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Motivation fiir relativistische
Quantenfeldtheorien

Literatur: 1191, Brso, Hob13, Fob24]
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Motivation fiir Feldquantisierung
» Physikalische Argumente
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StoLe von Teilchen bei ,, relativistischen Energien®

,relativistisch: AE > mc¢? = Teilchenerzeugung und -vernichtung
Quantenfeldtheorie (QFT):

bequemste Beschreibung von Quantentheorie bei nicht erhaltenen Teilchenzahlen
Versuch, 1. Quantisierung a la nichtrelativistische Quantenmechanik = nicht nach
unten beschrinkte Hamilton-Operatoren = kein stabiler Grundzustand
historisch: Diracs Theorie des Elektrons = Zwang, die ,Wellenfunktion“ ala 1.
Quantisierung als Vielteilchentheorie zu reinterpretieren

Dirac-See, Positronen als Locher

= Antiteilchen: Antielektron=Positron e* (gleiche Masse, Ladung +e)

versuche Teilchen in Box der Lange L einzusperren: Ax > L

minimaler Impuls @ ~Ap

bendtige fiir hinreichend kleine Ax Energie > mc?

anstatt einzelnes Teilchen zu lokalisieren: erzeuge stattdessen neue Teilchen
relativistische QT: Teilchen nicht beliebig genau lokalisierbar

fiir Teilchen in Ruhe Ax 2 -

~ mc
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Motivation fiir Feldquantisierung
> Theoretische Argumente

>

>
>
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es gibt keine endlichdimensionalen unitdren Darstellungen der Lorentz-Gruppe
(auler der trivialen)

einzige mogliche erst-quantisierte Theorie: skalares Feld?

klassisches freies Klein-Gordon-Feld: Energie nicht nach unten geschrénkt:
Feldmoden mit positiver und negativer Frequenz notwendig, damit sich Feld unter
Lorentz-Transformationen als Skalarfeld transformiert

kein erhaltener Strom mit positiv definiter Ladungsdichte

= Born-Regel inkonsistent fiir Einteilchenwellenfunktion

brauche offensichtlich auch Spin-1/2-Felder und Spin-1-Felder,...
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Motivation fiir Feldquantisierung

» Kanonische Quantisierung: klassische Wirkung, Lagrange- und Hamilton-Funktion
> relativistische klassische Punktteilchenmechanik
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beliebige Anzahl freier Teilchen = keine Probleme

1 Teilchen in (elektromagnetischem) duleren Feld:

muss zundchst ,Strahlungsriickwirkung“ vernachlédssigen

mit Strahlungsriickwirkung = Lorentz-Abraham-Dirac-Gleichung

= Akausalitédten: ,preacceleration®

muss storungstheoretische Ndherung machen = Landau-Lifshitz-Gleichung,
funktioniert aber nur in niedrigster Ordnung [Nak13, Roh07, Lec18]

Nogo-Theorem: keine relativistisch kovariante Hamilton-Theorie fiir wechselwirkendes
Vielteilchensystem (Leutwyler) [Leu65]
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Motivation fiir Feldquantisierung
> Ausweg: Feldquantisierung = Vielteilchentheorie
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hervorragender empirischer Erfolg

grundlegende Vorhersagen aller lokalen QFTn: Spin-Statistik-Theorem:

Teilchen mit ganzzahligem (halbzahligem) Spin notwendig Bosonen (Fermionen)
CPT-Theorem: bis dato stets mit hoher Prizision bestatigt

hochprizise Vorhersagen der QED: magnetische Momente von e~ und p.~, Lamb-
Shift bei (Wasserstoff-)Atomen = em. Feld muss Vakuumfluktuationen aufweisen
semiklassische Theorie (klassisches em. Feld, quantisierte Ladungen) reicht weit,
kann aber og. , Strahlungskorrekturen“ (hohere Ordnungen der Stérungstheorie)
nicht erkldren

spontane Emission = Quantisierung des elektromagnetischen Feldes notwendig
klare Bestiatigung auch durch Quantenoptik [SZ97, GC08]
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Motivation fiir Feldquantisierung

> Relativistische QFT

» im Vakuum: Beschreibung von Streuprozessen
= Berechnung von Streuquerschnitten (Stdrungstheorie)

