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The Vector Dominance Model for the πρ-System is an ansatz to state interac-
tions by gauge theories. This report gives first a short introduction into Quan-
tum Field Theory and Perturbation Theory with help of Feynman-Diagrams.
The main part is to calculate the first order contribution to the self-energy of
the ρ-meson in this model.

1 Introduction

In this report1 the relativistic formulation of
physical theories (especially Quantum Field
Theory) is needed. For a short review of this
see: [8] or (more detailed) [4].

1.1 Quantum Field Theory

As in Classical Mechanics the Field Theory
starts with the Variation Principle of the La-
grangian

�
, which only depends on the field

φ and its first derivative ∂µφ. The action func-
tional is defined as

S[φ] =

∫

d4x
�

(1)

So the variational principle becomes:

δS[φ]

δφ
= 0 (2)

1 some conventions: all expressions are to be read in
natural units ( � = c = 1), also the Einstein convention
is used: sum over all equal indices in one expression
(xµxµ = �

µ

xµxµ). The metric tensor is

gµν =

���
�

1
−1 0

0 −1
−1

����
	

This leads to the so called Euler-Lagrange
equations:

∂
�

∂φ
− ∂µ

∂
�

∂(∂µφ)
= 0 (3)

From this the equations of motion can be
derived. Another important topic in QFT
are the so called global symmetry transfor-
mations. These are transformations, which
do not depend on the space-time-coordinates
(if a transformation is not independent of the
space-time-coordinate it is called a local sym-
metry transformation, see 1.2) and do not
change the Lagrangian

�
. It can be shown

(Noether’s Theorem) that to each generator of
a global symmetry group there belongs a con-
served Noether current which is equivalent to
a local formulation of a conservation law. In-
tegrating the currents over a space-like hyper
surface (especially over the space coordiantes
of an arbitrary reference frame) gives a con-
served Noether charge.

Now let us have a look at the free Klein-
Gordon equation (2+m2)φ = 0, which is the
first candidate for a relativistic formulation
of Quantum Theory for free particles. The
Lagrangian therefore reads:

�
=

1

2
∂µφ∂µφ −

m2

2
φ2 (4)
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2 1 Introduction

By using the Hamiltonian theory by introduc-
ing canonical momentum densities Π = ∂

�
∂0φ

one finds the fundamental Poisson-brackets 2

:

{φ(t, ~x),Π(t, ~y)} = δ3(~x− ~y) (5)

{Π(t, ~x),Π(t, ~y)} = 0 (6)

{φ(t, ~x), φ(t, ~y)} = 0 (7)

The next step is to change the fields into op-
erators: Φ̃, Π̃; with this eq. (5) becomes3:

Φ̃(t, ~x)
↔
∂ Φ̃(t, ~y) = iδ3(~x− ~y) (8)

By using a Fourier decomposition and the
so called Feynman-Stueckelberg interpreta-
tion, which interprets negative energy eigen-
values as positive eigenvalues of an antiparti-
cle, the field can be written in the following
way:

Φ̃(x) =

∫

d3~p√
2ω(~p) (2π)3

[

ã(~p)e−ipx + b̃†(~p)eipx
]

(9)

with: ω(~p) =
√

~p 2 + m2

p0 = ω(~p)

By using the commutator relations, one can
show that ã and b̃ are the annihilation oper-
ators for different particles and ã†, b̃† are the
corresponding creation operators. So every
operator can be built up from these creation
and annihilation operators. In the further dis-
cussion it is useful to renormalize the expecta-
tion value of the vacuum state by introducing
the so called normal-ordering product : . . . :,
which means, that all annihalation operators
are ordered to the right side and all creation
operators to the left4.

1.2 Gauge Theory

In the previous section (1.1) global symmetry
transformations were mentioned. There also

2 {A, B} = � d3~x � ∂A
∂φ

∂B
∂Π

− ∂A
∂Π

∂B
∂φ �

3 f
↔
∂ g = f∂tg − (∂tf)g

4 e.g.: : ãã†b̃b̃ã†b̃† : = ã†ã†b̃†ãb̃b̃

ΦV( )

Re

Im

Φ

Φ

Fig. 1: Potential for the Higgs-Mechanism

exist local symmetry transformations, mean-
ing that the behaviour of the transformation
depends on the space-time coordinates, e.g.:

A(x) −→ A′(x′) = U(x)A(U(x)x)

To leave the Lagrangian invariant under this
kind of transformation, one has to use the so
called covariant derivative Dµ instead of ∂µ:

∂µ −→ Dµ = ∂µ + iλAµ (10)

The new vector field Aµ is an isometry and
sometimes called a connection, it creates in-
teraction terms in the Lagrangian, and λ is
the coupling constant for that interaction.
This is a very convenient way to introduce
interactions in QFT (e.g. in Quantum Elec-
trodynamics). For details see [11] and [3].

