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Motivation fiir Feldquantisierung

¢ Physikalische Argumente

StoRe von Teilchen bei , relativistischen Energien®
yrelativistisch: AE > mc? = Teilchenerzeugung und -vernichtung

Quantenfeldtheorie (QFT): bequemste Beschreibung von Quanten-
theorie bei nicht erhaltenen Teilchenzahlen

Versuch, 1. Quantisierung a la nichtrelativistische Quantenmecha-
nik = nicht nach unten beschriankte Hamilton-Operatoren = kein
stabiler Grundzustand

historisch: Diracs Theorie des Elektrons = Zwang, die ,, Wellenfunk-
tion“ ala 1. Quantisierung als Vielteilchentheorie zu reinterpretie-
ren

Dirac-See, Positronen als Locher

= Antiteilchen: Antielektron=Positron e* (gleiche Masse, Ladung
+e)
versuche Teilchen in Box der Lange L einzusperren: Ax > L
e 2nh
minimaler Impuls <7+ ~ Ap
benétige fiir hinreichend kleine Ax Energie > m c?

anstatt einzelnes Teilchen zu lokalisieren: erzeuge stattdessen neue
Teilchen

relativistische QT: Teilchen nicht beliebig genau lokalisierbar
fiir Teilchen in Ruhe Ax > 1L

~ mc

¢ Theoretische Argumente

es gibt keine endlichdimensionalen unitdiren Darstellungen der Lor-
entz-Gruppe (auller der trivialen)

einzige mogliche erst-quantisierte Theorie: skalares Feld?

klassisches freies Klein-Gordon-Feld: Energie nicht nach unten ge-
schriankt:

Feldmoden mit positiver und negativer Frequenz notwendig, damit
sich Feld unter Lorentz-Transformationen als Skalarfeld transfor-
miert



kein erhaltener Strom mit positiv definiter Ladungsdichte = Born-
Regel inkonsistent fiir Einteilchenwellenfunktion

brauche offensichtlich auch Spin-1/2-Felder und Spin-1-Felder,...

Kanonische Quantisierung: klassische Wirkung, Lagrange- und Ha-
milton-Funktion

relativistische klassische Punktteilchenmechanik

x beliebige Anzahl freier Teilchen = keine Probleme

x 1 Teilchen in (elektromagnetischem) dulleren Feld: muss zu-
néchst , Strahlungsriickwirkung“ vernachlédssigen

x mit Strahlungsriickwirkung = Lorentz-Abraham-Dirac-Gleichung
= Akausalitdten: ,preacceleration”

x muss storungstheoretische Ndherung machen = Landau-Lifs-
hitz-Gleichung, funktioniert aber nur in niedrigster Ordnung
[Nak13, Roh07, Lec18]

x Nogo-Theorem: keine relativistisch kovariante Hamilton-Theo-
rie fiir wechselwirkendes Vielteilchensystem (Leutwyler) [Leu65]

* Ausweg: Feldquantisierung = Vielteilchentheorie

hervorragender empirischer Erfolg
grundlegende Vorhersagen aller lokalen QFTn: Spin-Statistik-Theo-

rem: Teilchen mit ganzzahligem (halbzahligem) Spin notwendig
Bosonen (Fermionen)

CPT-Theorem: bis dato stets mit hoher Prézision bestitigt

hochprizise Vorhersagen der QED: magnetische Momente von e~
und p.~, Lamb-Shift bei (Wasserstoff-)Atomen = em. Feld muss Va-
kuumfluktuationen aufweisen

semiklassische Theorie (klassisches em. Feld, quantisierte Ladun-
gen) reicht weit, kann aber og. ,Strahlungskorrekturen“ (h6here Ord-
nungen der Storungstheorie) nicht erklaren

spontane Emission = Quantisierung des elektromagnetischen Fel-
des notwendig

klare Bestédtigung auch durch Quantenoptik [SZ97, GCO08]