» Vielteilchentheorie: thermodynamisches Gleichgewicht: Zustandsgleichung der
stark wechselwirkenden Materie

> Nichtgleichgewichtstheorie:
Herleitung von relativistischen Quanten-Transportgleichungen/Hydrodynamik zur
Beschreibung von Schwerionenst63en
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Quantisierung des freien
Klein-Gordon-Feldes

Literatur: (pes7o, col1s, Gros)
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Quantisiertes Klein-Gordon-Feld

» klassische Theorie (s. Ubung 5) fiir komplexes Skalarfeld
» Lagrangian (Poincaré-invariant):

£ =(3,9%)(0"®)— m*®*®
» kanonische Feldimpulse

0L _ g - 0L

u = = a ,
5(5,9) 2(3,9%)

> Feldgleichungen: Euler-Lagrange-Gleichungen
0¥
Il =0 = —== = —m*® = (O+m*)® =0,
0%
GuI! =00" = — = —m’®* = (O+m?*)®* =0
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Quantisiertes Klein-Gordon-Feld
» Kanonische Feldquantisierung

> im Heisenbergbild: nur Observablen-Operatoren zeitabhdngig

» Zustdnde zeitunabhingig

= reprasentieren ,Priparation des Systems“ zur Anfangszeit

kanonische Quantisierung: ® — ®, ®* — &'

Zeitargument der Felder: Zeit wie in nichtrelativistische QM als Parameter
Ortsargument der Felder: , Label” fiir unendlich viele Freiheitsgrade!

NB: Fiihre keine Operatoren fiir ,Ortskoordinaten® ein!

Zeit- und Ortskoordinaten x werden gleichartig als Parameter behandelt
kanonische gleichzeitige Vertauschungsrelationen fiir ® und I =1°:

VVYyVYYVYY

[®(z, %), %(t, y)]: . [(e, ®),1(z, 7)) =[@' (¢, 2),8'(r, 7)] =0
[®(z, %), 8"(, 7)]=0, [m(z,%),10(r,7)]=[&'(z, x’),é(r,?)]:o,
[«b(t,x’ LIz, 7)) =@, %), 8'(1, )] =16 (%~ 7),

[@'(e, ), 07(¢, 7)) = [#7(2, %), (2, 7)) =i69(% — 7).
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Quantisiertes Klein-Gordon-Feld
» Hamilton-operator (CAVEAT: Operatorordnungsproblem!)

H:f d3x%”(t,5c’):f dx [@(z, $)(t, X)+ (¢, D) (2, ) — 2]
R3 R3
=J dcx[(6,9'(¢, %))(0, (¢, %)+ (Vo' (2, %)) (Va(t, )+ m*®'(¢, %)®(¢, ¥)].
R3

> NB: s stimmt mit (quantisierter) Energiedichte £ = 0%
kanonischer Energie-Impuls-Operator vom Noether-Theorem tiberein
> = H reprdsentiert Energie
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Quantisiertes Klein-Gordon-Feld
» Bewegungsgleichungen

8,9(1, %)=+ ({1, %), H],

1

o (t,X)= : (®(r,X), H].

» und entsprechend fiir ' und I
> mit kanonischen Vertauschungsrelationen:

@O+ mH)e=0O+m>)d =0.

» Feldoperatoren erfiillen Klein-Gordon-Gleichung
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Quantisiertes Klein-Gordon-Feld
» Losungen der Operatorfeldgleichungen

> vollig analog zu klassischen Gleichungen (da lineare Gleichungen)
> verwende Resultate von Ubung Sheet 5
> Moden-Funktionen

exp(_i£'2)|p0:Ep’ Ep =V m2+ p’Z

up(x)=

(2m)32E,

> Normierungskonvention (NB: (®;,®,) indefinite Bilinearform!)

