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Motivation für Feldquantisierung
▶ Physikalische Argumente
▶ Stöße von Teilchen bei „ relativistischen Energien“
▶ „relativistisch:∆E >m c 2⇒ Teilchenerzeugung und -vernichtung
▶ Quantenfeldtheorie (QFT):

bequemste Beschreibung von Quantentheorie bei nicht erhaltenen Teilchenzahlen
▶ Versuch, 1. Quantisierung a la nichtrelativistische Quantenmechanik⇒ nicht nach

unten beschränkte Hamilton-Operatoren⇒ kein stabiler Grundzustand
▶ historisch: Diracs Theorie des Elektrons⇒ Zwang, die „Wellenfunktion“ a la 1.

Quantisierung als Vielteilchentheorie zu reinterpretieren
▶ Dirac-See, Positronen als Löcher
▶ ⇒ Antiteilchen: Antielektron=Positron e+ (gleiche Masse, Ladung +e )
▶ versuche Teilchen in Box der Länge L einzusperren:∆x ≥ L
▶ minimaler Impuls 2πħh

L ≃∆p
▶ benötige für hinreichend kleine∆x Energie ≥m c 2

▶ anstatt einzelnes Teilchen zu lokalisieren: erzeuge stattdessen neue Teilchen
▶ relativistische QT: Teilchen nicht beliebig genau lokalisierbar
▶ für Teilchen in Ruhe∆x ≳ ħhm c
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Motivation für Feldquantisierung
▶ Theoretische Argumente
▶ es gibt keine endlichdimensionalen unitären Darstellungen der Lorentz-Gruppe

(außer der trivialen)
▶ einzige mögliche erst-quantisierte Theorie: skalares Feld?
▶ klassisches freies Klein-Gordon-Feld: Energie nicht nach unten geschränkt:
▶ Feldmoden mit positiver und negativer Frequenz notwendig, damit sich Feld unter

Lorentz-Transformationen als Skalarfeld transformiert
▶ kein erhaltener Strom mit positiv definiter Ladungsdichte
⇒ Born-Regel inkonsistent für Einteilchenwellenfunktion
▶ brauche offensichtlich auch Spin-1/2-Felder und Spin-1-Felder,...
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Motivation für Feldquantisierung
▶ Kanonische Quantisierung: klassische Wirkung, Lagrange- und Hamilton-Funktion
▶ relativistische klassische Punktteilchenmechanik

▶ beliebige Anzahl freier Teilchen⇒ keine Probleme
▶ 1 Teilchen in (elektromagnetischem) äußeren Feld:

muss zunächst „Strahlungsrückwirkung“ vernachlässigen
▶ mit Strahlungsrückwirkung⇒ Lorentz-Abraham-Dirac-Gleichung
⇒ Akausalitäten: „preacceleration“

▶ muss störungstheoretische Näherung machen⇒ Landau-Lifshitz-Gleichung,
funktioniert aber nur in niedrigster Ordnung [Nak13, Roh07, Lec18]

▶ Nogo-Theorem: keine relativistisch kovariante Hamilton-Theorie für wechselwirkendes
Vielteilchensystem (Leutwyler) [Leu65]
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Motivation für Feldquantisierung
▶ Ausweg: Feldquantisierung⇒ Vielteilchentheorie
▶ hervorragender empirischer Erfolg
▶ grundlegende Vorhersagen aller lokalen QFTn: Spin-Statistik-Theorem:

Teilchen mit ganzzahligem (halbzahligem) Spin notwendig Bosonen (Fermionen)
▶ CPT-Theorem: bis dato stets mit hoher Präzision bestätigt
▶ hochpräzise Vorhersagen der QED: magnetische Momente von e− und µ−, Lamb-