The so introduced gauge bosons in these lo-
cal gauge theories are always massless. To get
rid of this, one can use the so called Higgs-
mechanism, which deals with a spontaneous
breaking of the symmetry of the ground state.
The general idea is, that the ground state does
not obey the symmetry of the Lagrangian
(this also implies that the groundstate is de-
generated). An example for this is the poten-
tial (see also fig. 1))

V (Φ) = −
µ2

2
Φ∗Φ +

λ

4
(Φ∗Φ)2 (11)

which is used to construct the πρ-System (see
[7]) discussed below (3).
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2 Peturbation Theory and Feynman

Diagrams

2.1 Perturbation Theory

In perturbation theory one looks at a La-
grangian which can be interpreted as a free
Lagrangian with a small interaction term,
called the perturbation:

�
=

�
0 +

�
per (12)

A good example for this is the φ4-Theory,
where

�
per = − λ

4!φ
4. In the following we will

have a look at the Hamiltonian, which also
can be splitted in a free one and a perturba-
tion term

�
=

�
0 + Ṽ (13)�

0 =

∫

d3~x : Π̃∂0Φ̃ −
�

0 :

Ṽ = −

∫

d3~x :
�

per :

The most interesting quantity addressed
in perturbation theory is the S-matrix
(scattering-matrix) S̃fi which is the transi-
tion matrix between an initial state i and a
final state f . These initial and final states are
supposed to be asymptotically free states, i.e.
eigenstates for t → ±∞ respectively, of

�
0.

As in ordinary quantum mechanics the time
evolution reads:5

|i, t〉 = Tc exp



−i

t
∫

t0

dτṼ (τ)



 |i, t0〉 (14)

So S̃ becomes:

S̃ = Tc exp



−i

∞
∫

−∞

dτṼ (τ)



 (15)

5 The operator Tc means the time-ordering operator,
for this only is meant to be a short introduction for
details look at [12]

This term can be expanded in a power series,
e.g. in φ4-theory:

S̃ = 1 +

∞
∑

n=1

1

n!

(

−
iλ

4!

)n

Tc

∫

d4x1 . . . d4xn : φ4(x1) : . . . : φ4(xn) :

(16)

By using the creation and annihilation oper-
ators (see 1.1) to express the initial and final
states the matrix element Sfi can be written
as the following:

Sfi = 〈0|

nf
∏

j=1

ã(~qj)S̃

ni
∏

k=1

ã†(~pk) |0〉 (17)

Now there are some useful formulas about
time-ordered products of normal ordered op-
erators. The first is the so called LSZ Re-
duction Formula6, with help of the n-point
Greens-function, which can be seen as propa-
gator which connects the n space-time points,

iG(n)(x1, . . . , xn) = 〈0| TcΦ̃(x1) . . . Φ̃(xn) |0〉
(18)

and the assumption that in the remote past
and future the fields are asymptotically free,
it can be found after some calculations (see
[8]) that

Sfi = disc. + � i√
Z � n+l∫ k�

a=1
ϕ∗

~qa
(ya)

l�
b=1

ϕ~qb
(yb)

k�
c=1

(2yk
+m2)

l�
d=1

(2yl
+m2)iG(k+l)(y1,... ,yk,x1,... ,xl)

(19)

where ϕ means a free state solution of the
Hamiltonian, Z is a constant for normaliza-
tion and disc. means disconnected parts, that
is the situation if one or more particles are not
scattered (because of this is not interesting, it
is not written out here).

