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Quantenfeldtheorien
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Motivation für Feldquantisierung

• Physikalische Argumente

– Stöße von Teilchen bei „ relativistischen Energien“

– „relativistisch:∆E >m c 2⇒ Teilchenerzeugung und -vernichtung

– Quantenfeldtheorie (QFT): bequemste Beschreibung von Quanten-
theorie bei nicht erhaltenen Teilchenzahlen

– Versuch, 1. Quantisierung a la nichtrelativistische Quantenmecha-
nik⇒ nicht nach unten beschränkte Hamilton-Operatoren⇒ kein
stabiler Grundzustand

– historisch: Diracs Theorie des Elektrons⇒Zwang, die „Wellenfunk-
tion“ a la 1. Quantisierung als Vielteilchentheorie zu reinterpretie-
ren

– Dirac-See, Positronen als Löcher

– ⇒ Antiteilchen: Antielektron=Positron e+ (gleiche Masse, Ladung
+e )

– versuche Teilchen in Box der Länge L einzusperren:∆x ≥ L

– minimaler Impuls 2πħh
L ≃∆p

– benötige für hinreichend kleine∆x Energie ≥m c 2

– anstatt einzelnes Teilchen zu lokalisieren: erzeuge stattdessen neue
Teilchen

– relativistische QT: Teilchen nicht beliebig genau lokalisierbar

– für Teilchen in Ruhe∆x ≳ ħhm c

• Theoretische Argumente

– es gibt keine endlichdimensionalen unitären Darstellungen der Lor-
entz-Gruppe (außer der trivialen)

– einzige mögliche erst-quantisierte Theorie: skalares Feld?

– klassisches freies Klein-Gordon-Feld: Energie nicht nach unten ge-
schränkt:

– Feldmoden mit positiver und negativer Frequenz notwendig, damit
sich Feld unter Lorentz-Transformationen als Skalarfeld transfor-
miert
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– kein erhaltener Strom mit positiv definiter Ladungsdichte ⇒ Born-
Regel inkonsistent für Einteilchenwellenfunktion

– brauche offensichtlich auch Spin-1/2-Felder und Spin-1-Felder,...

– Kanonische Quantisierung: klassische Wirkung, Lagrange- und Ha-
milton-Funktion

– relativistische klassische Punktteilchenmechanik

* beliebige Anzahl freier Teilchen⇒ keine Probleme

* 1 Teilchen in (elektromagnetischem) äußeren Feld: muss zu-
nächst „Strahlungsrückwirkung“ vernachlässigen

* mit Strahlungsrückwirkung⇒Lorentz-Abraham-Dirac-Gleichung
⇒ Akausalitäten: „preacceleration“

* muss störungstheoretische Näherung machen⇒ Landau-Lifs-
hitz-Gleichung, funktioniert aber nur in niedrigster Ordnung
[Nak13, Roh07, Lec18]

* Nogo-Theorem: keine relativistisch kovariante Hamilton-Theo-
rie für wechselwirkendes Vielteilchensystem (Leutwyler) [Leu65]

• Ausweg: Feldquantisierung⇒ Vielteilchentheorie

– hervorragender empirischer Erfolg

– grundlegende Vorhersagen aller lokalen QFTn: Spin-Statistik-Theo-
rem: Teilchen mit ganzzahligem (halbzahligem) Spin notwendig
Bosonen (Fermionen)

– CPT-Theorem: bis dato stets mit hoher Präzision bestätigt

– hochpräzise Vorhersagen der QED: magnetische Momente von e−

undµ−, Lamb-Shift bei (Wasserstoff-)Atomen⇒ em. Feld muss Va-
kuumfluktuationen aufweisen

– semiklassische Theorie (klassisches em. Feld, quantisierte Ladun-
gen) reicht weit, kann aber og. „Strahlungskorrekturen“ (höhere Ord-
nungen der Störungstheorie) nicht erklären

– spontane Emission⇒Quantisierung des elektromagnetischen Fel-
des notwendig

– klare Bestätigung auch durch Quantenoptik [SZ97, GC08]

• Relativistische QFT
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– im Vakuum: Beschreibung von Streuprozessen ⇒ Berechnung von
Streuquerschnitten (Störungstheorie)

– Vielteilchentheorie: thermodynamisches Gleichgewicht: Zustands-
gleichung der stark wechselwirkenden Materie