Shift bei (Wasserstoff-)Atomen⇒ em. Feld muss Vakuumfluktuationen aufweisen
▶ semiklassische Theorie (klassisches em. Feld, quantisierte Ladungen) reicht weit,

kann aber og. „Strahlungskorrekturen“ (höhere Ordnungen der Störungstheorie)
nicht erklären
▶ spontane Emission⇒Quantisierung des elektromagnetischen Feldes notwendig
▶ klare Bestätigung auch durch Quantenoptik [SZ97, GC08]
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Motivation für Feldquantisierung

▶ Relativistische QFT
▶ im Vakuum: Beschreibung von Streuprozessen
⇒ Berechnung von Streuquerschnitten (Störungstheorie)
▶ Vielteilchentheorie: thermodynamisches Gleichgewicht: Zustandsgleichung der

stark wechselwirkenden Materie
▶ Nichtgleichgewichtstheorie:

Herleitung von relativistischen Quanten-Transportgleichungen/Hydrodynamik zur
Beschreibung von Schwerionenstößen
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Quantisierung des freien
Klein-Gordon-Feldes

Literatur: [Pes79, Col18, GR96]
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Quantisiertes Klein-Gordon-Feld
▶ klassische Theorie (s. Übung 5) für komplexes Skalarfeld
▶ Lagrangian (Poincaré-invariant):

L = (∂µΦ∗)(∂ µΦ)−m 2Φ∗Φ

▶ kanonische Feldimpulse

Πµ =
∂L
∂ (∂µΦ)

= ∂ µΦ∗, Π∗µ =
∂L
∂ (∂µΦ∗)

= ∂ µΦ

▶ Feldgleichungen: Euler-Lagrange-Gleichungen

∂µΠ
∗µ =□Φ=

∂L
∂ Φ∗

=−m 2Φ ⇒ (□+m 2)Φ= 0,

∂µΠ
µ =□Φ∗ =

∂L
∂ Φ
=−m 2Φ∗ ⇒ (□+m 2)Φ∗ = 0
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Quantisiertes Klein-Gordon-Feld
▶ Kanonische Feldquantisierung
▶ im Heisenbergbild: nur Observablen-Operatoren zeitabhängig
▶ Zustände zeitunabhängig
⇒ repräsentieren „Präparation des Systems“ zur Anfangszeit
▶ kanonische Quantisierung: Φ→Φ, Φ∗→Φ†

▶ Zeitargument der Felder: Zeit wie in nichtrelativistische QM als Parameter
▶ Ortsargument der Felder: „Label“ für unendlich viele Freiheitsgrade!
▶ NB: Führe keine Operatoren für „Ortskoordinaten“ ein!
▶ Zeit- und Ortskoordinaten x werden gleichartig als Parameter behandelt
▶ kanonische gleichzeitige Vertauschungsrelationen für Φ und Π≡Π0:

�

Φ(t , x⃗ ),Φ(t , y⃗ )
�

= 0,
�

Π(t , x⃗ ),Π(t , y⃗ )
�

=
�

Φ̇
†(t , x⃗ ), Φ̇†(t , y⃗ )
�

= 0,
�

Φ(t , x⃗ ),Φ†(t , y⃗ )
�

= 0,
�

Π(t , x⃗ ),Π†(t , y⃗ )
�

=
�

Φ̇
†(t , x⃗ ), Φ̇(t , y⃗ )
�

= 0,
�

Φ(t , x⃗ ),Π(t , y⃗ )
�

=
�

Φ(t , x⃗ ), Φ̇†(t , y⃗ )
�

= iδ(3)(x⃗ − y⃗ ),
�

Φ†(t , x⃗ ),Π†(t , y⃗ )
�

=
�

Φ†(t , x⃗ ), Φ̇(t , y⃗ )
�

= iδ(3)(x⃗ − y⃗ ).
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Quantisiertes Klein-Gordon-Feld
▶ Hamilton-operator (CAVEAT: Operatorordnungsproblem!)