¢ Relativistische QFT



- im Vakuum: Beschreibung von Streuprozessen = Berechnung von
Streuquerschnitten (Storungstheorie)

- Vielteilchentheorie: thermodynamisches Gleichgewicht: Zustands-
gleichung der stark wechselwirkenden Materie

- Nichtgleichgewichtstheorie: Herleitung von relativistischen Quan-
ten-Transportgleichungen/Hydrodynamik zur Beschreibung von Schwe-
rionensto8en

2 Quantisierung des freien Klein-Gordon-Feldes

Quantisierung des freien Klein-
Gordon-Feldes

Literatur: (pesro, cols, Gros)



Quantisiertes Klein-Gordon-Feld
* klassische Theorie (s. Ubung 5) fiir komplexes Skalarfeld
— Lagrangian (Poincaré-invariant):
£ =(9,9%)(0"®)— m**®
- kanonische Feldimpulse

0¥ 0¥
=ote*, It =

= oHP
6(8M<I>) 3(8H<I>*) g

=

- Feldgleichungen: Euler-Lagrange-Gleichungen
0%
uII™ =00 = == = —m*® = (O+m*)®=0,

0%
9,I" =0d* = o =—m?®* = (O+m?)d*=0

¢ Kanonische Feldquantisierung

- im Heisenbergbild: nur Observablen-Operatoren zeitabhéingig

- Zustinde zeitunabhédngig = reprisentieren ,Priparation des Sys-
tems“ zur Anfangszeit

— kanonische Quantisierung: ® — &, ®* — @'

- Zeitargument der Felder: Zeit wie in nichtrelativistische QM als Pa-
rameter

- Ortsargument der Felder: ,Label* fiir unendlich viele Freiheitsgra-
de!

- NB: Fiihre keine Operatoren fiir ,Ortskoordinaten® ein!

- Zeit- und Ortskoordinaten x werden gleichartig als Parameter be-
handelt



- kanonische gleichzeitige Vertauschungsrelationen fiir ® und II =

°:
[@(z, ), @(¢,7)]=0, [I(¢,%),1(z,7)]=[@'(¢, %), &' (£,7)] =0,
[<I>tx q»*(ty)]: [(z, %), 12, )] =['(¢, %), d(z, 7)] =0,
[#(t, %), 1z, 7)) = [#(z, ), (£, )] =i6)(% ~ 7),
[

®'(¢,2),10'(¢, )] =[®'(¢, %), 8(¢, 7)] =169)(Z - 7).

¢ Hamilton-operator (CAVEAT: Operatorordnungsproblem!)
H =f de%(t,ic’):f dx [b(r, B)(e, 2)+ &' (¢, D) (2, ) — 2]
R3 R3
=J Ex[(o,@(t, ))(0,8(¢, )+ (Vo'l(z, %) (Va(r, %))+ m*®(¢, 2)d(t, ¥)].
R3

- NB: ¢ stimmt mit (quantisierter) Energiedichte ¢ = ©%° kanoni-
scher Energie-Impuls-Operator vom Noether-Theorem iiberein

— = H représentiert Energie
¢ Bewegungsgleichungen
= 1 =
atq)(t’ X) = I [‘I)(t’ x)r H]y
1
atﬂ(t»x)): 7[‘1’([’,5(:)), H]
i

- und entsprechend fiir ®" und I
- mit kanonischen Vertauschungsrelationen:

@+ m?)®=0+m*)e" =0.

- Feldoperatoren erfiillen Klein-Gordon-Gleichung

¢ Losungen der Operatorfeldgleichungen

- vollig analog zu klassischen Gleichungen (da lineare Gleichungen)

- verwende Resultate von Ubung Sheet 5



Moden-Funktionen

1 . ™
up(x)= W eXP(—ll'BﬂpozEpy E, =y m2+p?
P

Normierungskonvention (NB: (®;,®,) indefinite Bilinearform!)

