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1 Endlichdimensionale Darstellungen der Lorentz-Grup-
pe

Endlichdimensionale
Darstellungen der Lorentz-
Gruppe

Literatur: [Col18, Wei95, SUO1, LL91]



Endlichdimensionale Darstellungen der Lorentz-Gruppe

¢ eigentlich brauchen wir unitdre Darstellungen der Poincarégruppe

¢ Raum-Zeit-Translationen: alle Felder Skalare

¢ kanonische Feldquantisierung: tiber Energie- und Impuls via Noether
* Lorentz-Gruppe: eigentliche orthochrone Lorentz-Gruppe SO(1,3)!

¢ diskrete Symmetrien CPT: modellabhingig!

e fiir QED und QCD: mindestens Raumspiegelungs-Invarianz (es sind aber
C, Pund T alle separat Symmetrien)

¢ schwache Wechselwirkung: verletzt alle diskreten Symmetrien bis auf CPT
(muss erfiillt sein gemaR CPT-Theorem)

e Lie-Algebra der SO(1,3)'

kann alle A durch Boosts und Drehungen zusammensetzen: A =
B(n, AR(p, 11"

Beweis: schreibe

AZ(QO»Ql»QZ,gg)i
— 0o __0 N
QM.QV_TI,UV’ A O_e() >]., detA—+].

Boost:
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- wegen e,’=4/1+ & istneR= e[ =(1,0,0,0)" =

a A1 A 0
N=B"A=(epe) e} ey) = e =ej-e;=0

A ~

sodass R'A'=R'B7'A=1,=>

A=B(n, B)R(p, ).
¢ Infinitesimale Erzeugende (Lie-Algebra)

- endliche Boosts und Drehungen

~ [ coshn il sinhn P 1 o
“\#sinhn (coshn—1)AaT+1;)" = \0 AAT+13—AAT)cosp+7i-Esing )’
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- fiir kleine 61 bzw. § @ ist
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B=14+ionn-k, R=1,—iopn-s.
mit
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— Kommutatoren (direkt nachrechnen)
[fCa, ]Acb] :_ieubc§c, [§a’§b] :+i€ubc§c’ [fca’g.b] — [S:a, fcb] :ieabcicc'

- Boosts bilden keine Untergruppe und sind i.a. nicht kommutativ

- Hintereinanderausfithrung zweier drehungsfreier(!) Boosts in ver-
schiedenen Richtungen nicht drehungsfrei

- nur zwei Boosts in gleicher Richtung bilden abelsche Untergruppe
mit
B(Th, fi)B(T’z, ﬁ) = B(Th + T]Z) fi)



¢ Bestimmung der (irreduziblen) Darstellungen

definiere , Pseudospins®

af=1(§f+ikf), b/ =

\S]

Kommutatoren (einfach direkt nachrechnen!)

[a/,a%]=ie/*a!, [a,a*]=ie/Fa’, [al,b¥]=0.

N
= d und b erfiillen Kommutatorrelationen fiir zwei unabhingige
Spins

alle (endlichdimensionalen) irreduziblen Darstellungen aus QM be-
kannt:
32 _ A3 —
as|sq,ma) =s4(8a+Vlsa,my),  @°Isy, ma) =mylsa, my),
5 A
b? sy, my) = sp(sp +1lsp, mp),  b°|sp, mp)=my |5y, my)
mit s,,s, €{0,1/2,1,3/2,...},

My €{—=S4,—Sa+1,...,8,—1,8,}, mpe{=sp,—sp+1,
0.B.d.A: wie in QM kénnen Pseudospins hermitesch gewédhlt wer-
den: a/t=aJ, bit=pJ

entspricht unitdren Darstellungen der Drehgruppe SO(3) (ganzzah-
lige s, bzw. s;) bzw. der SU(2) (halbzahlige s,, s3,)

¢ Bestimmung der (irreduziblen) Darstellungen

jede irreduzible Darstellung der so(1,3)! eindeutig bestimmt durch
Paar von Pseudospinquantenzahlen (s, sp,)

dann
sl=a’+b’!, k!/=-i(ag’—b’)
wirken auf Vektoren im Kronecker-Produktraum
Basisvektoren
|ma’ mb> = |ma> ® |mb>
fiir s, = 0: |mg, my) = |my)

(Sa, Sp)-Darstellung ist (25, + 1)(2s; + a)-dimensional

...,Sb—l,Sb}.