®,,0,)=i| d’x®, 5 =(ul, ul)=0, (u} uz)= 5)=6"

(@),®,)=1i x®y 0 @y, (up, ug)=(uzuz)=0, (uz, ugz)=—(ug, uz)=0""
R3

p

» Moden-Zerlegung des Feldoperators

P(X)= f & Bla(p)up(x) +b'(B)us(2)]
R3
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Quantisiertes Klein-Gordon-Feld
» Kommutatorregeln fiir a() und b(p)

a(p)=(u3,®), b(P)=(u} ")

> mit gleichzeitigen Kommutatorrelationen der Felder

[a(7),a(d)] =[a(),b(§)] = [b(B), b(§)] = [a(B),b'(§)] =0,
[a(p).a'(@)]=[b(A)b'(@)] = 6B~ )
> potentiell Probleme mit ¢ -Distributionen
» Regularisierung: endliches Volumen
> die §-Distribution ist problematisch (kontinuierliche Impulse, 7 € R®)
> ,Teilchen“ in endlichem Wiirfel der Kantenlédnge L

> mochte selbstadjungierten Operator —iV (Impuls in der 1. Quantisierung) =
periodische Randbedingungen

®(t,X+Lit)=®(t, %), ez’
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Quantisiertes Klein-Gordon-Feld

> Modenentwicklung wie im R® aber auf ¥ € V =[0, L]® beschrinkt
= Fourier-Reihe statt Fourier-Integral
527 a(x) => [a(B)us(x)+b'(B)us(x)]
p L ) 2 ﬁ p p\ZL p ﬁ 2

» Modenfunktionen
up(x)=N(P)exp(=ip - X)l po_p _ /mre
> Normierung

1

JV2E;

(u;,uﬁ)zj d2u5(x) 8, uz(x)= 655 = N(P)=
|4

1 .
up(x)= V2E; exp(_lg'iﬂpozb*ﬁ:\/mz__;_ﬁz
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Quantisiertes Klein-Gordon-Feld

Kerne & Teilchen 1
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analog wie im R3: Kommutatorrelationen

|=

4,
q.

[a(7),a(d)] =[a(),b(§)] = [b(B), b(§)] = [a(P), b'(q

[a().a"(§)]=[b(p).b'(d)] =654 ={

—

1 fur p=
0 fir p#
unendlich viele unabhéngige harmonische Oszillatoren

a(p) und b(p) vernichten Oszillatoranregungen mit Impuls p
a'(p) und b'(p) erzeugen Oszillatoranregungen mit Impuls 5
aund b verschiedenartige Anregungen

N, (p)=a'(p)a(p) Anzahloperator fiir ,a-Anregungen*

N, (B)=b'(B)b(p) Anzahloperator von ,, b-Anregungen®
verallgemeinertes VONS: Vakuumzustand (keine Anregungen):

Vp: a(p)l)=b(p)I2)=0
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Quantisiertes Klein-Gordon-Feld

> Besetzungszahldarstellung: VONS von gemeinsamen Eigenvektoren von N ,(7) und
N, (p) mit Eigenwerten N, (p), N, p € Ny =1{0,1,2,.

‘{N p) Nb l_[ \| — le PPN (P)P) )

» Teilcheninterpretation:

> Zustdnde invariant unter Vertauschung beliebiger p; = Teilchen Bosonen
> Teilchen in (relativistischer und nichtrelativistischer) QT nicht individualisierbar
» Teilchensorten nur unterscheibar durch intrinsische ,,Quantenzahlen“:
Masse, Spin s €{0,1/2,1,...}, Ladung(en)
> gleichartige Teilchen in Raumdimensionen d > 3:
> Bosonen (Zustdnde dndern sich nicht unter Vertauschung belieber Teilchenpaare)
> Fermionen (Zustdnde dndern Vorzeichen unter Vertauschung belieber Teilchenpaare)
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Quantisiertes Klein-Gordon-Feld

» Energie und Impuls

> from Noether’s theorem: kanonischer Energie-Impulstensor (s. Ubungen Sheet 5)
» quantisiert: CAVEAT: Operatorordnungsproblem!