– Nichtgleichgewichtstheorie: Herleitung von relativistischen Quan-
ten-Transportgleichungen/Hydrodynamik zur Beschreibung von Schwe-
rionenstößen

2 Quantisierung des freien Klein-Gordon-Feldes

Quantisierung des freien Klein-
Gordon-Feldes

Literatur: [Pes79, Col18, GR96]
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Quantisiertes Klein-Gordon-Feld

• klassische Theorie (s. Übung 5) für komplexes Skalarfeld

– Lagrangian (Poincaré-invariant):

L = (∂µΦ∗)(∂ µΦ)−m 2Φ∗Φ

– kanonische Feldimpulse

Πµ =
∂L
∂ (∂µΦ)

= ∂ µΦ∗, Π∗µ =
∂L
∂ (∂µΦ∗)

= ∂ µΦ

– Feldgleichungen: Euler-Lagrange-Gleichungen

∂µΠ
∗µ =□Φ=

∂L
∂ Φ∗

=−m 2Φ ⇒ (□+m 2)Φ= 0,

∂µΠ
µ =□Φ∗ =

∂L
∂ Φ
=−m 2Φ∗ ⇒ (□+m 2)Φ∗ = 0

• Kanonische Feldquantisierung

– im Heisenbergbild: nur Observablen-Operatoren zeitabhängig

– Zustände zeitunabhängig ⇒ repräsentieren „Präparation des Sys-
tems“ zur Anfangszeit

– kanonische Quantisierung: Φ→Φ, Φ∗→Φ†

– Zeitargument der Felder: Zeit wie in nichtrelativistische QM als Pa-
rameter

– Ortsargument der Felder: „Label“ für unendlich viele Freiheitsgra-
de!

– NB: Führe keine Operatoren für „Ortskoordinaten“ ein!

– Zeit- und Ortskoordinaten x werden gleichartig als Parameter be-
handelt
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– kanonische gleichzeitige Vertauschungsrelationen für Φ und Π ≡
Π0:
�

Φ(t , x⃗ ),Φ(t , y⃗ )
�

= 0,
�

Π(t , x⃗ ),Π(t , y⃗ )
�

=
�

Φ̇
†(t , x⃗ ), Φ̇†(t , y⃗ )
�

= 0,
�

Φ(t , x⃗ ),Φ†(t , y⃗ )
�

= 0,
�

Π(t , x⃗ ),Π†(t , y⃗ )
�

=
�

Φ̇
†(t , x⃗ ), Φ̇(t , y⃗ )
�

= 0,
�

Φ(t , x⃗ ),Π(t , y⃗ )
�

=
�

Φ(t , x⃗ ), Φ̇†(t , y⃗ )
�

= iδ(3)(x⃗ − y⃗ ),
�

Φ†(t , x⃗ ),Π†(t , y⃗ )
�

=
�

Φ†(t , x⃗ ), Φ̇(t , y⃗ )
�

= iδ(3)(x⃗ − y⃗ ).

• Hamilton-operator (CAVEAT: Operatorordnungsproblem!)

H =

∫

R3

d3 xH (t , x⃗ ) =

∫

R3

d3 x
�

Φ̇(t , x⃗ )Π(t , x⃗ ) + Φ̇†(t , x⃗ )Π†(t , x⃗ )−L
�

=

∫

R3

d3 x
��

∂tΦ
†(t , x⃗ )
�

(∂tΦ(t , x⃗ ))+
�

∇⃗Φ†(t , x⃗ )
� �

∇⃗Φ(t , x⃗ )
�

+m 2Φ†(t , x⃗ )Φ(t , x⃗ )
�

.

– NB: H stimmt mit (quantisierter) Energiedichte ϵ = Θ00 kanoni-
scher Energie-Impuls-Operator vom Noether-Theorem überein

– ⇒ H repräsentiert Energie

• Bewegungsgleichungen

∂tΦ(t , x⃗ ) =
1

i
[Φ(t , x⃗ ), H ] ,

∂tΠ(t , x⃗ ) =
1

i
[Φ(t , x⃗ ), H ] .

– und entsprechend für Φ† und Π†

– mit kanonischen Vertauschungsrelationen:

(□+m 2)Φ= (□+m 2)Φ† = 0.