The next useful formula is the so called
Dyson-Wick Series, which tells one how to

6 derived by Lehmann, Symanzik and Zimmermann
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change from the Heisenberg picture (time in-
dependent wave functions, operators time de-
pendent) to the interaction picture (for details
see [12] or [6]):

〈0| S̃ |0〉 iG(n)(x1, . . . , xn) =

= 〈0| Tcφ̃(x1) . . . φ̃(xn) exp

[

−i

∫

dτṼ (τ)

]

|0〉

(20)

The last theorem we need for the follow-
ing discussion is Wick’s Theorem, which al-
lows us to calculate the time ordered product
operators. For this a field operator will be
split into a creation and an annihilation part:
φ̃ = φ̃+ + φ̃−. Furthermore we introduce the
contraction of two operators (signed by a star
right to them) by

TcŨ Ṽ = : Ũ Ṽ : + Ũ ? Ṽ ? (21)

It can be calculated that7

Ũ ? Ṽ? = θ(t1 − t2)
[

φ̃+(x1)φ̃−(x2)
]

+θ(t2 − t1)
[

φ̃+(x2)φ̃−(x1)
]

= i∆F (x1 − x2) (22)

This term is called the Feynman-propagator
and can be calculated by using the Fourier
transformation. It can be proved by complete
induction that

TcÃ . . . Z̃ = : Ã . . . Z̃ : + :
sum over all

possible contractions8
:

(23)

2.2 Feynman Diagrams

Now one only has to apply eq. (16) to eq.
(20):

iG(n)(x1, . . . , xn) 〈0| S̃ |0〉 =

=〈0|TcΦ̃(x1)...Φ̃(xn)
∞�

k=0

1
k!(−

iλ
4! )

k

∫

d4y1...d4yk:Φ̃4(y1):...:Φ̃4(yk):|0〉 (24)

7 here θ(x) is the step-function:θ(x) =

�
0 x < 0
1 x ≥ 0

8 e.g.: TcÃB̃C̃ = :ÃB̃C̃: + :Ã?B̃?C̃: + :Ã?B̃C̃?: + :ÃB̃?C̃?:

a) b)
Fig. 2: Feynman-graphs in φ4-theory: a) outer
point, b) inner point (4-vertex)

The next step is to apply Wick’s Theorem (eq.
(23)) and to keep in mind that the expectation
values with respect to the vacuum state of not
fully contracted operators always vanish. Now
to find all contractions the Feynman diagrams
are introduced: one draws a point with one
leg for every outer space-time point (such as
Φ̃(x1)) and a 4-vertex for every inner point
(the number of inner points determines the
order of the contribution in terms λk). With
further calculations it can be shown, that only
such diagrams contribute to the result, which
do not contain any disconnected parts9. With
help of the so called Feynman-rules one can
read off the expression from these diagrams.
For example here are the Feynman-rules for
φ4-theory in momentum-representation:

• for each vertex write a factor − iλ
4!

• each propagator line carries an internal
or external momentum pj and represents
a factor iDF (pj) = i

p2−m2+iε

• the total external momentum has to be
conserved, also at every vertex momen-
tum conservation has to be fulfilled.

• multiply with a symmetry factor10

• integrate over all internal momenta not
fixed due to momentum conservation:
∫

d4k
(2π)4

Now there is a problem in calculating these
integrals: In almost all cases if they contain so

9 that means parts which have no connection to an
outer point
10 this factor takes care of various permutations of con-
tractions for one diagram giving the same result
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called “loops” (see fig. 3): they are divergent!
To handle this problem one can assume that
the parameters entering in the Lagrangian are
so called bare parameters which cannot be ob-
served. The observed physical parameters are
different from them. So one has to add so
called counter-terms to the Lagrangian, which
are of the same form as the given ones, to
make the integrals non-divergent. This is
called renormalization. At first this may look
a little bit arbitrary, but think of the normal-
ization constants in quantum theory: one al-
ways renormalizes the expectation value for
the whole volume to 1! The main idea is
the existence of the bare parameters and that
these cannot be measured, because there are
always interactions between particles. So one
can never observe a free particle with the bare
parameter, just interacting particles can be
observed and they show the physical parame-
ter.

First one has to give the integrals a proper
meaning of all which is called regularization.
One way to do this is to use dimensional reg-
ularization11 (see [8]). Here one introduces
the dimension of space-time as a parameter
2ω, calculates the integrals which are diver-
gent for 2ω −→ 4 and then handles them as
analytic functions in the complex ω-plane and
expands them around the pole 2ω = 4. This
will not be shown in detail in this short report,
only the final results will be discussed. The
reason for choosing this renormalization tech-
nique is the fact, that symmetries and most
importantly gauge invariance are preserved by
applying dimensional regularization. Another
reason is practical convenience. But the first
is much more important, because the interac-
tions are stated by symmetries.