®),y)=i | &*x®, 3, ® )= us)=0, (0, uz)=—(ug, u5)=6%p—-g

( 1 2)_1 , X®1 0r P2, (uﬁ!uq)_(u"yuq’)_ ’ (uﬁ,uq)__(uq’uﬁ)_ (p_q)
R

Moden-Zerlegung des Feldoperators

(7) = fdsp[a(p (2)+b'(B)us(0)]

e Kommutatorregeln fiir a(p) und b(p)

a()=(u3, %), b(P)=(u} ")

mit gleichzeitigen Kommutatorrelationen der Felder

potentiell Probleme mit -Distributionen

¢ Regularisierung: endliches Volumen

die 6-Distribution ist problematisch (kontinuierliche Impulse, p €
R3)
»1Teilchen® in endlichem Wiirfel der Kantenlénge L

mochte selbstadjungierten Operator v (Impuls in der 1. Quanti-
sierung) = periodische Randbedingungen

O(t, X+ Lid)=®(t,%), HeZ’

Modenentwicklung wie im R3 aber auf ¥ € V = [0, L]® beschrinkt
= Fourier-Reihe statt Fourier-Integral

2
pe7, #x)=> [alP)up(x)+ b (Pluj(x)]
F;



— Modenfunktionen
up(x)= N(ﬁ)exp(—ig'lﬂpo:}gﬁ:‘/mz—_}_p*z
- Normierung

«— 1 ].
whuz)=| Brut(x)d, uz(x)=65: = N(B)=
( P q) J;/ p(—) t q(_) p,q (P) \/WE,}

1 .
up(x)= V2L, exp(—ip X yo_p,— /mzrpz

- analog wie im R3: Kommutatorrelationen

[a(3),a(3)]=[a(B),b(3)] = [b(B),b(d)] = [a(p),b(d)] =0,
1 fir p=¢q,

5\ at (A = b(3) b ()] = 52 - —
@)=l @l-ap- ) oo 5o

- unendlich viele unabhéngige harmonische Oszillatoren

- a(p) und b(p) vernichten Oszillatoranregungen mit Impuls
- a'(p) und b¥(p) erzeugen Oszillatoranregungen mit Impuls
- aund b verschiedenartige Anregungen

- N,(p)=a'(p)a(p) Anzahloperator fiir ,,a-Anregungen*

- N, (B)=b'(p)b(B) Anzahloperator von , b-Anregungen“

- verallgemeinertes VONS: Vakuumzustand (keine Anregungen):
VYp: a(p)|)=b(p)| =0

- Besetzungszahldarstellung: VONS von gemeinsamen Eigenvekto-
renvon N ,(p)und N ,(p) mit Eigenwerten N, (p), N, p €Ny =1{0,1,2,...}:

1

TN (BBt Ny (B)B)
= = a b |Q>
N (p)IN,(pY)

(NP, Np (B =] |
P
¢ Teilcheninterpretation:

- Zustidnde invariant unter Vertauschung beliebiger g, = Teilchen
Bosonen

— Teilchen in (relativistischer und nichtrelativistischer) QT nicht in-
dividualisierbar



Teilchensorten nur unterscheibar durch intrinsische ,,Quantenzah-
len“: Masse, Spin s €{0,1/2,1,...}, Ladung(en)

gleichartige Teilchen in Raumdimensionen d > 3:

x Bosonen (Zustdnde dndern sich nicht unter Vertauschung be-
lieber Teilchenpaare)

x Fermionen (Zustdnde dndern Vorzeichen unter Vertauschung
belieber Teilchenpaare)

¢ Energie und Impuls

from Noether’s theorem: kanonischer Energie-Impulstensor (s. Ubun-
gen Sheet 5)

quantisiert: CAVEAT: Operatorordnungsproblem!
0L = (9H®")(0"®) + (8 ®) 2 d") — L n*”
Energie- und Impulsdichteoperatoren
=02 =(2,9)'(5,®)+(Ve")- (V®)+ m’a'®,
g=—(0,8"(Ve)-(Ve')o,®)
Gesamt-Energie und -Impuls