H =

∫

R3

d3 xH (t , x⃗ ) =

∫

R3

d3 x
�

Φ̇(t , x⃗ )Π(t , x⃗ ) + Φ̇†(t , x⃗ )Π†(t , x⃗ )−L
�

=

∫

R3

d3 x
��

∂tΦ
†(t , x⃗ )
�

(∂tΦ(t , x⃗ ))+
�

∇⃗Φ†(t , x⃗ )
� �

∇⃗Φ(t , x⃗ )
�

+m 2Φ†(t , x⃗ )Φ(t , x⃗ )
�

.

▶ NB:H stimmt mit (quantisierter) Energiedichte ϵ =Θ00

kanonischer Energie-Impuls-Operator vom Noether-Theorem überein
▶ ⇒ H repräsentiert Energie
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Quantisiertes Klein-Gordon-Feld
▶ Bewegungsgleichungen

∂tΦ(t , x⃗ ) =
1

i
[Φ(t , x⃗ ), H ] ,

∂tΠ(t , x⃗ ) =
1

i
[Φ(t , x⃗ ), H ] .

▶ und entsprechend für Φ† und Π†

▶ mit kanonischen Vertauschungsrelationen:

(□+m 2)Φ= (□+m 2)Φ† = 0.

▶ Feldoperatoren erfüllen Klein-Gordon-Gleichung
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Quantisiertes Klein-Gordon-Feld
▶ Lösungen der Operatorfeldgleichungen
▶ völlig analog zu klassischen Gleichungen (da lineare Gleichungen)
▶ verwende Resultate von Übung Sheet 5
▶ Moden-Funktionen

up⃗ (x ) =
1
Æ

(2π)32Ep

exp(−ix ·p )|p 0=Ep
, Ep =
Æ

m 2+ p⃗ 2

▶ Normierungskonvention (NB: (Φ1,Φ2) indefinite Bilinearform!)

(Φ1,Φ2) = i

∫

R3

d3 xΦ1
←→
∂t Φ2, (up⃗ , uq⃗ ) = (u

∗
p⃗ , u ∗q⃗ ) = 0, (u∗p⃗ , uq⃗ ) =−(uq⃗ , u ∗p⃗ ) =δ

(3)(p⃗−q⃗ )

▶ Moden-Zerlegung des Feldoperators

Φ(x⃗ ) =

∫

R3

d3p⃗ [a(p⃗ )up⃗ (x ) +b†(p⃗ )u∗p⃗ (x )]
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Quantisiertes Klein-Gordon-Feld
▶ Kommutatorregeln für a(p⃗ ) und b(p⃗ )

a(p⃗ ) = (u∗p⃗ ,Φ), b(p⃗ ) = (u∗p⃗ ,Φ†)

▶ mit gleichzeitigen Kommutatorrelationen der Felder
�

a(p⃗ ), a(q⃗ )
�

=
�

a(p⃗ ), b(q⃗ )
�

=
�

b(p⃗ ), b(q⃗ )
�

=
�

a(p⃗ ), b†(q⃗ )
�

= 0,
�

a(p⃗ ), a†(q⃗ )
�

=
�

b(p⃗ ), b†(q⃗ )
�

=δ(3)(p⃗ − q⃗ )

▶ potentiell Probleme mit δ-Distributionen
▶ Regularisierung: endliches Volumen
▶ die δ-Distribution ist problematisch (kontinuierliche Impulse, p⃗ ∈R3)
▶ „Teilchen“ in endlichem Würfel der Kantenlänge L
▶ möchte selbstadjungierten Operator −i∇⃗ (Impuls in der 1. Quantisierung)⇒

periodische Randbedingungen

Φ(t , x⃗ + Ln⃗ ) =Φ(t , x⃗ ), n⃗ ∈Z3
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Quantisiertes Klein-Gordon-Feld