3 Self-Energies

In the following a model of the πρ-system is
treated as discussed in [7]. By using dimen-

11 first it is convenient to apply so called Wick’s rota-

tion to change to an Euclidean field theory (see [8])

sional regularization, the one-loop contribu-
tion (see fig. 3) to the mass parameter is cal-
culated for the πρ-System.

3.1 Calculation of the first order

contributions

For calculating the first order contributions
(see fig. 3) to the self energies of the ρ-
meson the following propagators and vertices
are needed (see fig. 4):

π-propagator iGπ(l) = i
l2−m2

π+iε

ρππ-vertex12 iΓρππ(p, q) = −ig(pµ + qµ)

ρρππ-vertex iΓρρππ = ig2gµν

Using this one can calculate the following ex-
pressions with help of the dimensional regu-
larization technique.

one-loop =

∫

d2ωl

(2π)2ω
(iΓρππ(l, l + p))2

iGπ(l) iGπ(l + p) (25)

tad-pole = 2

∫

d2ωl

(2π)2ω
iΓρρππ iGπ(l)(26)

Doing all the calculations one gets the final
result (sum of eq.(25) and eq.(26)):

−iΠ(s)
(pµpν

s
− gµν

)

(27)

with: s = p2 and

Π(s) = g2 m2
π

6π2
+ Cws

+ g2 s− 4m2
π

24π2

√

∣

∣

∣

∣

1−
4m2

π

s

∣

∣

∣

∣

×

×















arcoth

���
1− 4m2

π
s � s<0

arccot

� �
4m2

π
s −1 � 0≤s≤4m2

π

artanh

� �
1− 4m2

π
s � s>4m2

π

(28)

12 from now on the coupling constant is called g (do
not mix this with the metric tensor gµν
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pp
l

l + p

ν ν

pp

l
ν ν

Fig. 3: One-loop contributions to the ρ-
selfenergy (one-loop, tad-pole)

l pq

µ

pq

µ ν

Fig. 4: Diagrams needed for the calculation
(π-propagator, ρππ-vertex, ρρππ-vertex)

The infinite part is contained in Cw which
reads13

Cw = g2 s

π2

(

−
1

18
+

1

48
γ −

1

48
ln

m2
π

µ2
−

1

48ε

)

(29)

In eq. (28) it has already been taken into ac-
count by an analytic expansion, that there ex-
ists a pole in the complex s-plane at s = 4m2

π.
That is just the energy needed to produce the
two π-mesons.

Now to get rid of the infinity one has to
add this as a counter term to the Lagrangian
and therefore gets the renormalized mass of
the ρ-meson

m2
ρ,ren = m2

ρ + Π(s) (30)

3.2 Experimental Data

To compare the (first order) corrections to the
mass parameter derived by the renormaliza-
tion ansatz, it is usefull to look at scatter-
ing processes of pions, like the elastic scat-
tering π+ + π− → π+ + π−, with the
13 γ is Euler’s constant, µ is an energy scale

π+

π− e

e π+
π− e

e

Fig. 5: Electron Form Factor (ratio of these
two diagrams)
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Fig. 6: Scattering Phase

first order contribution of the intermediate ρ-
vectormeson. Herefore one has to look at the
transfer matrix14 for this process. The isospin
in this process is fixed to J = 1 (charged
particles) and it its convenient to look at
the channel with angular momentum fixed to
l = 1 because in this energy range the ρ-
mesons are dominant (otherwise one has to
take into account the mixing of the state with
ω-mesons). The complete evaluation of the
scattering phase can be looked up in [7]. In
figure 6 the data15 are plotted and compared
to the theoretical evaluation.

Another attempt to test the theoretical val-
ues is the examination of the electromagnetic
form factor of the pion, which is defined by
the ratio between the real ργ-Vertex, where
a ρ-meson occurs and a vertex in which the
interaction is direct. (see fig. 5). An experi-
mental test could be made by examining the
π+ + π− → e+ + e− scattering process.
The data16 and the fitted values are shown in
fig. 7.

14 in principle the same as a scattering matrix, but one
uses “transfer” because in the end you stay with the
same particles
15 measured by C.D. Frogatt, J.L. Petersen see [5]
16 measured by S. Amendolia et al., see [1] and L.M.
Barkov et al., see [2]
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