— (84, Sp)-Darstellung: Rotationsuntergruppe enthélt irreduzible Spin-
darstellungen s € {|s; —spl, |5, —Sp|+1,-++, S5 + sp} (cf. Drehimpul-
saddition in QM)

— §J hermitesch = Rotationsuntergruppe der SO(1,3)! wird unitér dar-
gestellt

— kJ*=—kJ: Boosts werden nicht unitir dargestellt

- = es gibt keine endlichdimensionalen unitdren Darstellungen der
SO(1,3)" (auRer der trivialen (0,0)-Darstellung)

— fiir Spin s > 1/2: schlieBt a priori ,relativistische Quantenmecha-
nik“ ala 1. Quantisierung aus!

- (0,0)-Darstellung fiihrt auf Klein-Gordon-Felder/Teilchen

- vorige Vorlesung: in 1. Quantisierung keine positivdefinite Ladungs-
dichte, die man a la Born als Wahrscheinlichkeitsdichte interpretie-
ren konnte!

¢ ,kaonisch quantisiertes“ Klein-Gordon-Feld fiihrt auf Vielteilchenquan-
tentheorie fiir Spin-0-Teilchen

* Poincaré-Symmetrie (Raumzeit-Translationen und SO(1,3)", also Drehun-
gen und Boosts) als unitdre Darstellung realisiert

¢ diskrete Symmetrien C, P, T (nur durch schwache Wechselwirkung ver-
letzt
e CPT fiir lokale relativistische QFTn stets Symmetrie

2 Spin 1/2: Weyl- und Dirac-Spinoren

Spin 1/2: Weyl- und Dirac-
Fermionen

Literatur: (cons, psos, weios, suot, 1191]



Spin-1/2-Darstellungen

¢ einfachste Darstellungen mit Spin 1/2: (1/2,0) und (0,1/2)

enthalten nur Spin 1/2

im Folgenden: (1/2,0)-Darstellung linkshdndige Weyl-Spinoren (0,1/2)-
Darstellung rechtshidndige Weyl-Spinoren

Linkshdndige Weyl-Spinoren

- Generatoren fiir Boosts und Drehungen:

— Pauli-Matrizen

0 1 0 —i 1 O
Al _ A2 A3 _
i () (R Y

- Eigenschaften der Pauli-Matrizen (direkt nachrechnen)

¢lt=0J, Trol=0, [6/,0%]=2ic/*!, {67,6%}=287F, T(6/6")=25.

¢ Endliche Boosts und Drehungen

— Boosts und Drehungen = wegen (7 - 3)2 = #2 = 1 kann Exponenti-
alreihe leicht ausgewertet werden:

Dp,1 =exp(inii - iL)z exp(gﬁ’ G)=1, cosh(g)+ ﬁ-é"sinh(g),

Dy 1 =exp(—ipit- S)=exp (—igﬁ . 3) =1, cos(g) —ii-G sin(%) .
¢ Rechtshidndige Weyl-Spinoren

- Generatoren fiir Boosts und Drehungen:

. 1. . i . .
Al — J—Z45i Sy Gl Z6]
a; =0, L=50 => ky=+-07, SK=-0.



- Boosts und Drehungen

¢ Raumspiegelungen: Paritét

elektromagnetische und starke Wechselwirkungen: spiegelsymme-
trisch = brauche Raumspiegelungen als Symmetrieoperator

- nehme an, P = diag(1,—1,—1,—1) = P! wird in Darstellungen line-
ar (im Feldformalismus unitér) dargestellt

- DpD(A)D,;' = D(PAP)
- fiir infinitesimale Boosts und Drehungen (direkt nachrechnen)
pkp=—k DP3P=3

- Anschaung: Boostin Richtung von Relativgeschwindigkeit zwischen
N
Inertialsystemen = k transformiert sich unter Spiegelungen wie Ge-

3
schwindigkeiten # — —# = k ist polarer Vektor § transformiert sich
wie Drehimpuls L=Xxp —>+L = § ist axialer Vektor

¢ Paritdt und Weyl-Spinoren

- Verhalten unter Raumspiegelungen wie fiir Operatoren im Minkow-
ski-Raum (,,fundamentale Darstellung®)

A A A_ A - A_ - -
DpDy /D, = Dpexplinit-kyr)D;, ' = exp(—inii-ky jr) = exp(+infi-kg 1)