▶ Modenentwicklung wie im R3 aber auf x⃗ ∈V = [0, L ]3 beschränkt
⇒ Fourier-Reihe statt Fourier-Integral

p⃗ ∈
2π

L
Z3, Φ(x ) =
∑

p⃗

�

a(p⃗ )up⃗ (x ) +b†(p⃗ )u ∗p⃗ (x )
�

▶ Modenfunktionen

up⃗ (x ) =N (p⃗ )exp(−ip · x )|p 0=Ep⃗=
p

m 2+p⃗ 2

▶ Normierung

(u∗p⃗ , uq⃗ ) =

∫

V

d3 x⃗ u ∗p⃗ (x )
←→
∂t uq⃗ (x )

!=δp⃗ ,q⃗ ⇒ N (p⃗ ) =
1
Æ

V 2Ep⃗

up⃗ (x ) =
1
Æ

V 2Ep⃗

exp(−ip · x )|p 0=Ep⃗=
p

m 2+p⃗ 2
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Quantisiertes Klein-Gordon-Feld

▶ analog wie im R3: Kommutatorrelationen

�

a(p⃗ ), a(q⃗ )
�

=
�

a(p⃗ ), b(q⃗ )
�

=
�

b(p⃗ ), b(q⃗ )
�

=
�

a(p⃗ ), b†(q⃗ )
�

= 0,

�

a(p⃗ ), a†(q⃗ )
�

=
�

b(p⃗ ), b†(q⃗ )
�

=δp⃗ ,q⃗ =

¨

1 für p⃗ = q⃗ ,

0 für p⃗ ̸= q⃗ .

▶ unendlich viele unabhängige harmonische Oszillatoren
▶ a(p⃗ ) und b(p⃗ ) vernichten Oszillatoranregungen mit Impuls p⃗
▶ a†(p⃗ ) und b†(p⃗ ) erzeugen Oszillatoranregungen mit Impuls p⃗
▶ a und b verschiedenartige Anregungen
▶ N a (p⃗ ) = a†(p⃗ )a(p⃗ ) Anzahloperator für „a -Anregungen“
▶ N b (p⃗ ) = b†(p⃗ )b(p⃗ ) Anzahloperator von „b -Anregungen“
▶ verallgemeinertes VONS: Vakuumzustand (keine Anregungen):

∀p⃗ : a(p⃗ ) |Ω〉= b(p⃗ ) |Ω〉= 0
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Quantisiertes Klein-Gordon-Feld
▶ Besetzungszahldarstellung: VONS von gemeinsamen Eigenvektoren von N a (p⃗ ) und

N b (p⃗ )mit Eigenwerten Na (p⃗ ), Nb p⃗ ∈N0 = {0, 1, 2, . . .}:

�

�{Na (p⃗ ), Nb (p⃗ )}
�

=
∏

p⃗

√

√ 1

Na (p⃗ )!Nb (p⃗ !)
a†Na (p⃗ )(p⃗ )b†Nb (p⃗ )(p⃗ ) |Ω〉

▶ Teilcheninterpretation:
▶ Zustände invariant unter Vertauschung beliebiger p⃗k ⇒ Teilchen Bosonen
▶ Teilchen in (relativistischer und nichtrelativistischer) QT nicht individualisierbar
▶ Teilchensorten nur unterscheibar durch intrinsische „Quantenzahlen“:

Masse, Spin s ∈ {0, 1/2, 1, . . .}, Ladung(en)
▶ gleichartige Teilchen in Raumdimensionen d ≥ 3:

▶ Bosonen (Zustände ändern sich nicht unter Vertauschung belieber Teilchenpaare)
▶ Fermionen (Zustände ändern Vorzeichen unter Vertauschung belieber Teilchenpaare)
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Quantisiertes Klein-Gordon-Feld

▶ Energie und Impuls
▶ from Noether’s theorem: kanonischer Energie-Impulstensor (s. Übungen Sheet 5)
▶ quantisiert: CAVEAT: Operatorordnungsproblem!