– Feldoperatoren erfüllen Klein-Gordon-Gleichung

• Lösungen der Operatorfeldgleichungen

– völlig analog zu klassischen Gleichungen (da lineare Gleichungen)

– verwende Resultate von Übung Sheet 5
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– Moden-Funktionen

up⃗ (x ) =
1
Æ

(2π)32Ep

exp(−ix ·p )|p 0=Ep
, Ep =
Æ

m 2+ p⃗ 2

– Normierungskonvention (NB: (Φ1,Φ2) indefinite Bilinearform!)

(Φ1,Φ2) = i

∫

R3

d3 xΦ1
←→
∂t Φ2, (up⃗ , uq⃗ ) = (u

∗
p⃗ , u∗q⃗ ) = 0, (u∗p⃗ , uq⃗ ) =−(uq⃗ , u∗p⃗ ) =δ

(3)(p⃗−q⃗ )

– Moden-Zerlegung des Feldoperators

Φ(x⃗ ) =

∫

R3

d3p⃗ [a(p⃗ )up⃗ (x ) +b†(p⃗ )u∗p⃗ (x )]

• Kommutatorregeln für a(p⃗ ) und b(p⃗ )

a(p⃗ ) = (u∗p⃗ ,Φ), b(p⃗ ) = (u∗p⃗ ,Φ†)

– mit gleichzeitigen Kommutatorrelationen der Felder

�

a(p⃗ ), a(q⃗ )
�

=
�

a(p⃗ ), b(q⃗ )
�

=
�

b(p⃗ ), b(q⃗ )
�

=
�

a(p⃗ ), b†(q⃗ )
�

= 0,
�

a(p⃗ ), a†(q⃗ )
�

=
�

b(p⃗ ), b†(q⃗ )
�

=δ(3)(p⃗ − q⃗ )

– potentiell Probleme mit δ-Distributionen

• Regularisierung: endliches Volumen

– die δ-Distribution ist problematisch (kontinuierliche Impulse, p⃗ ∈
R3)

– „Teilchen“ in endlichem Würfel der Kantenlänge L

– möchte selbstadjungierten Operator −i∇⃗ (Impuls in der 1. Quanti-
sierung)⇒ periodische Randbedingungen

Φ(t , x⃗ + Ln⃗ ) =Φ(t , x⃗ ), n⃗ ∈Z3

– Modenentwicklung wie im R3 aber auf x⃗ ∈ V = [0, L ]3 beschränkt
⇒ Fourier-Reihe statt Fourier-Integral

p⃗ ∈
2π

L
Z3, Φ(x ) =
∑

p⃗

�

a(p⃗ )up⃗ (x ) +b†(p⃗ )u∗p⃗ (x )
�
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– Modenfunktionen

up⃗ (x ) =N (p⃗ )exp(−ip · x )|p 0=Ep⃗=
p

m 2+p⃗ 2

– Normierung

(u∗p⃗ , uq⃗ ) =

∫

V

d3 x⃗ u∗p⃗ (x )
←→
∂t uq⃗ (x )

!=δp⃗ ,q⃗ ⇒ N (p⃗ ) =
1
Æ

V 2Ep⃗

up⃗ (x ) =
1
Æ

V 2Ep⃗

exp(−ip · x )|p 0=Ep⃗=
p

m 2+p⃗ 2

– analog wie im R3: Kommutatorrelationen
�

a(p⃗ ), a(q⃗ )
�

=
�

a(p⃗ ), b(q⃗ )
�

=
�

b(p⃗ ), b(q⃗ )
�

=
�

a(p⃗ ), b†(q⃗ )
�

= 0,

�

a(p⃗ ), a†(q⃗ )
�

=
�

b(p⃗ ), b†(q⃗ )
�

=δp⃗ ,q⃗ =

¨

1 für p⃗ = q⃗ ,

0 für p⃗ ̸= q⃗ .