— H_ 3= B(tr-)_é)_ Eﬁ oo R ot
2_(§)_fvd x(g(r,z))—Z(ﬁ )[a (Ba(p) + (A ()

pry

Operatorordnungsproblem ergibt unendlichen Vakuumbeitrag

(olej)-> (%)

p

[b(B), b(§)] = 6®/(B — ) (c-Zahl)
Normalordnung dndert bis auf eine divergierende c-Zahl-Konstan-
te Energie- und Impulsoperatoren nicht:

’ X Ez - - = =
P f de(;g 2)=Z( ;)[a*(p)a(pwb*(p)b(p)]
v

) >

p

Normalordnungsvorschrift fiir Funkionen der Feldoperatoren:: .¢/(x):



* schreibe ® und ®' mit Erzeuger- und Vernichteroperatoren (Mo-
denentwicklung)

x ordne alle Erzeuger ganz nach links und alle Vernichter ganz
nach rechts

x vernachldssige c-Zahl-Kommutatoren zwischen Erzeugern und
Vernichtern

¢ QFT lost Probleme der 1. Quantisierung:

Hamilton-Operator beschrankt nach unten: Gesamtenergieeigen-
werte E >0

Vakuum (keine Feldanregungen = keine Teilchen):
PI2)=0

Moden mit positiver (negativer) Frequenz: Vernichter (Erzeuger) in
Modenentwicklung (Feynman-Stueckelberg-Trick)

a # b: verschiedene Teilchenarten mit gleicher Masse

intrinsische Quantenzahl zur Unterscheidung zwischen , a- und b-
Teilchen“?

¢ Ladungsquantenzahl

Lagrangian invariant unter Phasenumdefinition der Felder bzw. Fel-
doperatoren

®'(x)=exp(—iqga)®(x), ®'(x)=exp(+iga)®'(x),

qg,a€R
Noether: erhaltene Ladung (s. Ubungen Blatt 4)

wende gleich Normalordnung an!
ju(x)=iq :9'(x) 9, ®:=iq :[®'(x)9,8(x)—(3,®"(x))]:

Erhaltung der entsprechenden Ladung
Q= f E20(x)=q > [Na(B)— Ny (P)]
v P
a-Teilchen tragt erhaltene Ladung ¢, b-Teilchen (—q)
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— b-Teilchen ist Antiteilchen von a-Teilchen (und vice versa)

— Spezialfall: strikt neutrales Teilchen < b(p) = a(j) < ®'(x) = ®(x)
<j,=0,Q=0

e Zuriickzum R3 (,V, L — c0*)

— fiir L — oo: diskrete p € 2mii/L mit A € Z3 riicken immer enger
zusammen

— in Impulsvolumen A3p sind A37 = A3(p)V /(2n)? Zustinde

- damitergibtsich Limes fiir ,Fourier-Summen*“ — ,Fourier-Integral “

d3p
dBr— [ d®%, -V
fv fn@ Zf,: Rs (270)°

- geht man auch zu den urspriinglichen Modenfunktionen mit

N(p)=

1 1
JV2E;  \JrpeE,

zurlick, folgt in Modenentwicklung
>
p R
- NB: durch Normalordnung keine Probleme mehr mit
3 Ep tr= = Tr= =
P=| &5l 3 [a'(B)a(P)+Db(B)b(B)].
R3

- N, (p)=a'(p)a(p) und N, (p) = a'(p)b(p) repriasentieren jetzt Teil-
chendichte pro Impulsvolumen:

¢ Diskrete Symmetrien

- Wigner-Theorem: Symmetrietransformationen immer stets durch
unitdren oder antiunitdren Operator auf Hilbert-Raum realisiert cowss

U unitar: UT=U", U |)+ 2 [02) =20 [1h1)+ 2, U [1,)
U antiunitir: UT=U"", U )+, [2)) =270 [h1)+ 25U |12))

