensor 2. Stufe: Zerlegung in symmetrischen und antisymmetrischen
Teil

γ̂µγ̂ν =
1

2

�

γ̂µ, γ̂ν
	

+
1

2

�

γ̂µ, γ̂ν
�

= g µν− iσ̂µν

– symmetrischer Teil gibt wieder Skalar

– antisymmetrischer Teil ist unabhängig von Skalar und Vektor ⇒ an-
tisymmetrischer Tensor 2. Stufe (6 unabhängige Komponenten)

σ̂µν =
i

2

�

γ̂µ, γ̂µ
�

, γ̂0σ̂µν†γ0 = σ̂µν ⇒ Ψσ̂µνΨ = (Ψσ̂µνΨ)∗.

– Tensor 3. Stufe: γµγνγρ

* kann nur neues geben, wenn alle drei Indizes verschieden sind.
Andernfalls wegen Antivertauschbarkeit von Diracmatrizen mit
verschiedenen Indizes und (γ̂µ)2 =±1 nur wieder Vektor

* Falls alle 3 Indizes verschieden⇒ total antisymmetrischer Ten-
sor

* umkehrbar eindeutig auf Axial-Vektor abbildbar

Âµ = εµνρσγ̂νγ̂ργ̂σ = γ̂
µεανρσγ̂αγ̂νγ̂ργ̂σ

* definiere

1

4!
εµνρσγ̂µγ̂νγ̂ργ̂σ = γ̂0γ̂1γ̂2γ̂3 =−γ̂0γ̂1γ̂2γ̂3 =−iγ̂5 ⇒ γ̂5 =−iγ̂0γ̂1γ̂2γ̂3 =

�

−12 0
0 12

�

* Da γ̂µ wie Vektor transformiert (auch unter Spiegelungen) aber
εµνρσ zwar invarianter Tensor unter SO(1, 3)-Trafos ist, aber un-
ter Spiegelungen wegen det P̂ =−1 Vorzeichen wechselt, trans-
formiert γ̂5 unter SO(1, 3)↑-Trafos wie Skalar, wechselt aber Vor-
zeichen unter Spiegelungen⇒ γ̂5 ist Pseusoskalar
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* Eigenschaften

(iγ̂5)
† =−iγ̂5, γ̂0(iγ̂5)

†γ̂0 = iγ̂5, γ̂2
5 =14, D̂P,Dγ̂5D̂P,D = γ̂

0γ̂5γ̂
0 =−γ̂5, γ̂5γ̂

µ =−γ̂µγ̂5.

* Projektion auf links- und rechtshändige Anteile des Dirac-Spi-
nors

1− γ̂5

2
Ψ =

�

12 0
0 0

��

ψL

ψR

�

=

�

ψL

0

�

=ΨL,
1+ γ̂5

2
Ψ =

�

0 0
0 12

��

ψL

ψR

�

=

�

0

ψR

�

=ΨR.

– damit alle 16 reellen irreduziblen Lorentz-kovarianten Sesquiline-
arformen:

ΨΨ : Skalar (1 Komponente)

iΨγ̂5Ψ : Pseudoskalar (1 Komponente)

Ψγ̂µΨ : Vierervektor (4 Komponenten)

Ψγ̂5γ̂µΨ : Pseudovierervektor (4 Komponenten)

Ψσ̂µνΨ : antisymmetrischer Tensor 2. Stufe (6 Komponenten)

• für später wichtig: endlicher Boost in Dirac-Matrizenschreibweise

D̂B ,D = exp(iηn⃗ · ˆ⃗kD)

=

�

cosh(η/2)12+ sinh(η/2)n⃗ · ˆ⃗σ 0
0 cosh(η/2)12− sinh(η/2)n⃗ · ˆ⃗σ

�

=Uµγ
µγ0 =

�

U012+U⃗ · ˆ⃗σ 0
0 U012−U⃗ · ˆ⃗σ

�

⇒ U =

�

cosh(η/2)
n⃗ sinh(η/2)

�

• ⇒

D̂B ,D =Uµγ
µγ0 mit U =

�

cosh(η/2)
n⃗ sinh(η/2)

�

.