– unendlich viele unabhängige harmonische Oszillatoren

– a(p⃗ ) und b(p⃗ ) vernichten Oszillatoranregungen mit Impuls p⃗

– a†(p⃗ ) und b†(p⃗ ) erzeugen Oszillatoranregungen mit Impuls p⃗

– a und b verschiedenartige Anregungen

– N a (p⃗ ) = a†(p⃗ )a(p⃗ ) Anzahloperator für „a -Anregungen“

– N b (p⃗ ) = b†(p⃗ )b(p⃗ ) Anzahloperator von „b -Anregungen“

– verallgemeinertes VONS: Vakuumzustand (keine Anregungen):

∀p⃗ : a(p⃗ ) |Ω〉= b(p⃗ ) |Ω〉= 0

– Besetzungszahldarstellung: VONS von gemeinsamen Eigenvekto-
ren von N a (p⃗ )und N b (p⃗ )mit Eigenwerten Na (p⃗ ), Nb p⃗ ∈N0 = {0, 1, 2, . . .}:

�

�{Na (p⃗ ), Nb (p⃗ )}
�

=
∏

p⃗

√

√ 1

Na (p⃗ )!Nb (p⃗ !)
a†Na (p⃗ )(p⃗ )b†Nb (p⃗ )(p⃗ ) |Ω〉

• Teilcheninterpretation:

– Zustände invariant unter Vertauschung beliebiger p⃗k ⇒ Teilchen
Bosonen

– Teilchen in (relativistischer und nichtrelativistischer) QT nicht in-
dividualisierbar
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– Teilchensorten nur unterscheibar durch intrinsische „Quantenzah-
len“: Masse, Spin s ∈ {0, 1/2, 1, . . .}, Ladung(en)

– gleichartige Teilchen in Raumdimensionen d ≥ 3:

* Bosonen (Zustände ändern sich nicht unter Vertauschung be-
lieber Teilchenpaare)

* Fermionen (Zustände ändern Vorzeichen unter Vertauschung
belieber Teilchenpaare)

• Energie und Impuls

– from Noether’s theorem: kanonischer Energie-Impulstensor (s. Übun-
gen Sheet 5)

– quantisiert: CAVEAT: Operatorordnungsproblem!

Θµν = (∂ µΦ†)(∂ νΦ) + (∂ µΦ)(∂ νΦ†)−Lηµν

– Energie- und Impulsdichteoperatoren

ϵ =Θ00 = (∂tΦ)
†(∂tΦ) + (∇⃗Φ†) · (∇⃗Φ) +m 2Φ†Φ,

g⃗=−(∂tΦ
†)(∇⃗Φ)− (∇⃗Φ†)(∂tΦ).

– Gesamt-Energie und -Impuls

P =

�

H

P⃗

�

=

∫

V

d3 x⃗

�

ϵ(t , x⃗ )
g⃗(t , x⃗ )

�

=
∑

p⃗

�

Ep⃗

p⃗

�

[a†(p⃗ )a(p⃗ ) +b(p⃗ )b†(p⃗ )]

– Operatorordnungsproblem ergibt unendlichen Vakuumbeitrag




Ω
�

�P
�

�Ω
�

=
∑

p⃗

�

Ep⃗

p⃗

�

–
�

b(p⃗ ), b†(q⃗ )
�

=δ(3)(p⃗ − q⃗ ) (c-Zahl!)

– Normalordnung ändert bis auf eine divergierende c-Zahl-Konstan-
te Energie- und Impulsoperatoren nicht:

: P :=

∫

V

d3 x⃗

�

ϵ(t , x⃗ )
g⃗(t , x⃗ )

�

=
∑

p⃗

�

Ep⃗

p⃗

�

[a†(p⃗ )a(p⃗ ) +b†(p⃗ )b(p⃗ )]

– Normalordnungsvorschrift für Funkionen der Feldoperatoren: :A (x ) :
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* schreibeΦundΦ† mit Erzeuger- und Vernichteroperatoren (Mo-
denentwicklung)

* ordne alle Erzeuger ganz nach links und alle Vernichter ganz
nach rechts

* vernachlässige c-Zahl-Kommutatoren zwischen Erzeugern und
Vernichtern

• QFT löst Probleme der 1. Quantisierung:

– Hamilton-Operator beschränkt nach unten: Gesamtenergieeigen-
werte E ≥ 0

– Vakuum (keine Feldanregungen =̂ keine Teilchen):

P |Ω〉= 0

– Moden mit positiver (negativer) Frequenz: Vernichter (Erzeuger) in
Modenentwicklung (Feynman-Stueckelberg-Trick)

– a ̸= b: verschiedene Teilchenarten mit gleicher Masse

– intrinsische Quantenzahl zur Unterscheidung zwischen „a - und b -
Teilchen“?