— fiir Theorien mit Raumspiegelsymmetrien braucht man Spinorfel-
der mit rechts- und linkshdndigen Weyl-Spinoren

— irreduzible Darstellung mit Spin 1/2 fiir SO(1,3)! und P = 0(1,3)":
(1/2,0)@(0,1/2)

- vierkomponentige Bispinoren = Dirac-Spinoren

Y A Y 0 1 N
w=(4) pow=(41)=(} §Ju=rw



- Raumspiegelung vertauscht links- und rechtshidndige Weyl-Spino-
ren

- wie bei Hinden: im Spiegel wird eine linke zu einer rechten Hand

- Eigenschaft wird ,Héndigkeit“ oder Chiralitdt genannt

Generatoren fiir Lorentz-Transformationen fiir Dirac-Spinoren

z_i—éo §_130
P72lo &) P 2\lo0 &)

Pseudo-Hermitezitat:

A0 1A A A - 4 ~ e = 5 —
#°Df 7 =° exp(—iff - kp)7° = exp(—iff - kp) = Dy 1,
7Dy 70 =7° exp(+i@ - $5)7° =exp(i@ - §p) =Dy 1,

Dirac-Darstellung aller Lorentz-Transformationen pseudounitir

Paritat:
A A 0 A ~0 ~04\3 0 A—1
Dpp =70 = 7D 7" = (7" =" =Dp).

Invariante Sequilinear-Formen

- um Lagrangians fiir freie Weyl- oder Dirac-Felder zu konstruieren =
bendtige Sesquilinear-Formen aus Spinoren, die sich wie Lorentz-
Skalare bzw. -Tensoren transformieren

- miissen Ableitungen g, enthalten, das sich wie (kovariante) Vektor-
komponenten Transformiert

- Transformationsverhalten von adjungierten Weyl-Spinoren

* Boosts = wegen /T =6/:
- 3 - 3
AUL/R?GXP(:ETI”'U)#)L/R = IPI/R?%UE/RGXP(:‘:TI”'U)-

% invariant (,skalar) sind also Ausdriicke wie I/JII/JR und w;&wL



x fiir Dirac-Spinoren ist
P00 = o

Skalar unter Boosts

- Drehungen
I/JL/R—R> exp(—ipi &)y r = lpi/R? I[JI/R exp (+pit-3).

- alle Kombinationen von links- und rechtshindigen Weyl-Spinoren
Y™ sind ,skalar unter Drehungen®, also auch diejenigen, die auch
Skalare unter Boosts sind

¢ Vierervektoren

- fiir Weylspinoren beider Art

Vektor unter Drehungen

Beweis (es geniigen infintesimale Trafos!): mit 6 § = 7id ¢

6V =260 [6,3]y=6¢xV

fiir Boosts: brauche vierte ,,Pauli-Matrix,, 6° als , Zeitkomponente“
= dndert sich nicht unter Drehungen = 6°=1,

betrachte

1
5

NL/rRO

wo_ ot
VL/R - wL/R( )wL/R

transformiert sich als Vektor unter Drehungen (s.o0.)

infinitesimaler Boost: 67j = 6n#

+67f-& +£57-V /nur
Yrr= .

sVl =1y ( , .,
=Y £N1/RO7] £67VOnR

infinitesimaler Lorentz-Boost = 1)y g = £1.



es sind also

1
7 (e A e

Vierervektoren

Dirac-Spinoren

:H.4 - ]]-4 I,
\I}T U=y 50 U= \\ A‘uql
(diag(é", —5")) r (diag(ff ,—3 )) &Y

Dirac-Matrizen (chirale Darstellung)

0 1 ; gl 0 0 —o6/
A0: 2 A]:AO .= .
r=(n o) 75 2)-(o 7)

[
e

oQ
[¢°]
=
»n
o
=g
o
=
]
=
Q.
]
—
o
=
%)
(?
<
[}
~—t
=.
N
[¢]
=

¢ Lorentz-kovariante Sesquilinearformen

Transformationsverhalten mit Dirac-Matrix-Algebra und Pseudou-
nitaritét aller Lorentz-Transformationen und Raumspiegelungen (al-
so alle Dirac-Darstellungsmatrizen der O(1,3)'):

A —/ A ~ T A A T, A—
V=D p¥ = U :\IJ‘LDX’DyO =07°D) ,7° =" b

Skalar: UW
— — A1 A —
U =UD 1 Dy pW = 0.