• Äquivalente Darstellungen der Dirac-Algebra

– die Antikommutatorrelationen
�

γ̂µ, γ̂ν
	

= 2ηµν bleiben unter belie-
bigen Ähnlichkeitstransformationen erhalten: ˆ̃γµ = T̂ γ̂µT̂ −1

– damit Relationen zwischen σ̂µν und ˆ⃗kD und ˆ⃗sD so erhalten bleiben,

dass ˆ⃗sD unitär und ˆ⃗kD antiunitär bleibt⇒ T̂ = Û muss unitär sein

– neue Dirac-Spinoren: Ψ̃ = ÛΨ

12



– andere verbreitete Konventionen

* unsere bislang verwendete chirale Darstellung ist Konvention
wie in [LL91]

* Konvention für chirale Darstellung in z.B. [PS95]: Û = γ̂0

γ̃0 = γ̂0, γ̃ j =−γ̂ j , γ̃5 =−γ̂5

* „Standarddarstellung“ (z.B. [BD65])

Û =
1
p

2

�

12 12

12 −12

�

, γ̃0 =

�

12 0
0 −12

�

, γ̃ j =

�

0 σ̂ j

−σ̂ j 0

�

=−γ̂ j .

* Vorteil: Paritätseigenzustände ⇒ die beiden oberen (unteren)
Spinkomponenten entsprechen Parität +1 (-1)

3 Spin 1/2 + Parität: Quantisiertes Dirac-Feld

Spin 1/2 + Parität: Quantisiertes
Dirac-Feld

Literatur: [Col18, PS95, Wei95, SU01, LL91]
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Quantisiertes Dirac-Feld

• historische Idee Diracs: finde Wellengleichung mit nur 1. Ableitungen

• Motivation: löst Problem mit nicht positiv definierter erhaltener Ladung
(wie bei nichtrelativistischer Schrödinger-Gleichung!)

• moderner Zugang: verwende obige Analyse der Darstellungen der O(1, 3)↑

• such reelle Lagrangefunktion für freies Diracfeld Ψ mit nur einer Ablei-
tung

• Raumspiegelung P̂ soll Symmetrie sein

– zur Verfügung stehen die reellen Sesquilinearformen und der Ein-
teilchen-Energie-Impulsoperator i∂µ

– man kann nur den Vektorstrom mit dem polaren Vektor i∂µ „über-
schieben“; mit Axialvektor wäreL nicht spiegelsymmetrisch

– antisymmetrischer Tensor scheidet aus, weil man zusammen mit
nur einem ∂µ keinen Skalar erzeugen kann

– für von ∂µ freie Terme kommt nur der Skalar in Frage; Pseudoskalar
bricht wieder Spiegelsymmetrie

L =
i

2
Ψγµ
←→
∂µ Ψ −mΨΨ

– nützliche Abkürzung: Feyman-Dolch mit beliebigen Vektoren oder
Vektoroperatoren: Aµγ̂

µ = /A oder ∂µγ̂
µ = /∂

– Feldgleichungen: Variiere Ψ und Ψ als unabhängige Felder (für die
2×4 reellen Feldfreiheitsgrade)

– ⇒ freie Dirac-Gleichung

(i /∂ −m )Ψ = 0.

– Gleichung für Dirac-adjungierte Funktion: adjungiere zunächst Di-
rac-Gleichung

Ψ†(−i
←−
/∂ †−m ) = 0 ⇒Ψγ0(−i

←−
/∂ †−m ) = 0 ⇒ Ψγ0(−i

←−
/∂ †−m )γ0 =Ψ(−i

←−
/∂ −m ) = 0.

– impliziert auch Gültigkeit der Klein-Gordon-Gleichung:

(i /∂ +m )(i /∂ −m )Ψ =−( /∂ 2+m 2)Ψ =−(□+m 2)Ψ = 0.

14



– ⇒ quantisierte Theorie beschreibt Spin-1/2=Teilchen und die da-
zugehörigen Antiteilchen mit Masse m .

– außer Raum-Zeit-Symmetrien (s. nächste Übung!) Lagrangian auch
invariant unter globalen Phasenänderungen

Ψ′ = exp(−iqα)Ψ, Ψ
′
= exp(+iqα)Ψ

– dazugehöriger erhaltener Noether-Strom

jµ = qΨγµΨ.

– checke Kontinuitätsgleichung

∂µ jµ = q [Ψγµ∂µ+
�

∂µγ
µΨ
�

Ψ] = qΨ(−im + im )Ψ = 0.