Θµν = (∂ µΦ†)(∂ νΦ) + (∂ µΦ)(∂ νΦ†)−Lηµν

▶ Energie- und Impulsdichteoperatoren

ϵ =Θ00 = (∂tΦ)
†(∂tΦ) + (∇⃗Φ†) · (∇⃗Φ) +m 2Φ†Φ,

g⃗=−(∂tΦ
†)(∇⃗Φ)− (∇⃗Φ†)(∂tΦ).

▶ Gesamt-Energie und -Impuls

P =

�

H

P⃗

�

=

∫

V

d3 x⃗

�

ϵ(t , x⃗ )
g⃗(t , x⃗ )

�

=
∑

p⃗

�

Ep⃗

p⃗

�

[a†(p⃗ )a(p⃗ ) +b(p⃗ )b†(p⃗ )]
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Quantisiertes Klein-Gordon-Feld
▶ Operatorordnungsproblem ergibt unendlichen Vakuumbeitrag




Ω
�

�P
�

�Ω
�

=
∑

p⃗

�

Ep⃗

p⃗

�

▶
�

b(p⃗ ), b†(q⃗ )
�

=δ(3)(p⃗ − q⃗ ) (c-Zahl!)
▶ Normalordnung ändert bis auf eine divergierende c-Zahl-Konstante Energie- und

Impulsoperatoren nicht:

: P :=

∫

V

d3 x⃗

�

ϵ(t , x⃗ )
g⃗(t , x⃗ )

�

=
∑

p⃗

�

Ep⃗

p⃗

�

[a†(p⃗ )a(p⃗ ) +b†(p⃗ )b(p⃗ )]

▶ Normalordnungsvorschrift für Funkionen der Feldoperatoren: :A (x ) :
▶ schreibe Φ und Φ† mit Erzeuger- und Vernichteroperatoren (Modenentwicklung)
▶ ordne alle Erzeuger ganz nach links und alle Vernichter ganz nach rechts
▶ vernachlässige c-Zahl-Kommutatoren zwischen Erzeugern und Vernichtern
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Quantisiertes Klein-Gordon-Feld
▶ QFT löst Probleme der 1. Quantisierung:
▶ Hamilton-Operator beschränkt nach unten: Gesamtenergieeigenwerte E ≥ 0
▶ Vakuum (keine Feldanregungen =̂ keine Teilchen):

P |Ω〉= 0

▶ Moden mit positiver (negativer) Frequenz: Vernichter (Erzeuger) in
Modenentwicklung (Feynman-Stueckelberg-Trick)
▶ a ̸= b: verschiedene Teilchenarten mit gleicher Masse
▶ intrinsische Quantenzahl zur Unterscheidung zwischen „a - und b -Teilchen“?
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Quantisiertes Klein-Gordon-Feld
▶ Ladungsquantenzahl
▶ Lagrangian invariant unter Phasenumdefinition der Felder bzw. Feldoperatoren

Φ′(x ) = exp(−iqα)Φ(x ), Φ′†(x ) = exp(+iqα)Φ†(x ),

▶ q ,α ∈R
▶ Noether: erhaltene Ladung (s. Übungen Blatt 4)
▶ wende gleich Normalordnung an!

jµ(x ) = iq :Φ†(x )
←→
∂µ Φ := iq :
�

Φ†(x )∂µΦ(x )−
�

∂µΦ
†(x )
��

:

▶ Erhaltung der entsprechenden Ladung

Q =

∫

V

d3 x⃗ j0(x ) = q
∑

p⃗

�

N a (p⃗ )− N b (p⃗ )
�

▶ a -Teilchen trägt erhaltene Ladung q , b -Teilchen (−q )
▶ b -Teilchen ist Antiteilchen von a -Teilchen (und vice versa)
▶ Spezialfall: strikt neutrales Teilchen⇔ b(p⃗ ) = a(p⃗ )⇔ Φ†(x ) =Φ(x )⇔ jµ ≡ 0, Q ≡ 0
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Quantisiertes Klein-Gordon-Feld
▶ Zurück zum R3 („V , L→∞“)
▶ für L→∞: diskrete p⃗ ∈ 2πn⃗/L mit n⃗ ∈Z3 rücken immer enger zusammen
▶ in Impulsvolumen∆3p⃗ sind∆3n⃗ =∆3(p⃗ )V /(2π)3 Zustände
▶ damit ergibt sich Limes für „Fourier-Summen“→ „Fourier-Integral“