Vierervektor W0

E/’)’;‘UE = EDAAT]I)?HDAAYD\I’

= Transformationsverhalten der Dirac-Matrizen

A=l su 3 _ AU oY
DA,D), DA,D_A V'}’ .

Tensoren hoherer Stufe (Bsp. zweiter Stufe)

A—1 sV —_A-1ou A—1 £V A AU Vv P o0
DA,D7 T DA,D—DA,DY DA,DDA,D'}’ DA,D—A pA UT T
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¢ Irreduzible Teile
- aus ¥ lassen sich offenbar 4 x 4 = 16 unabhéngige Sesquilinearfor-
men 'y bilden

— fiir Lagrangian: reelle Sesquilinerformen = I pseudo-hermitesch:
@E0)* =W TG =Tyt Oy = Ty o1y 0w = Tiw.

- bereits identifiziert: Skalar (1) und Vierervektor (4)
- Tensor 2. Stufe: Zerlegung in symmetrischen und antisymmetrischen
Teil . )
Per= 2 (P77 5 (7,57 =g ok

- symmetrischer Teil gibt wieder Skalar

- antisymmetrischer Teil ist unabhingig von Skalar und Vektor = an-
tisymmetrischer Tensor 2. Stufe (6 unabhdngige Komponenten)

ot =_[pt ], P00 =61 = U = (W61

— Tensor 3. Stufe: yHyYyP

x kann nur neues geben, wenn alle drei Indizes verschieden sind.
Andernfalls wegen Antivertauschbarkeit von Diracmatrizen mit
verschiedenen Indizes und (7#)? = +1 nur wieder Vektor

x Falls alle 3 Indizes verschieden = total antisymmetrischer Ten-
sor

x umkehrbar eindeutig auf Axial-Vektor abbildbar

A A

At = Gwpa?ﬁ’p?’a = ?ueavpo'?af,v?p To

% definiere
1 yvoos o o o N 50015253 N N 0010203 [ 12
56 Yul vipYo=Yo 1 2Y3s=—Y Y VYV =—1Y5s = V5= 77T = 0

x Da 7# wie Vektor transformiert (auch unter Spiegelungen) aber
e*VPY zwar invarianter Tensor unter SO(1, 3)-Trafos ist, aber un-
ter Spiegelungen wegen det P = —1 Vorzeichen wechselt, trans-
formiert 75 unter SO(1,3)"-Trafos wie Skalar, wechselt aber Vor-
zeichen unter Spiegelungen = 75 ist Pseusoskalar

11



* Eigenschaften

(ifs)" =—ifs, 7°75)'7°=ifs, 72=1s DppPsDpp=7"757"=—Fs 757" =—F"s.

x Projektion auf links- und rechtshindige Anteile des Dirac-Spi-
nors

1-7° (1, 0)\(yL\_(¥L)_ 1+7° (0 0\(yr)_(0)_
Fole o-(6)-m el )0

- damit alle 16 reellen irreduziblen Lorentz-kovarianten Sesquiline-
arformen:

WP :  Skalar (1 Komponente)

iUP;0: Pseudoskalar (1 Komponente)

UMW Vierervektor (4 Komponenten)
U7°7*W:  Pseudovierervektor (4 Komponenten)

WoH* W  antisymmetrischer Tensor 2. Stufe (6 Komponenten)

e fiir spater wichtig: endlicher Boost in Dirac-Matrizenschreibweise

~ -
Dg p =exp(inn - kp)
_ (cosh(n/2)1, +sinh(n/2)i - & 0
- 0 cosh(n/2)1, —sinh(n/2)i - &

Uyt = Upl,+U -6 0_) . U= cosh(n/2)
u 0 Uo]lg—U'O' ﬁSll’lh(n/Z)

A h(n/2
Dpp=U, "y mit Q=( coshiz/2) )

7i sinh(n/2)

 Aquivalente Darstellungen der Dirac-Algebra

- die Antikommutatorrelationen {ff”, ff"} =2n"” bleiben unter belie-
bigen Ahnlichkeitstransformationen erhalten: % = T¢#T~!