– j 0 = qΨγ0Ψ = qΨ†Ψ: für q > 0 positiv definit⇒Diracs Idee hat funk-
tioniert

– ABER: Probleme mit negativen Energien wie bei Klein-Gordon-Feld

– daher Feldquantisisierung

– Hamilton-Formalismus für „klassische“ Dirac-Feld

– vereinfacht sich mit etwas abgeänderter Lagrange-Dichte

L ′ =Ψ(i /∂ −m )Ψ

– äquivalent, weil Wirkung ungeändert, denn

L ′ =L +
i

2
∂µ
�

ΨγµΨ
�

– unterscheidet sich nur um Viererdivergenz von der Form Ωµ(Ψ,Ψ)

* mitL ′ nur ein von 0 verschiedener Feldimpuls

Π=
∂L ′

∂∂t Ψ
= iΨγ0 = iΨ†

* Hamilton-Dichte

H =Π∂tΨ −L ′ = iΨγ0∂tΨ −L ′ =−iΨ∂ j γ̂
jΨ +mΨΨ

15



* mit Dirac-Gleichung

i(γ0∂t+γ
j ∂ j )Ψ =mΨ ⇒ (−i∂ jγ

j+m )Ψ = iγ0∂tΨ ⇒ H = iΨγ0∂tΨ = iΨ†∂tΨ.

– Quantisierung als Fermionen⇒gleichzeitige kanonische Antikommutatoren:

�

Ψa (t , x⃗ ),Ψb (t , y⃗ )
	

= 0,
�

Ψa (t , x⃗ ),Πb (t , y⃗ )
	

= i
�

Ψa (t , x⃗ ),Ψ†
b (t , y⃗ )
	

= iδ(3)(x⃗− y⃗ ).

* entwickele wieder nach Modenfunktionen positiver und nega-
tiver Frequenz (in manifest kovarianter Form)

Up⃗ ,σ(x ) =
1
Æ

(2π)32Ep

uσ(p⃗ )exp(−ip · x )

�

�

�

�

�

p 0=Ep

,

Vp⃗ ,σ(x ) =
1
Æ

(2π)32Ep

vσ(p⃗ )exp(+ip · x )

�

�

�

�

�

p 0=Ep

, Ep =
Æ

m 2+ p⃗ 2.

* uσ(p⃗ )und vσ(p⃗ )geeignete Dirac-Spinoren,σ ∈ {1/2,−1/2}: Spin-
Freiheitsgrade

* wende gleich Feynman-Stückelberg-Trick an: Moden mit posi-
tiver (negativer) Frequenz mit Vernichtern a(p⃗ ,σ) (Erzeugern
b†(p⃗ ,σ)

* dabeiσ ∈ {1/2,−1/2} für ŝ 3
D-Eigenwerte

Ψ(x ) =

∫

R3

d3p⃗
∑

σ

�

aσ(p⃗ )Up⃗ ,σ(x ) +b†
σ(p⃗ )Vp⃗ ,σ(x )
�

* Dirac-Gleichung: Teilchen- bzw. Antiteilchen-Dirac-Spinoren
(im Folgenden immer „on-shell-Bedingung“ p 0 = Ep !)

(/p −m )uσ(p⃗ ) = 0, (/p +m )vσ(p⃗ ) = 0.

• Wigner-Basis [Wig39]
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– irreduzible Darstellung der O(1, 3)↑ ⇒ kann alle Zustände zu p mit

p · p = m 2 > 0, also p 0 = Ep durch Boosts aus den Zuständen zu
p⃗ = 0 erreichen:

�

Ep

p⃗

�

= B̂

�

m

0⃗

�

=

�

coshη sinhηn⃗ T

sinηn⃗ (coshη−1)n⃗ n⃗ T +13

��

m

0

�

=

�

m coshη

m sinhηn⃗

�

Setze n⃗ = p⃗/|p⃗ | ⇒ η= artanh(|p⃗ |/Ep )> 0.

– Löse Gleichungen für die Dirac-Spinoren uσ(p⃗ ) und vσ(p⃗ ) bei p⃗ = 0

– definiere dann

uσ(p⃗ ) = D̂B ,Duσ(0⃗), vσ(p⃗ ) = D̂B ,Dvσ(0⃗).

– da Drehungen p⃗ = 0 ungeändert lassen⇒ Drehungen Standunter-
gruppe

– „Wigner’s little group“ für massive Darstellungen m > 0

– wähle uσ(0⃗) und vσ(0⃗) als Eigenspinoren zu ŝ 3
D mit Eigenwertenσ=

±1/2

– dann nur diese Zustände zu p⃗ = 0⃗ haben definite spin-z -Kompo-
nente

– da ˆ⃗kD nicht mit ŝ 3
D vertauschen ist das nicht der Fall für die Zustände

mit p⃗ ̸= 0

– Spin als intrinsische Teilcheneigenschaft: definiert im Ruhsystem
des Teilchens!

• Konstruktion der uσ(p⃗ ) und vσ(p⃗ )

– Gleichungen für beliebige p mit p 2 =m 2:

(/p −m )uσ(p⃗ ) = 0, (/p +m )vσ(p⃗ ) = 0.