11



— fiir stetig mit 1 zusammenhéngend immer unitér

— fiir diskrete Symmetrien: kann auch antiunitér realisiert sein

e Raumspiegelungen

Klein-Gordon-Gleichung auch invariant unter Raumspiegelungen

- zuerst fiir geladene Klein-Gordon-Felder

- dann kann man Phasenfaktoren in der Definition von P mittels Q
wegtransformieren = alle Realisierungen mit beliebigen Phasen-
faktoren np

P&(x)P =1p®(Px)
dquivalent

- setze im folgenden: np =1

- versuche zuerst Realisierung mit unitdrem Operator

— sollsichunter P als Skalarfeld, also analog wie unter SO(1, 3)-Trans-
formationen verhalten

Po(x)P =®(Px)= PP =1

- Wirkung auf Erzeuger-Vernichter-Operatoren:

Pa(x)P' = Je dSﬁ[Pa p)+ PbI(3)P w5 ()| <0(Px)
:J B [a(B)up(Px)+ b (B)uy (P )|
:J d*p[a(P)u_p(x)+b'(P)u* ;x)] (substitutiere p ——p)
:J &*p[al—p)up(x)+b!(—p)us )]

= Pa(p)P'=a(-p), Pb(P)P'=b(-p)
- erwartetes Verhalten aus klassischer Physik: p =dx/dt — —p

¢ Raumspiegelung fiir ungeladene Klein-Gordon-Felder

12



- &' = &: keine unitire Phasenumdefinitionstransformation mehr (Q =
0)

- np =1 (,skalares Feld“) oder np =—1 (pseudoskalares Feld)

¢ Klein-Gordon-Gleichung auch invariant unter Zeitspiegelungen

f(i):(_f), T®(x)T =®(7x)
X X

- kann wieder n; =1 setzen

- unitdre Realisierung fithrt auf Widerspriiche mit Modenentwicklung!
(Ubung!)

- antiunitdre Realisierung funktioniert:

A

Tq@w:J &*p[Ta(B)us(x)T' + T (B)us(x) T
R3
:
= | &p[TaB) T u5(x)+ TH (P)T  us(x)]|2(7 x)
JR3
r 3> £, - £
= | d&*BlaBus(Tx)+b(Bus(Tx)]
JR3
[
=J dgfa’[a(ﬁ)ufﬁ(£)+bT(ﬁ)u_ﬁ(£)] (substitutiere p — —p)
R3
[ 3 =2k T -
=] P [al—p)uj(x)+ b (—p)uz(x)]

= Ta(p)T ' =a(—p), Tb(B)T'=b(-p)

— CAVEAT: Bzgl. Wirkung auf Erzeuger und Vernichter sieht T wie P
aus aber T antiunitdr und P unitar!

¢ auch invariant unter Vertauschung von Teilchen mit Anti-Teilchen: La-
dungskonjugation

¢ unitiare Transformation
Ca(p)C'=b(p), Cb(p)C'=a(p),

13



- Wirkung auf Felder
Ce(x)C’ =f d*p [ Ca(p)C us(x)+ Cbl(B)CT 5 (x)]
RS
- fRS & [b(B)us(x) +a' (B)us(x)] = (x)
- =>C*=1

— fiir strikt neutrales Klein-Gordon-Teilchen: C®#C' = & < Teilchen
= Antiteilchen

e CPT

0 := CPT (antiunitir): O®(x)0" =&'(P T x)=®'(—x)

Wirkung invariant unter CPT-Trafo!

es gilt allgemein, dass jede lokale QFT mit selbstadjungierter Lor-
entz-invarianter Lagrange-Dichte und bei Giiltigkeit des Spin-Sta-
tistik-Theorems auch CPT-invariant ist

empirisch bis dato hervorragend bestitigt

CPT-Theorem von Pauli (1955), Liiders (1957) bewiesen

3 Bibliography
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