1Y = (0+9") (0 "®) + (0 ®) (0@ — Ln*”
» Energie- und Impulsdichteoperatoren

£=0%=(3,8)'(5,®)+ (Vo) (Vb)+ m2d'®,
g=—(0,@"(Ve)—(Ve') s )

> Gesamt-Energie und -Impuls
_(HY_ [ . (e ﬁ) .
B‘(ﬁ)‘fvd "(gu,z))—zp](ﬁ [a(B)a(B)+b(B)b' ()]
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Quantisiertes Klein-Gordon-Feld
» Operatorordnungsproblem ergibt unendlichen Vakuumbeitrag

<ﬂ|z<ﬂ>=;(E;)

> [b(B),b'(§)] =8B —G) (c-Zahl)
» Normalordnung dndert bis auf eine divergierende c-Zahl-Konstante Energie- und
Impulsoperatoren nicht:

(Pi= dS*(f(t’)E))= (Ef)[ "(B)a()+b'(P)b(p)]
_fvxg(tx) ;papap p)b(p

» Normalordnungsvorschrift fiir Funkionen der Feldoperatoren: : ./ (x):

> schreibe ® und @' mit Erzeuger- und Vernichteroperatoren (Modenentwicklung)
> ordne alle Erzeuger ganz nach links und alle Vernichter ganz nach rechts
> vernachléssige c-Zahl-Kommutatoren zwischen Erzeugern und Vernichtern
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Quantisiertes Klein-Gordon-Feld
» QFT lost Probleme der 1. Quantisierung:

> Hamilton-Operator beschrankt nach unten: Gesamtenergieeigenwerte E >0
» Vakuum (keine Feldanregungen = keine Teilchen):

Pl)=0

> Moden mit positiver (negativer) Frequenz: Vernichter (Erzeuger) in
Modenentwicklung (Feynman-Stueckelberg-Trick)

> a#b: verschiedene Teilchenarten mit gleicher Masse

» intrinsische Quantenzahl zur Unterscheidung zwischen , a- und b-Teilchen“?
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Quantisiertes Klein-Gordon-Feld

» Ladungsquantenzahl
> Lagrangian invariant unter Phasenumdefinition der Felder bzw. Feldoperatoren

¥'(x)=exp(—iga)®(x), *(x)=exp(+iga)®’(x),

> g,a€R
> Noether: erhaltene Ladung (s. Ubungen Blatt 4)
> wende gleich Normalordnung an!

() =iq:9'(x) 9, ®:=iq :[#'(2)0,8(x)— (9,9 (x))]:

» Erhaltung der entsprechenden Ladung
Q= f E30x)=q Y _[Na(B)— Ny (P)]
v p

» qa-Teilchen trigt erhaltene Ladung g, b-Teilchen (—¢q)
» p-Teilchen ist Antiteilchen von a-Teilchen (und vice versa)
> Spezialfall: strikt neutrales Teilchen < b(p) = a(p) < ®'(x) = ®(x) & ju=0,Q=0
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Quantisiertes Klein-Gordon-Feld
» Zuriickzum R3 (,V, L — c0*)

> fiir L — oo: diskrete p € 277 /L mit 7 € Z3 riicken immer enger zusammen
> in Impulsvolumen A3p sind A37 = A3(B)V /(2n)® Zustidnde
» damit ergibt sich Limes fiir ,Fourier-Summen*“ — , Fourier-Integral

Ldg fd% 2.7 G

» geht man auch zu den urspriinglichen Modenfunktionen mit

1 1
V' V2E; - v/ (2m)32E;

N(p)=

zuriick, folgt in Modenentwicklung
f ol
2 R3
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Quantisiertes Klein-Gordon-Feld
» NB: durch Normalordnung keine Probleme mehr mit

Pp- f d3ﬁ(i;)[a*(ﬁ)a(ﬁ)+b*(ﬁ)b(ﬁ)].
R3

> N,(B)=a'(p)a(p) und N, () =a'(5)b(p) reprisentieren jetzt Teilchendichte pro
Impulsvolumen:
[a(P),a'(7)]= i69(G-p)
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Quantisiertes Klein-Gordon-Feld
» Diskrete Symmetrien

> Wigner-Theorem: Symmetrietransformationen immer stets durch unitdren oder
antiunitdren Operator auf Hilbert-Raum realisiert (cots

U unitar: U'=U", U@ Y1)+ [¢:)) =20 |g1)+ 4, U |1h,)
U antiunitir: U'=U"", U |y1)+ A |92) =250 |yh1) + A3 U [1h,))

> fiir stetig mit 1 zusammenh&ngend immer unitér
> fiir diskrete Symmetrien: kann auch antiunitdr realisiert sein
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25