3
— damit Relationen zwischen 6*” und kp und 3 so erhalten bleiben,
5 A A
dass $p unitidr und kp antiunitir bleibt = 7' = U muss unitir sein

- neue Dirac-Spinoren: ¥ = UW¥

12



— andere verbreitete Konventionen

x unsere bislang verwendete chirale Darstellung ist Konvention
wie in [LL91]

+ Konvention fiir chirale Darstellung in z.B. wss: U = 7°
P=1 P ==, Fs=—7s

x ,Standarddarstellung® (z.B. spss)

L1 (1, 1, o (1, 0 i [0 &l\_
U‘ﬁ(ﬂz —12)' TZlo -1, T7\-e) 07T

x Vorteil: Paritdtseigenzustdnde = die beiden oberen (unteren)
Spinkomponenten entsprechen Paritdt +1 (-1)

3 Spin 1/2 + Paritit: Quantisiertes Dirac-Feld

Spin 1/2 + Paritit: Quantisiertes
Dirac-Feld

Literatur: (cois, psos, weios, suot, 1191]
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Quantisiertes Dirac-Feld

¢ historische Idee Diracs: finde Wellengleichung mit nur 1. Ableitungen

¢ Motivation: 16st Problem mit nicht positiv definierter erhaltener Ladung
(wie bei nichtrelativistischer Schrédinger-Gleichung!)

» moderner Zugang: verwende obige Analyse der Darstellungen der O(1, 3)!

¢ such reelle Lagrangefunktion fiir freies Diracfeld ¥ mit nur einer Ablei-
tung

 Raumspiegelung P soll Symmetrie sein

- zur Verfiigung stehen die reellen Sesquilinearformen und der Ein-
teilchen-Energie-Impulsoperator ig,

- man kann nur den Vektorstrom mit dem polaren Vektor ig, , liber-
schieben®; mit Axialvektor wire . nicht spiegelsymmetrisch

- antisymmetrischer Tensor scheidet aus, weil man zusammen mit
nur einem J, keinen Skalar erzeugen kann

— fiir von g, freie Terme kommt nur der Skalar in Frage; Pseudoskalar
bricht wieder Spiegelsymmetrie

i— a _
$=§\Il}’ 3H1D—m\II\IJ

- niitzliche Abkiirzung: Feyman-Dolch mit beliebigen Vektoren oder
Vektoroperatoren: A, 7# = A oder g,7* = J

— Feldgleichungen: Variiere ¥ und ¥ als unabhingige Felder (fiir die
2 x 4 reellen Feldfreiheitsgrade)

- = freie Dirac-Gleichung
(id —m)¥=0.

- Gleichung fiir Dirac-adjungierte Funktion: adjungiere zunéchst Di-
rac-Gleichung

' (—id"—=m)=0 = Ty°(=id"—m)=0 = Uy°(—id"—m)y* =W(—i 7 —m)=0.
- impliziert auch Giiltigkeit der Klein-Gordon-Gleichung:

(id + m)(id — m)¥ =—(3@* + m*)¥ =—(O+ m*)¥ =0.

14



= quantisierte Theorie beschreibt Spin-1/2=Teilchen und die da-
zugehorigen Antiteilchen mit Masse m.

auBer Raum-Zeit-Symmetrien (s. ndchste Ubung!) Lagrangian auch
invariant unter globalen Phasendnderungen

¥ =exp(—iga)¥, ¥ =exp(+iga)¥
dazugehoriger erhaltener Noether-Strom
" =qurte.
checke Kontinuitédtsgleichung
8, j* = q[Wy" 9, +(8,y" V) W] = qU(—im +im)¥ =0.

j%=qUy®W = qUtW: fiir g > 0 positiv definit = Diracs Idee hat funk-
tioniert
ABER: Probleme mit negativen Energien wie bei Klein-Gordon-Feld

daher Feldquantisisierung

Hamilton-Formalismus fiir , klassische“ Dirac-Feld

vereinfacht sich mit etwas abgednderter Lagrange-Dichte
< =0(id —m)¥
dquivalent, weil Wirkung ungedndert, denn
i =
L=<+ 5% (TyHw)
unterscheidet sich nur um Viererdivergenz von der Form QX (D, )

* mit ¢’ nur ein von 0 verschiedener Feldimpuls

ox’

=iwy? =iw’
Ozw

M=

*+ Hamilton-Dichte

A =10,0— &' =10y°0,¥— &' =—i08,7/ ¥ + mb¥

15



x mit Dirac-Gleichung
i(yoé’t-l—}’jﬁj)\ll =m¥ = (—ié’jyj+m)\li =iy'8,0 = 2 =i0y'6,0=iv'5,0.
- Quantisierung als Fermionen = gleichzeitige kanonische Antikommutatoren:
{Wa(r, ), 0, (1, )} =0, {W,(1, ), y(1, )} =i {Wa(r, 3), ¥, (¢, )} =169 (3-7).