– Gleichungen für p⃗ = 0⇒ p = (m , 0, 0, 0)T

γ0uσ(0⃗) = uσ(0⃗), γ0vσ(0⃗) =−vσ(0⃗),

– im Ruhsystem des Teilchens: Teilchen (Antiteilchen) haben Parität
1 (−1)
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– bestimme die linear unabhängigen Lösungen als Eigenspinoren von
ŝ 3

D:

u1/2(0⃗) =
p

m









1

0

1

0









=:
p

m u ′1/2(0,+1/2), u−1/2(0⃗) =
p

m









0

1

0

1









=:
p

m u ′(0,−1/2),

v1/2(0⃗) =
p

m









1

0

−1

0









=:
p

m v ′(0,+1/2), v−1/2(0⃗) =
p

m









0

1

0

−1









=
p

m v ′−1/2(0⃗).

• Boost zu p⃗ ̸= 0-Zuständen

– boost um η= artanh(|p⃗ |/Ep ) in Richtung von n⃗ = p⃗/|p⃗ |

uσ(p⃗ ) = D̂B ,Duσ(p⃗ ) = /U γ
0uσ(0⃗) = /U uσ(0⃗),

vσ(p⃗ ) = D̂B ,Dvσ(p⃗ ) = /U γ
0vσ(0⃗) =− /U vσ(0⃗),

U =

�

cosh(η/2)
sinh(η/2)n⃗

�

– drücke Hyperbelfunktionen mit Ep und |p⃗ | aus

coshη=
Ep

m
= 2 cosh2(η/2)−1 ⇒ cosh(η/2) =

√

√1+ coshη

2
=

√

√Ep +m

2m
,

coshη=
Ep

m
= 1+2 sinh2(η/2) ⇒ sinh(η/2) =

√

√coshη−1

2
=

√

√Ep −m

2m
.

– NB:
|p⃗ |=
q

E 2
p −m 2

18



– Rechnung für uσ(p⃗ ):

uσ(p⃗ ) =

�

γ0

√

√Ep +m

2m
−

√

√Ep −m

2m

p⃗

|p⃗ |
· γ⃗

�

uσ(0⃗)

=
1
Æ

2(Ep +m )

�

(m +E )γ0− p⃗ ·γ
�

u ′σ(0⃗)

=
1
Æ

2(Ep +m )

�

(m +E )γ0− p⃗ ·γ
�

u ′σ(0⃗)

=

√

√

√

1

2(Ep +m )
(m + /p )u ′σ(0,σ)

– analoge Rechung für vσ(p⃗ ):

vσ(p⃗ ) =

√

√

√

1

2(Ep +m )
(m − /p )v ′σ(0,σ)

– Pseudoorthogonalitätsrelationen

uσ(p⃗ )uσ′ (p⃗ ) = 2mδσ,σ′ , vσ(p⃗ )vσ′ (p⃗ ) =−2mδσ,σ′ ,

uσ(p⃗ )vσ′ (p⃗ ) = vσ(p⃗ )uσ′ (p⃗ ) = 0,

uσ(p⃗ )
†uσ′ (p⃗ ) = 2Eδσσ′ , vσ(p⃗ )

†vσ′ (p⃗ ) = 2Eδσσ′ ,

uσ(p⃗ )
†v (−p⃗ ,σ′) = vσ(p⃗ )

†uσ′ (−p⃗ ) = 0.

– Spinsummen: Definiere

Â(p⃗ ) =
∑

σ

uσ(p⃗ )uσ(p⃗ ), B̂ (p⃗ ) =
∑

σ

vσ(p⃗ )vσ(p⃗ ).
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– Wirkung auf Basis (uσ(p⃗ ), vσ(p⃗ ): verwende Pseudoorthogonalitäts-
relationen und /p uσ(p⃗ ) =m uσ(p⃗ ), /p vσ(p⃗ ) =−m uσ(p⃗ )

Â(p⃗ )uσ′ (p⃗ ) =
∑

σ

uσ2mδσ,σ′ = 2m uσ′ (p⃗ ) = (/p +m )uσ′ (p⃗ ),

Â(p⃗ )vσ′ (p⃗ ) = 0= (/p +m )vσ′ (p⃗ ),

B̂ (p⃗ )uσ′ (p⃗ ) = 0= (/p −m )uσ′ (p⃗ )

B̂ (p⃗ )vσ′ (p⃗ ) =−
∑

σ

vσ(p⃗ )2mδσ,σ′ =−2m vσ′ (p⃗ ) = (/p −m )vσ′ (p⃗ );

⇒

Â(p⃗ ) =
∑

σ

uσ(p⃗ )uσ(p⃗ ) = /p +m , B̂ (p⃗ ) =
∑

σ

vσ(p⃗ )vσ(p⃗ ) = /p −m ,

Â(p⃗ )− B̂ (p⃗ ) =
∑

σ

�

uσ(p⃗ )uσ(p⃗ )− vσ(p⃗ )vσ(p⃗ )
�

= 2m14.