• Ladungsquantenzahl

– Lagrangian invariant unter Phasenumdefinition der Felder bzw. Fel-
doperatoren

Φ′(x ) = exp(−iqα)Φ(x ), Φ′†(x ) = exp(+iqα)Φ†(x ),

– q ,α ∈R
– Noether: erhaltene Ladung (s. Übungen Blatt 4)

– wende gleich Normalordnung an!

jµ(x ) = iq :Φ†(x )
←→
∂µ Φ := iq :
�

Φ†(x )∂µΦ(x )−
�

∂µΦ
†(x )
��

:

– Erhaltung der entsprechenden Ladung

Q =

∫

V

d3 x⃗ j0(x ) = q
∑

p⃗

�

N a (p⃗ )− N b (p⃗ )
�

– a -Teilchen trägt erhaltene Ladung q , b -Teilchen (−q )
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– b -Teilchen ist Antiteilchen von a -Teilchen (und vice versa)

– Spezialfall: strikt neutrales Teilchen⇔ b(p⃗ ) = a(p⃗ )⇔ Φ†(x ) = Φ(x )
⇔ jµ ≡ 0, Q ≡ 0

• Zurück zum R3 („V , L→∞“)

– für L → ∞: diskrete p⃗ ∈ 2πn⃗/L mit n⃗ ∈ Z3 rücken immer enger
zusammen

– in Impulsvolumen∆3p⃗ sind∆3n⃗ =∆3(p⃗ )V /(2π)3 Zustände

– damit ergibt sich Limes für „Fourier-Summen“→ „Fourier-Integral“
∫

V

d3 x⃗ →
∫

R3

d3 x⃗ ,
∑

p⃗

→V

∫

R3

d3p⃗

(2π)3

– geht man auch zu den ursprünglichen Modenfunktionen mit

N (p⃗ ) =
1
Æ

V 2Ep⃗

→
1
Æ

(2π)32Ep⃗

zurück, folgt in Modenentwicklung

∑

p⃗

→
∫

R3

d3p⃗

– NB: durch Normalordnung keine Probleme mehr mit

P =

∫

R3

d3p⃗

�

Ep

p⃗

�

�

a†(p⃗ )a(p⃗ ) +b†(p⃗ )b(p⃗ )
�

.

– N a (p⃗ ) = a†(p⃗ )a(p⃗ ) und N b (p⃗ ) = a†(p⃗ )b(p⃗ ) repräsentieren jetzt Teil-
chendichte pro Impulsvolumen:

�

a(p⃗ ), a†(q⃗ )
�

= iδ(3)(q⃗ − p⃗ )

• Diskrete Symmetrien

– Wigner-Theorem: Symmetrietransformationen immer stets durch
unitären oder antiunitären Operator auf Hilbert-Raum realisiert [Got89]

U unitär : U † = U−1, U (λ1

�

�ψ1

�

+λ2

�

�ψ2

�

) =λ1 U
�

�ψ1

�

+λ2 U
�

�ψ2

�

)

U antiunitär : U † = U−1, U (λ1

�

�ψ1

�

+λ2

�

�ψ2

�

) =λ∗1 U
�

�ψ1

�

+λ∗2 U
�

�ψ2

�

)
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– für stetig mit 1 zusammenhängend immer unitär

– für diskrete Symmetrien: kann auch antiunitär realisiert sein

• Raumspiegelungen

– Klein-Gordon-Gleichung auch invariant unter Raumspiegelungen

P̂

�

t

x⃗

�

=

�

t

−x⃗

�

– zuerst für geladene Klein-Gordon-Felder

– dann kann man Phasenfaktoren in der Definition von P mittels Q
wegtransformieren ⇒ alle Realisierungen mit beliebigen Phasen-
faktoren ηP

PΦ(x )P =ηPΦ(P̂ x )

äquivalent

– setze im folgenden: ηP = 1

– versuche zuerst Realisierung mit unitärem Operator

– soll sich unter P̂ als Skalarfeld, also analog wie unter SO(1, 3)↑-Trans-
formationen verhalten

PΦ(x )P † =Φ(P̂ x ) ⇒ P P =1

– Wirkung auf Erzeuger-Vernichter-Operatoren:

PΦ(x )P † =

∫

R3

d3p⃗
�

Pa(p⃗ )P †up⃗ (x ) + Pb†(p⃗ )P †u∗p⃗ (x )
�

=̂Φ(P̂ x )

=

∫

R3

d3p⃗
�

a(p⃗ )up⃗ (P̂ x ) +b†(p⃗ )u∗p⃗ (P̂ x )
�

=

∫

R3

d3p⃗
�

a(p⃗ )u−p⃗ (x ) +b†(p⃗ )u∗−p⃗ x )
�

(substitutiere p⃗ →−p⃗ )

=

∫

R3

d3p⃗
�

a(−p⃗ )up⃗ (x ) +b†(−p⃗ )u∗p⃗ x )
�

⇒ Pa(p⃗ )P † = a(−p⃗ ), Pb(p⃗ )P † = b(−p⃗ )

– erwartetes Verhalten aus klassischer Physik: p⃗ = dx⃗/dt 7→ −p⃗

• Raumspiegelung für ungeladene Klein-Gordon-Felder
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– Φ† =Φ: keine unitäre Phasenumdefinitionstransformation mehr (Q̂ =
0)

– ηP = 1 („skalares Feld“) oder ηP =−1 (pseudoskalares Feld)

• Klein-Gordon-Gleichung auch invariant unter Zeitspiegelungen

T̂

�

t

x⃗

�

=

�

−t

x⃗

�

, TΦ(x )T † =Φ(T̂ x )

– kann wieder ηT = 1 setzen

– unitäre Realisierung führt auf Widersprüche mit Modenentwicklung!
(Übung!)

– antiunitäre Realisierung funktioniert:

TΦ(x )T † =

∫

R3

d3p⃗
�

T a(p⃗ )up⃗ (x )T
†+ T b†(p⃗ )u∗p⃗ (x )T

†
�

=

∫

R3

d3p⃗
�

T a(p⃗ )T †u∗p⃗ (x ) + T b†(p⃗ )T †up⃗ (x )
�

=̂Φ(T̂ x )

=

∫

R3

d3p⃗
�

a(p⃗ )up⃗ (T̂ x ) +b†(p⃗ )u∗p⃗ (T̂ x )
�

=

∫

R3

d3p⃗
�

a(p⃗ )u∗−p⃗ (x ) +b†(p⃗ )u−p⃗ (x )
�

(substitutiere p⃗ →−p⃗ )

=

∫

R3

d3p⃗
�

a(−p⃗ )u∗p⃗ (x ) +b†(−p⃗ )up⃗ (x )
�

⇒ T a(p⃗ )T † = a(−p⃗ ), T b(p⃗ )T † = b(−p⃗ )

– CAVEAT: Bzgl. Wirkung auf Erzeuger und Vernichter sieht T wie P
aus aber T antiunitär und P unitär!

• auch invariant unter Vertauschung von Teilchen mit Anti-Teilchen: La-
dungskonjugation

• unitäre Transformation

Ca(p⃗ )C † = b(p⃗ ), Cb(p⃗ )C † = a(p⃗ ),
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– Wirkung auf Felder

CΦ(x )C † =

∫

R3

d3p⃗
�

Ca(p⃗ )C †up⃗ (x ) + Cb†(p⃗ )C †u∗p⃗ (x )
�

=

∫

R3

d3p⃗
�

b(p⃗ )up⃗ (x ) +a†(p⃗ )u∗p⃗ (x )
�

=Φ†(x )

– ⇒ C 2 =1

– für strikt neutrales Klein-Gordon-Teilchen: CΦC † = Φ⇔ Teilchen
≡ Antiteilchen

• CPT

– Θ := C P T (antiunitär): ΘΦ(x )Θ† =Φ†(P̂ T̂ x ) =Φ†(−x )

– Wirkung invariant unter CPT-Trafo!

– es gilt allgemein, dass jede lokale QFT mit selbstadjungierter Lor-
entz-invarianter Lagrange-Dichte und bei Gültigkeit des Spin-Sta-
tistik-Theorems auch CPT-invariant ist

– empirisch bis dato hervorragend bestätigt

– CPT-Theorem von Pauli (1955), Lüders (1957) bewiesen

3 Bibliography

Bibliography
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