∫

V

d3 x⃗ →
∫

R3

d3 x⃗ ,
∑

p⃗

→V

∫

R3

d3p⃗

(2π)3

▶ geht man auch zu den ursprünglichen Modenfunktionen mit

N (p⃗ ) =
1
Æ

V 2Ep⃗

→
1
Æ

(2π)32Ep⃗

zurück, folgt in Modenentwicklung

∑

p⃗

→
∫

R3

d3p⃗
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Quantisiertes Klein-Gordon-Feld
▶ NB: durch Normalordnung keine Probleme mehr mit

P =

∫

R3

d3p⃗

�

Ep

p⃗

�

�

a†(p⃗ )a(p⃗ ) +b†(p⃗ )b(p⃗ )
�

.

▶ N a (p⃗ ) = a†(p⃗ )a(p⃗ ) und N b (p⃗ ) = a†(p⃗ )b(p⃗ ) repräsentieren jetzt Teilchendichte pro
Impulsvolumen:

�

a(p⃗ ), a†(q⃗ )
�

= iδ(3)(q⃗ − p⃗ )
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Quantisiertes Klein-Gordon-Feld
▶ Diskrete Symmetrien
▶ Wigner-Theorem: Symmetrietransformationen immer stets durch unitären oder

antiunitären Operator auf Hilbert-Raum realisiert [Got89]

U unitär : U † = U−1, U (λ1

�

�ψ1

�

+λ2

�

�ψ2

�

) =λ1 U
�

�ψ1

�

+λ2 U
�

�ψ2

�

)

U antiunitär : U † = U−1, U (λ1

�

�ψ1

�

+λ2

�

�ψ2

�

) =λ∗1 U
�

�ψ1

�

+λ∗2 U
�

�ψ2

�

)

▶ für stetig mit 1 zusammenhängend immer unitär
▶ für diskrete Symmetrien: kann auch antiunitär realisiert sein
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Quantisiertes Klein-Gordon-Feld
▶ Raumspiegelungen
▶ Klein-Gordon-Gleichung auch invariant unter Raumspiegelungen

P̂

�

t

x⃗

�

=

�

t

−x⃗

�

▶ zuerst für geladene Klein-Gordon-Felder
▶ dann kann man Phasenfaktoren in der Definition von P mittels Q

wegtransformieren⇒ alle Realisierungen mit beliebigen Phasenfaktoren ηP

PΦ(x )P =ηPΦ(P̂ x )

äquivalent
▶ setze im folgenden: ηP = 1
▶ versuche zuerst Realisierung mit unitärem Operator
▶ soll sich unter P̂ als Skalarfeld, also analog wie unter SO(1, 3)↑-Transformationen

verhalten
PΦ(x )P † =Φ(P̂ x ) ⇒ P P =1
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Quantisiertes Klein-Gordon-Feld
▶ Wirkung auf Erzeuger-Vernichter-Operatoren:

PΦ(x )P † =

∫

R3

d3p⃗
�

Pa(p⃗ )P †up⃗ (x ) + Pb†(p⃗ )P †u ∗p⃗ (x )
�

=̂Φ(P̂ x )

=

∫

R3

d3p⃗
�

a(p⃗ )up⃗ (P̂ x ) +b†(p⃗ )u ∗p⃗ (P̂ x )
�

=

∫

R3

d3p⃗
�

a(p⃗ )u−p⃗ (x ) +b†(p⃗ )u ∗−p⃗ x )
�

(substitutiere p⃗ →−p⃗ )