– Orthonormiertheit der Modenfunktionen

(Up⃗ ,σ,Up⃗ ′,σ′ ) =

∫

R3

d3 x⃗U †
p⃗ ,σ(x )Up⃗ ′,σ′ (x ) =δσσ′δ

(3)(p⃗ − p⃗ ′),

(Vp⃗ ,σ, Vp⃗ ′,σ′ ) =

∫

R3

d3 x⃗U †
p⃗ ,σ(x )Up⃗ ′,σ′ (x ) =δσσ′δ

(3)(p⃗ − p⃗ ′),

(Vp⃗ ,σ,Up⃗ ′,σ′ ) = (Up⃗ ′,σ′ , Vp⃗ ,σ)
∗ =

∫

R3

d3 x⃗ V †
p⃗ ,σ(x )Up⃗ ′,σ′ (x ) = 0.

– damit und gleichzeitigen Antikommutaturrelationen der quantisier-
ten Dirac-Felder
�

aσ(p⃗ ), aσ′ (p⃗
′)
	

=
�

aσ(p⃗ ), bσ′ (p⃗
′)
	

=
�

bσ(p⃗ ), bσ′ (p⃗
′)
	

=
�

aσ(p⃗ ), b†
σ′ (p⃗

′)
	

= 0,
�

aσ(p⃗ ), a†
σ′ (p⃗

′)
	

=
�

bσ(p⃗ ), b†
σ′ (p⃗

′)
	

=δσσ′δ
(3)(p⃗ − p⃗ ′).

– in „Box-Regularisierung“ wie bei Klein-Gordon-Feld

δ(3)(p⃗ − p⃗ ′)→δp⃗ ,p⃗ ′ , p⃗ ∈
2π

L
Z3

– Besetzungzahl- oder Fock-Zustände: simultane Eigenzustände für
N a ,σ(p⃗ ) = a†

σ(p⃗ )aσ(p⃗ ) und N b ,σ(p⃗ ) = b†
σ(v e c p )bσ(p⃗ )
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– Na/b ,σ(p⃗ ) ∈ {0, 1}, denn a†2
σ (p⃗ ) = 0 (wegen Antikommutatorregeln)

⇒ Pauli-Verbot
�

�{Na ,σ(p⃗ ), Nb ,σ(p⃗ )}σ,p⃗

�

=
∏

σ,p⃗

a
†Na ,σ(p⃗ )
σ (p⃗ )b†Nb ,σ(p⃗ )

σ (p⃗ ) |Ω〉

– Vakuumzustand
aσ(p⃗ ) |Ω〉= bσ(p⃗ ) |Ω〉= 0.

• Energie, Impuls, Drehimpuls und Ladung

– Normalordnung: bringe alle Erzeugungsoperatoren nach links alle
Vernichtungsoperatoren nach rechts

– beinhaltet dabei das Vorzeichen der Permutation, um von ursprüng-
licher zur Normalordnung zu gelangen, z.B.

: aσ(p⃗ )a
†
σ′ (p⃗

′) :=−a†
σ′ (p⃗

′)aσ(p⃗ ).

• Energie (Hamilton-Operator): Noether bzgl. zeitlicher Translationsinva-
rianz

H =

∫

R3

d3 x⃗ i :Ψ†(x )∂tΨ(x ) :=
∑

σ

∫

R3

d3p⃗ Ep [N a ,σ(p⃗ ) + N b ,σ(p⃗ )]

– Erhaltungsgröße

– positiv definit, Teilchenzahloperatoren haben die erwartete Bedeu-
tung

– hätte nicht funktioniert, wenn wir bosonisch quantisiert hätten⇒
Spin-Statistik-Theorem: ganz- (halb-) zahliger Spin⇒Bosonen (Fer-
mionen)

• Ladung

– Noether von globaler Phasenänderungstransformation

Q = q

∫

R3

d3 x⃗ :Ψ†Ψ := q
∑

σ

∫

R3

d3p⃗ [N a ,σ(p⃗ )− N b ,σ(p⃗ )]

• Übrige Erhaltungsgrößen, C, P, T⇒Übungen

• Ergebnis

– Gesamt-Energie, -Impuls, -Drehimpuls, Energieschwerpunkt: er-
zeugen unitäre Darstellung der eigentlich orthochronen Poincaré-
Gruppe
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