x entwickele wieder nach Modenfunktionen positiver und nega-
tiver Frequenz (in manifest kovarianter Form)

1
Uz o(x)= ———u,(P)exp(—ip- x ,
o(X) Grp2E, o(P)exp(—ip _)pO_E
=Ep
1
Vs (%)= ——v,(P)exp(+ip - x ., E =+/m2+p2
hold)= g e PeRtp D) B p
=Ep

* U,(pP)und v, (p)geeignete Dirac-Spinoren, o € {1/2,—1/2}: Spin-
Freiheitsgrade

% wende gleich Feynman-Stiickelberg-Trick an: Moden mit posi-
tiver (negativer) Frequenz mit Vernichtern a(p, o) (Erzeugern
b'(p,0)

* dabei o € {1/2,—1/2} fiir $3-Eigenwerte

W(x)= f &*B > [a0(B)Up,o(x) + b}, () Vj o (2)]
R3 o

x Dirac-Gleichung: Teilchen- bzw. Antiteilchen-Dirac-Spinoren
(im Folgenden immer , on-shell-Bedingung® p° = E,Y

(p—mus(P)=0, (p+m)vy(P)=0.

* Wigner-Basis [wigs

16



- irreduzible Darstellung der O(1, 3)! = kann alle Zustinde zu 14 mit

p-p =m?>0,also p° = E, durch Boosts aus den Zustinden zu
p =0 erreichen:

Ep) _ g[™)_(coshn sinhni® m\ ( mcoshn
p ) "\0) \sinn#A (coshn—1)AAT+13)\ 0 ) \msinhni
Setze it = p/|p| = n = artanh(|p|/ E,) > 0.

- Lose Gleichungen fiir die Dirac-Spinoren u, () und v, () bei p =0

— definiere dann
ua(ﬁ) = DB,D uo'(a)» Va(ﬁ) = DB,D Ua(ﬁ)-

- da Drehungen p = 0 ungedndert lassen = Drehungen Standunter-
gruppe
- ,Wigner’s little group” fiir massive Darstellungen m >0

— wihle u,(0) und v, (0) als Eigenspinoren zu §S mit Eigenwerten o =
+1/2

- dann nur diese Zustidnde zu p = 0 haben definite spin-z-Kompo-
nente

3
— da kp nicht mit §S vertauschen ist das nicht der Fall fiir die Zustidnde
mit p #0
- Spin als intrinsische Teilcheneigenschaft: definiert im Ruhsystem
des Teilchens!

¢ Konstruktion der u,(p) und v, (p)
— Gleichungen fiir beliebige p mit p* = m*:
(p—m)us(p)=0, (p+m)vy(P)=0.
- Gleichungen fiir p =0= p =(m,0,0,0)"
1ue(©)=ug @), 1°v5(0)=-0,(0),

- im Ruhsystem des Teilchens: Teilchen (Antiteilchen) haben Paritit
1(-1)

17



- bestimme die linear unabhingigen Losungen als Eigenspinoren von
¢3.

53
(1 0

o0 =V | | = VI 0, 41/2), uip®)=vim| o | = vim0,-1/2)
\0 1
1 0

020 =vm _01 = Vmv'(0,+1/2), v_y(0)=vm (1) =vmuv’, ,(0).

* Boost zu p # 0-Zustinden

-

— boost um 1 = artanh(|p|/ E,) in Richtung von 7i = p/| j|

Uy (B) = Dppts(B)=Uy°us(0) = U uy(0),
Ve (B)=Dppvy(B) = U7 vy(0)=—U v,(0),
- ( C.OSh(T)/Z)_))
— \sinh(n/2)#n

— driicke Hyperbelfunktionen mit E,, und |3| aus

E 1+coshn E,+m
h :_Pzz h2 2)—1 h 2 :¢ :q £ ’
coshn - cosh(n/2) = cosh(n/2) 5 o
E coshn—1 E,—m
hn ==L =1+2sinh*n/2 inh 2:\] :\J’” .
coshn - +2sinh“(n/2) = sinh(n/2) 5 ™
- NB:



- Rechnung fiir u,(p):

m [(m+E)y p-y]u;(o)