=

∫

R3

d3p⃗
�

a(−p⃗ )up⃗ (x ) +b†(−p⃗ )u ∗p⃗ x )
�

⇒ Pa(p⃗ )P † = a(−p⃗ ), Pb(p⃗ )P † = b(−p⃗ )

▶ erwartetes Verhalten aus klassischer Physik: p⃗ = dx⃗/dt 7→ −p⃗
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Quantisiertes Klein-Gordon-Feld
▶ Raumspiegelung für ungeladene Klein-Gordon-Felder
▶ Φ† =Φ: keine unitäre Phasenumdefinitionstransformation mehr (Q̂ = 0)
▶ ηP = 1 („skalares Feld“) oder ηP =−1 (pseudoskalares Feld)
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Quantisiertes Klein-Gordon-Feld
▶ Klein-Gordon-Gleichung auch invariant unter Zeitspiegelungen

T̂

�

t

x⃗

�

=

�

−t

x⃗

�

, TΦ(x )T † =Φ(T̂ x )

▶ kann wieder ηT = 1 setzen
▶ unitäre Realisierung führt auf Widersprüche mit Modenentwicklung! (Übung!)
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Quantisiertes Klein-Gordon-Feld
▶ antiunitäre Realisierung funktioniert:

TΦ(x )T † =

∫

R3

d3p⃗
�

T a(p⃗ )up⃗ (x )T
†+ T b†(p⃗ )u ∗p⃗ (x )T

†
�

=

∫

R3

d3p⃗
�

T a(p⃗ )T †u ∗p⃗ (x ) + T b†(p⃗ )T †up⃗ (x )
�

=̂Φ(T̂ x )

=

∫

R3

d3p⃗
�

a(p⃗ )up⃗ (T̂ x ) +b†(p⃗ )u ∗p⃗ (T̂ x )
�

=

∫

R3

d3p⃗
�

a(p⃗ )u ∗−p⃗ (x ) +b†(p⃗ )u−p⃗ (x )
�

(substitutiere p⃗ →−p⃗ )

=

∫

R3

d3p⃗
�

a(−p⃗ )u ∗p⃗ (x ) +b†(−p⃗ )up⃗ (x )
�

⇒ T a(p⃗ )T † = a(−p⃗ ), T b(p⃗ )T † = b(−p⃗ )

▶ CAVEAT: Bzgl. Wirkung auf Erzeuger und Vernichter sieht T wie P aus aber T
antiunitär und P unitär!
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Quantisiertes Klein-Gordon-Feld
▶ auch invariant unter Vertauschung von Teilchen mit Anti-Teilchen:

Ladungskonjugation

▶ unitäre Transformation

Ca(p⃗ )C † = b(p⃗ ), Cb(p⃗ )C † = a(p⃗ ),

▶ Wirkung auf Felder

CΦ(x )C † =

∫

R3

d3p⃗
�

Ca(p⃗ )C †up⃗ (x ) + Cb†(p⃗ )C †u ∗p⃗ (x )
�

=

∫

R3

d3p⃗
�

b(p⃗ )up⃗ (x ) +a†(p⃗ )u∗p⃗ (x )
�

=Φ†(x )

▶ ⇒ C 2 =1
▶ für strikt neutrales Klein-Gordon-Teilchen: CΦC † =Φ⇔ Teilchen ≡ Antiteilchen
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Quantisiertes Klein-Gordon-Feld
▶ CPT
▶ Θ := C P T (antiunitär): ΘΦ(x )Θ† =Φ†(P̂ T̂ x ) =Φ†(−x )
▶ Wirkung invariant unter CPT-Trafo!
▶ es gilt allgemein, dass jede lokale QFT mit selbstadjungierter Lorentz-invarianter

Lagrange-Dichte und bei Gültigkeit des Spin-Statistik-Theorems auch CPT-
invariant ist
▶ empirisch bis dato hervorragend bestätigt
▶ CPT-Theorem von Pauli (1955), Lüders (1957) bewiesen
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