Quantisiertes Klein-Gordon-Feld

» Raumspiegelungen
> Klein-Gordon-Gleichung auch invariant unter Raumspiegelungen

» zuerst fiir geladene Klein-Gordon-Felder
» dann kann man Phasenfaktoren in der Definition von P mittels Q
wegtransformieren = alle Realisierungen mit beliebigen Phasenfaktoren np

P&(x)P =1p®(Px)

dquivalent
> setze im folgenden: np =1
> versuche zuerst Realisierung mit unitdrem Operator
» soll sich unter P als Skalarfeld, also analog wie unter SO(1, 3)!-Transformationen
verhalten
PO(x)P =@(Px)= PP=1
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Quantisiertes Klein-Gordon-Feld
» Wirkung auf Erzeuger-Vernichter-Operatoren:

P<I>(£)P*=J d*B [ Pa(B)P u;(x)+ Pb'(B)P 5 (x)|20(P x)
R3
=f d&*Bla(p)uy(Px)+b'(Bus(Px)]
R3

:J d?
R3

_ f &P [al—p)up(x) + b (P)us )]
R3

= Pa(p)P'=a(—p), Pb(P)P'=b(—p)

[a(i)’)u,f,(l) + bt(ﬁ)uiﬁﬁ)] (substitutiere p — —p)

=i

=

> erwartetes Verhalten aus klassischer Physik: p =dX/dt — —p
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Quantisiertes Klein-Gordon-Feld
» Raumspiegelung fiir ungeladene Klein-Gordon-Felder

» &' =®: keine unitire Phasenumdefinitionstransformation mehr (Q =0)
> np=1(,skalares Feld“) oder np =—1 (pseudoskalares Feld)

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt
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Quantisiertes Klein-Gordon-Feld
> Klein-Gordon-Gleichung auch invariant unter Zeitspiegelungen

T(i)z(_f), Ta(x)T" = (7 x)

X X

> kann wieder 1 =1 setzen
> unitére Realisierung fithrt auf Widerspriiche mit Modenentwicklung! (’bung!)
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Quantisiertes Klein-Gordon-Feld
» antiunitdre Realisierung funktioniert:

ch(z)T*=f &*B [ Ta(B)uy(x) T+ T (F)us(x)T']
R3

= | &*B[Ta@) T uj(x)+ T ()T up(x)|2(1x)
R3

d*B [a(B)up(Tx)+ b (B)uy(T x)]

=

R3

&3p [a(ﬁ)ujﬁ@) +b' (ﬁ)u_ﬁ(g] (substitutiere p — —7)

R3

I
—

d&®Bla(—p)uj(x) + b (—B)us(2)]
R3
= Ta(p)T'=a(-p), Tb(B)T' =b(-p)

> CAVEAT: Bzgl. Wirkung auf Erzeuger und Vernichter sieht T wie P aus aber T
antiunitdr und P unitér!

Kerne & Teilchen 1 Hendrik van Hees Goethe-UIniversitit Frankfurt

20



Quantisiertes Klein-Gordon-Feld
» auch invariant unter Vertauschung von Teilchen mit Anti-Teilchen:
Ladungskonjugation

» unitdre Transformation

Ca(p)C'=b(p), Cb(B)C'=a(p),

» Wirkung auf Felder
Ce(x)C' =f d*B[ Ca(B)C'uy(x)+ CbY(B)C  us(x)]
R3

= f & Bb(B)up(x) +a' (B)us(x)] =#'(x)
R3

> = C%=1
> fiir strikt neutrales Klein-Gordon-Teilchen: C# C' = & < Teilchen = Antiteilchen
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Quantisiertes Klein-Gordon-Feld
> CPT

> @:= CPT (antiunitir): 0d(x)0"' =®'(P T x) =&’ (—x)

» Wirkung invariant unter CPT-Trafo!

> es gilt allgemein, dass jede lokale QFT mit selbstadjungierter Lorentz-invarianter
Lagrange-Dichte und bei Giiltigkeit des Spin-Statistik-Theorems auch CPT-
invariant ist

» empirisch bis dato hervorragend bestatigt

» CPT-Theorem von Pauli (1955), Liiders (1957) bewiesen
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