=4 m+]p)u (0,0)

— analoge Rechung fiir v, (p):

\Z(E +m OU)

- Pseudoorthogonalitdtsrelationen

ﬁ)ua/(ﬁ) = zméo,o'» 70(?’))”0/(}_7)) = _2m50',0/y
ﬁ)VU’(ﬁ) :va(ﬁ)ua"(ﬁ) =0,
p

p

)]L uo’(ﬁ):2E5o’U” Vo‘(ﬁ)fvo"(ﬁ)ZZEéo'o"»
' v(=B,0") = v6(B) ug(—P) =

- Spinsummen: Definiere

AP)=> us(PVis(B), B(B)= va(P)0a(p)
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Wirkung auf Basis (u,(P), v, (P): verwende Pseudoorthogonalitéts-
relationen und p u,(p) = muy(p), pve(P)=—mus(p)

A(ﬁ)ug/(ﬁ)zzu02m6a,a/=2mug/(ﬁ)=m+m>ua/(ﬁ),

(ﬁ)va'/(ﬁ) (IP + m)l’a/(l?)
(ﬁ)ua/(ﬁ) 0=(p—m)ug(p)
B()vo(B) == 0(B)2m8 .51 =—2mue ()= (p — m)ve(P);

o

o> 2

U

AB)=D ueBYugB)=p+m, B(ﬁ)zZva(ﬁ)vg(ﬁ)=p—m,

AB)-B(B)= [ to(BYio(B)— vo(P)Vo (P )]=2m114-

o

Orthonormiertheit der Modenfunktionen

(Up,o) Upr ) = d%wa (DU (%) = 658D (B — B,

Vs Vi) = f EIU (DU o0 (5) = 8005 B ~ ),

(Vﬁva’Uﬁ’,a"):(Uﬁ/,U'/’Vﬁ,U)*:f dg)_c’V;U(l)Uﬁ/,a/(ﬁ):O
R3

damitund gleichzeitigen Antikommutaturrelationen der quantisier-
ten Dirac-Felder

{a,(B)ax(B")} ={as(P), bg/(ﬁ')} ={b, (), by (3} ={a,(B),b! (B} =0,
{ao'( ﬁ/ } {bo'(p ﬁ/)} = 500”5(3)(ﬁ - ﬁ/)

in ,Box-Regularisierung“ wie bei Klein-Gordon-Feld

27T
S PB—p)— 655, Pe—12°
(P—p)—0pp, P T

Besetzungzahl- oder Fock-Zustdnde: simultane Eigenzustédnde fiir
Na,(r(ﬁ) = ag(ﬁ)aa(ﬁ) und N b,o'(ﬁ) = b‘;(ve Cp)ba(ﬁ)
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- Nyu/po(P) €{0,1}, denn ajf(ﬁ) = 0 (wegen Antikommutatorregeln)
= Pauli-Verbot

(N (B Noo (B0 ) = [ ol P bl P )10
va

— Vakuumzustand
ao'(ﬁ) |Q> = ba(ﬁ) |Q> =

¢ Energie, Impuls, Drehimpuls und Ladung

- Normalordnung: bringe alle Erzeugungsoperatoren nach links alle
Vernichtungsoperatoren nach rechts

- beinhaltet dabei das Vorzeichen der Permutation, um von urspriing-
licher zur Normalordnung zu gelangen, z.B.

as(Plal, (") =—a,(B")a,(P).

* Energie (Hamilton-Operator): Noether bzgl. zeitlicher Translationsinva-
rianz

H= f ds?ci:w*(ﬁ)atq'(z)::Zf BE, N0 (B)+ N, ()]
R3 o JR3

- Erhaltungsgrofie

- positiv definit, Teilchenzahloperatoren haben die erwartete Bedeu-
tung

- hiétte nicht funktioniert, wenn wir bosonisch quantisiert hitten =
Spin-Statistik-Theorem: ganz- (halb-) zahliger Spin = Bosonen (Fer-
mionen)

¢ Ladung

- Noether von globaler Phasendnderungstransformation
Q= qf &% 0= qu d°BIN4,o(B)=Np,o(P)]

* Ubrige ErhaltungsgréBen, C, P, T = Ubungen
¢ Ergebnis

- Gesamt-Energie, -Impuls, -Drehimpuls, Energieschwerpunkt: er-
zeugen unitidre Darstellung der eigentlich orthochronen Poincaré-
Gruppe
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